

Access Phone
ADI Limited

FCC ID: N6FSRT7010
Model: SRT7010/Isonex3000

EXHIBIT 9

Technical Manual

Date of Issue: 16 July 1998

As part of its ongoing commitment to product improvement, ADI Limited reserves the right to alter at any time the equipment and specifications described in this publication.

All performance figures quoted are typical and are subject to normal manufacturing and service tolerances.

The purchaser is warned that the statements made in this publication may be inaccurate due to typographical or other errors or subsequent modification of the products designed by ADI Limited. Whilst every care has been taken in the preparation of this publication, no warranty of accuracy or reliability is given in relation to any advice or information contained in this publication and no responsibility for any loss or damage whatsoever arising in any way for any representation, act or omission whether express or implied (including responsibility to any person by reasons of negligence) is accepted by ADI Limited or any officer, agent, or employee of ADI Limited.

© ADI Limited, 1997.

This work is copyright. Other than as permitted by law, no part of it may be reproduced, stored in a retrieval system or transmitted in any form or by any process without prior written permission.

ADI Limited
Systems Group
Telecommunications Division
A.C.N. 008 642 751

Preface

This manual provides the information you will need to program, operate and maintain the SRT.

Distributors and technical service personnel will find it useful.

The manual is divided into five chapters, as described below:

Chapter 1 Introduction

Chapter 2 Physical Description

Chapter 3 Circuit Description

Chapter 4 Programming

Chapter 5 Maintenance, Removal and Replacement Procedures

Refer to the Table of Contents for topics listed in each Chapter.

Block diagrams, schematic diagrams, parts lists, etc can be found in appendices to the manual.

Warnings and Precautions

a.

A caution precedes a practice or procedure which, if not strictly observed, could result in damage to or destruction of the equipment, or corruption of data.

b.

A caution for static devices precedes a practice or procedure which, if not strictly observed, could result in damage to or destruction of the equipment, or corruption of data.

c.

NOTE

A note either precedes or follows a practice, procedure or condition that requires highlighting.

RSN	Receive Summing Node
RSSI	Receive Signal Strength Indication
Rx	Receive
RX	Receive
SAT	Supervisory Audio Tone
SLIC	Subscriber Line Interface Circuit
SRT	Subscriber Radio Terminal (AccessPhone)
ST	Signalling Tone
TCXO	Temperature compensated crystal oscillator
THP	Test Harness Password
TIA	Telecommunications Industry Association
Tx	Transmit
TX	Transmit
VCO	Voltage Controlled Oscillator

Record Of Changes

Any changes to this manual since its first printing are recorded on this page.

Table of Contents

Preface	iii
Installation WARNINGS AND PRECAUTIONS	iv
List of Abbreviations	v
Record Of Changes	vi
Table Of Contents	vii

Chapter 1 Introduction

1.1 Overview	1-1
1.2 Quality And Reliability.....	1-2

Chapter 2 Physical Description

2.1 External Features	2-1
2.2 AC Adaptor Plug Pack.....	2-3
2.3 Antenna.....	2-4
2.4 Printed Circuit Assembly.....	2-5
2.4.1 Power Supply Module.....	2-7
2.4.2 RF Module	2-8
2.4.3 Baseband Unit.....	2-9
2.4.4 Line Interface Unit.....	2-10
2.4.5 Control Unit	2-11

Chapter 3 Circuit Description

3.1 Introduction	3-1
3.2 Power Supply.....	3-2
3.2.1 Switchmode Supply	3-2
3.2.1.1 Switchmode Controller.....	3-3
3.2.1.2 Flyback Transformer	3-3
3.2.1.3 Rectification and Filtering	3-3
3.2.2 Linear Regulators.....	3-4
3.3 RF Unit	3-5
3.3.1 Transmitter.....	3-5
3.3.1.1 Transmit Synthesiser	3-5
3.3.1.2 FM Modulator	3-6
3.3.1.3 Power Amplifier	3-6
3.3.2 Receiver	3-6
3.4 Baseband Unit	3-7
3.4.1 Audio Processing	3-8
3.4.2 Data Processing.....	3-8
3.5 Line Interface Unit (LIU)	3-10
3.5.1 SLIC	3-10
3.5.2 Buffers	3-10
3.5.3 Balance Networks and Programming Components	3-11
3.5.4 Interfaces	3-11
3.5.4.1 Baseband Unit Interface.....	3-11
3.5.4.2 Telephone Line Interface.....	3-11
3.5.4.3 Control Unit Interface	3-12
3.5.5 Functional Description	3-12
3.5.5.1 Standby	3-13

3.5.5.2 Ring	3-13
3.5.5.3 Conversation	3-13
3.6 Control Unit	3-14
3.6.1 Microcontroller	3-15
3.6.2 PSD312L	3-15
3.6.3 Reset Circuitry	3-15
3.6.4 Serial Interface	3-15
3.6.5 Non-Volatile RAM	3-15

Chapter 4 Programming the SRT

4.1 System requirements	4-1
4.2 Making a backup copy of your original disk	4-1
4.3 Connecting PC to the SRT	4-2
4.4 Installing the AccessPhone Terminal Programmer software	4-3
4.5 Starting the AccessPhone Terminal Programmer	4-5
4.5.1 To change password	4-6
4.6 Running AccessPhone Terminal Programmer	4-8
4.7 File	4-9
4.8 Configure	4-10
4.8.1 Comms	4-10
Comm Port	4-10
Data Bits	4-10
Stop Bits	4-11
Baud Rate	4-11
Parity	4-11
4.8.2 Passwords	4-11
4.8.3 Connect	4-13
Reset the SRT	4-13
4.9 Program	4-15
4.9.1 Dealer	4-16
Preferred System	4-16
System A first dedicated control channel	4-16
System A last dedicated control channel	4-16
System B first dedicated control channel	4-17
System B last dedicated control channel	4-17
System First Channel	4-17
System Last Channel	4-17
IMSI Number	4-17
ESN	4-17
SCM	4-17
Access Overload Class (ACCOLC)	4-18
Access Method	4-18
First Paging Channel	4-18
Home System ID	4-19
Call Processing Mode	4-19
Local Control Option	4-19
Serial Call Control (SCC)	4-19
Cell Site Phone Number	4-19
OK	4-20
Cancel	4-20
Read	4-20
Write	4-20
4.9.2 Service	4-21
A1 TX Microphone Gain	4-21
A2a TX Gain (Fine)	4-21
A2b TX Gain (Coarse)	4-21
A3	4-22
A4	4-22
A6	4-22

A7.....	4-22
PWM	4-22
PWM0	4-23
PWM1	4-23
PWM2	4-23
PWM3	4-23
PWM4	4-24
PWM5	4-24
PWM6	4-24
PWM7	4-24
OK	4-24
Cancel	4-24
Read	4-25
Write	4-26
Calibrate	4-27
4.9.3 Factory	4-28
ESN	4-28
First Date Time	4-28
Bandwidth	4-29
First Ring On Duration	4-29
First Ring Off Duration	4-29
Second Ring On Duration	4-29
Second Ring Off Duration	4-29
Busy Tone On Duration	4-29
Busy Tone Off Duration	4-29
Busy Tone On Amplitude	4-29
Busy Tone Off Amplitude	4-29
Busy Tone Frequency	4-29
OK	4-30
Cancel	4-30
Read	4-30
Write	4-30
4.9.5 Defaults	4-31
4.9.6 Manual	4-31
4.10 Help	4-32
4.10.1 Contents	4-32
4.10.2 Search	4-32
4.10.3 Index	4-32
4.10.4 How to use Help	4-32
4.10.5 About TP	4-33

Chapter 5 Maintenance, Removal and Replacement Procedures

5.1 Preventive Maintenance	5-1
5.2 Removal Procedures	5-2
5.2.1 Required Equipment	5-2
5.2.2 Disassembly	5-2
5.2.1 Removing the RF Covers from the PCA	5-5
5.3 Replacement Procedures	5-6
5.4 Replacing the Fuse	5-7

Appendix

SRT Specifications	A
Drawings.....	B
Obtaining SRT Parameters	C
Parts List	D

This page left blank
intentionally

Chapter 1 Introduction

1.1

Overview

The SRT (Subscriber Radio Terminal) is a family of products which allow standard telephone equipment to access cellular networks. It is easily installed by the user and can be attached to one or several telephones, answering machines, facsimiles, or Hayes compatible modems.

The SRT provides basic telephone services to remote rural and suburban areas where existing land-based networks are expensive, lacking in security, or of sub-standard quality.

The SRT7010 is based on the Advanced Mobile Phone System (AMPS) standard and interfaces with any cellular network based on AMPS. It is fully compatible with AMPS protocols and conforms to the EIA/TIA-553 (USA) and TS-005 (Australian) standards.

The SRT family is also known as the AccessPhone and model SRT7010 as the Isonex 3000.

The system consists of

- SRT
- AC Power pack (supplied as an option)
- Whip antenna

Plugging a standard telephone device into the SRT unit allows a user to obtain access to the Public Switched Telephone Network (PSTN) via the cellular network.

1.2

Quality and Reliability

Full inspection and quality assurance activities are implemented during the production and testing phases of the SRT.

The quality assurance standard ISO 9001 is adhered to and inspection protocols reflect these standards.

The SRT has been designed to rigid specifications using advanced component technology and system design philosophy to construct a product of the highest quality.

Chapter 2 Physical Description

2.1 External Features

The SRT is built in a metal housing 160 mm x 210 mm x 35 mm. The housing stands on rubber feet.

Figures 2-1 and 2-2 show the front and rear panels, respectively.

The front panel has four LED displays to indicate the status of the unit. Table 2-1 describes the Front Panel LEDs.

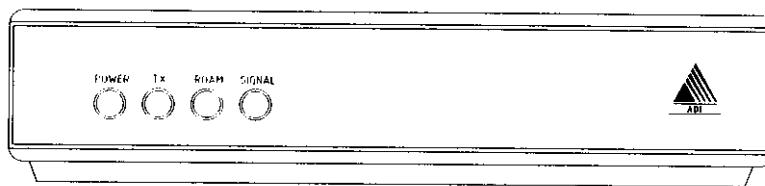


Figure 2-1 SRT Front View

Front Panel LED's	
POWER	Power LED. Flashes green during SRT self-test at start-up, then indicates steady green when power is on.
TX	TX LED. Indicates green when transmitting.
ROAM	Roam LED. This LED is yellow during roam and is off when at home. The SRT roams when it operates on a subscriber service different from the home service.
SIGNAL	Signal LED (tri-coloured). Indicates green when the received signal is strong, amber when the signal is weak but acceptable and red when the signal is weak and unacceptable. No colour indicates "No Service".

Table 2-1 Front Panel LED's

The rear panel has four connectors for the telephone device, power, programming and an external antenna.

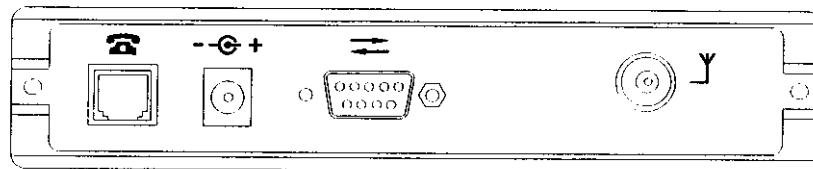


Figure 2-2 SRT External Rear View

Connector	Description
	Standard telephone device connection RJ-11 (telephone handset, facsimile machine, answering machine or modem).
	Power connection, 2.5 mm two-way jack for DC voltage input.
	Remote control and programming connector RS232 (DB9).
	External antenna connection, BNC (female) connector.

Table 2-2 SRT Rear Connectors

A standard RJ-11 connector is provided for the telephone, facsimile, modem or answering machine. An AC adaptor plug pack or optional battery pack is connected by a 2.5 mm two-way jack for DC voltage input. A 9 pin D type connector is provided for remote control. A standard BNC (F) connector is provided for the external antenna.

Figure 2-1 shows the external view of the SRT. Table 2-1 describes the LEDs and table 2-2 describes the connectors on the SRT.

2.2 AC Adaptor Plug Pack

The AC adaptor plug pack is connected to mains AC power 110VAC or 240VAC (90-264VAC) with a standard 2-prong plug Australian STD. It is connected to the SRT with a standard 2.5mm plug and provides the regulated DC voltage required.

2.3 Antenna

There are two types of external antennas for the SRT. A small whip antenna is connected directly to the SRT when the radio base station is located nearby. In poor signal areas, a high gain 50Ω impedance antenna can be connected by cable to the SRT. Figure 2-3 shows the whip antenna.

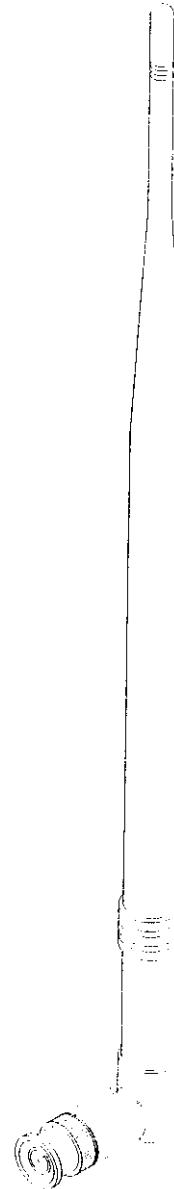


Figure 2-3 Whip Antenna

2.4 Printed Circuit Assembly

The SRT has a single printed circuit assembly (PCA) mounted on rails inside the outer case. The PCA performs all the functional requirements of the complete unit.

There are four modules within the SRT:

- Receiver
- Transmitter
- Baseband and Control
- LIU and Power Supply

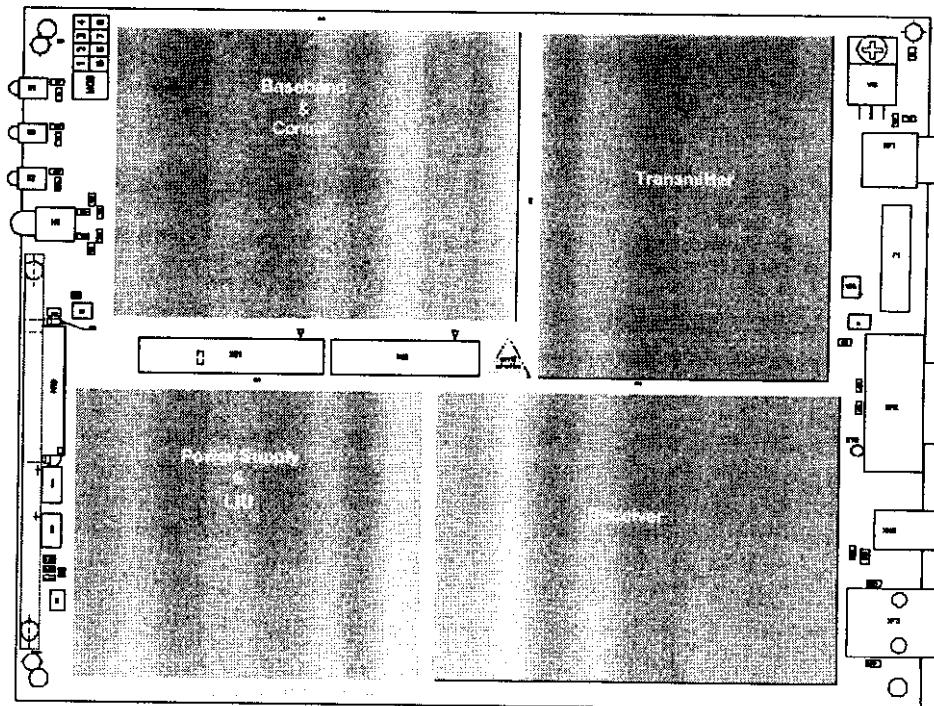


Figure 2-4 Diagram of PCA

Figure 2-5 shows a block diagram of the SRT.

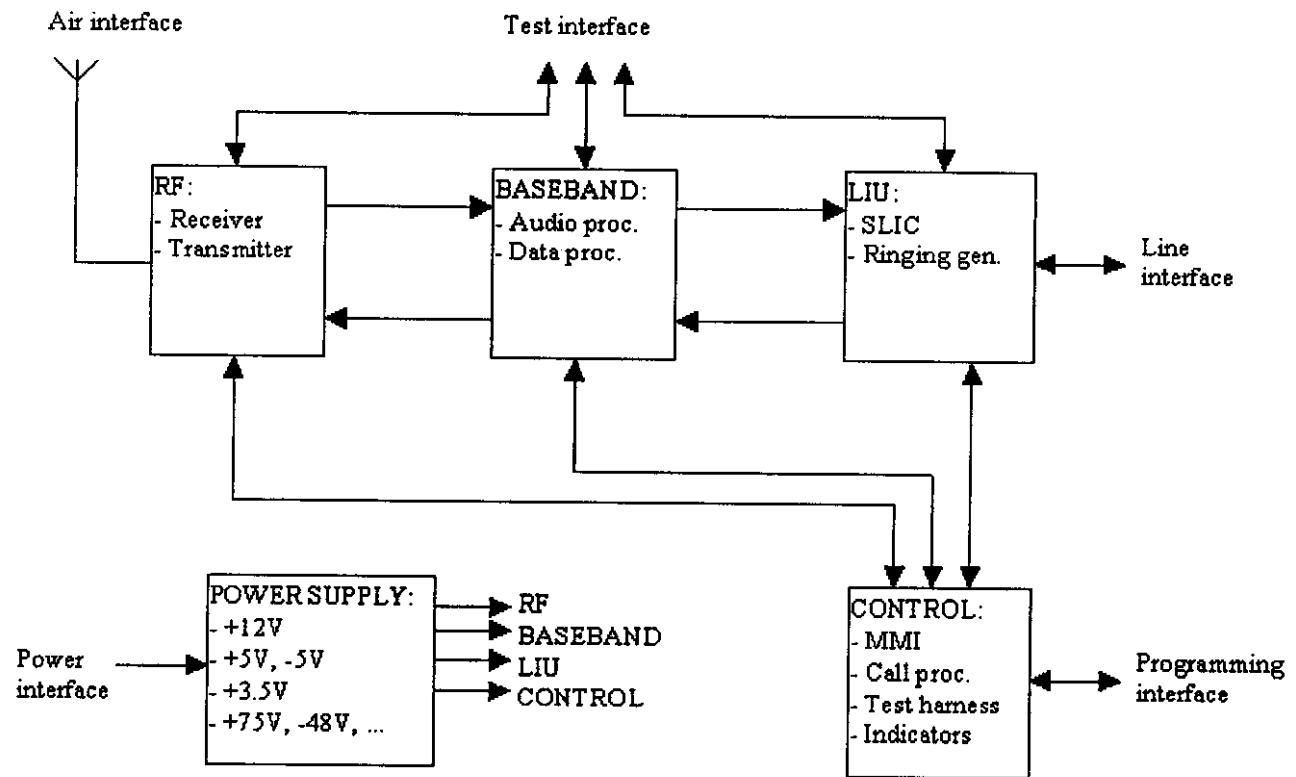


Figure 2-5 Block Diagram of SRT

2.4.1 Power Supply Module

The Power Supply generates the DC voltages necessary for the operation of the SRT. From a nominal input voltage of +13 V DC it delivers the following output voltages:

- +3.5 V for operation of ICs.
- +5 V and -5 V for the operation of the ICs and semiconductors.
- -48 V to provide battery feed to the telephone through the Line Interface Unit.
- +75 V for ringing functions.

2.4.2 RF Module

The RF Module (transmit and receive) facilitates air interface to the cellular network. It has the following functions:

- Generates, baseband modulates and transmits the TX RF signal.
- Receives, processes and demodulates the RX RF signal to provide baseband output.
- Provides a diplexer to enable the connection of transmitter and receiver to a single antenna.

2.4.3 Baseband Unit

The Baseband Unit (within Baseband and Control Module) performs the complete baseband and cellular data processing via the following functions:

- Amplifying and filtering voice signals
- Compression and expansion
- Pre-emphasis and de-emphasis
- Deviation limiting
- Supervisory Audio Tone (SAT) transponding—SAT determination and recovery
- Signalling tone generation
- Encoding and decoding of wide band data.

2.4.4 Line Interface Unit

The Line Interface Unit (within Power Supply and LIU Module) interfaces the SRT to the telephone lines. It performs the following functions:

- Battery feed (-48 V for the operation of the telephone)
- Ring injection
- Signalling detection (handset off-hook, dialling, ring-trip)
- Hybrid function (2-wire to 4-wire and vice versa)

2.4.5 Control Unit

The Control Unit (within Baseband and Control Module) is the core of the SRT and provides all the intelligence required to interface the SRT with the cellular network. It consists of a micro-controller, memory devices and driver circuits.

The following major functions are performed by the Control Unit:

- Provides a basic user interface (call initiation, answering and termination)
- Generates and receives signalling to set-up and maintain calls on the cellular network in accordance with EIA/TIA-553
- Controls the Subscriber Line Interface Circuit (SLIC) ICs in the Line Interface Unit
- Drives the LED displays on the front panel
- Generates ring and busy tones
- Controls the RF Unit (switch on Tx, channel switching and power level control)
- Controls the Baseband Unit (muting audio, volume control)
- Provides serial interface for testing and programming of the SRT

This page left blank
intentionally

Chapter 3 Circuit Description

3.1 Introduction

The Printed Circuit Assembly (PCA) of the SRT has six functions within the four modules:

- Power Supply
- RF Transmit
- RF Receive
- Baseband
- Line Interface Unit (LIU)
- Control

The Power Supply generates DC voltages for the other units.

The Control unit controls the RF, Baseband and LIU units.

Transmitted signals (audio or data) pass from the telephone device to the LIU through a two wire interface. They pass from the LIU to the Baseband Unit and from the Baseband Unit to the RF Transmit Unit. The signal passes from the RF Transmit unit to the antenna and is transmitted as a radio signal. Radio signals are received and processed into the signals required at the telephone device in the reverse of transmitted signals.

A block diagram (Figure 3-6) is located at the end of the chapter.

Schematic diagrams of the SRT are contained in Appendix B.

3.2 Power Supply

The power supply for the SRT is a combination of switchmode supply and linear regulators distributed across the PCA. Zener diodes implement low current supplies of 4.3V.

Figure 3–1 is a block diagram of the Power Supply.

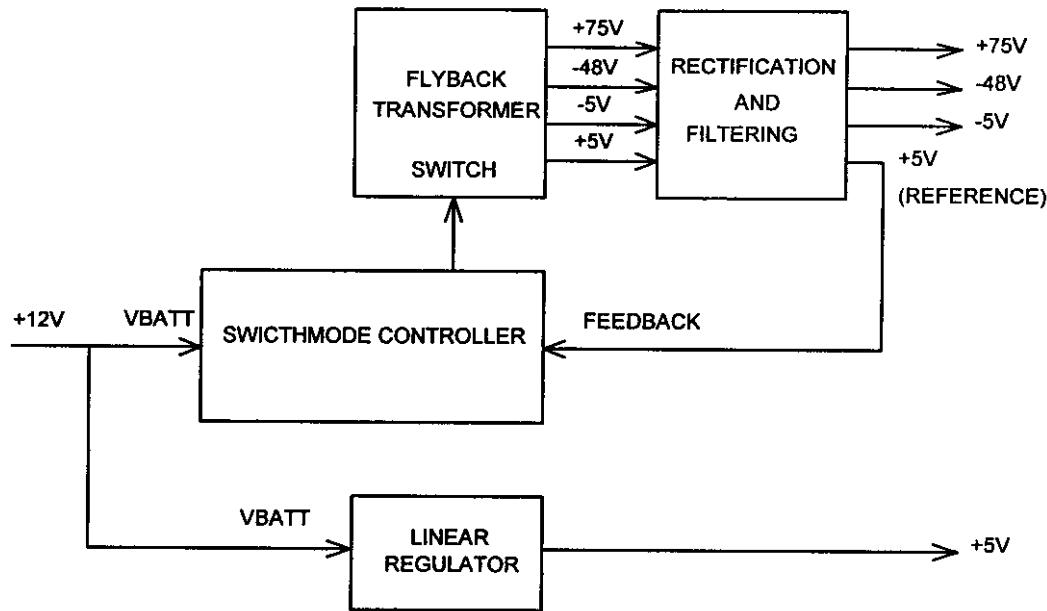


Figure 3–1 Block Diagram of Power Supply

3.2.1 Switchmode Supply

The switchmode supply is the main supply and is provided by a switchmode regulator. The regular produces $-5V$, $-48V$, and $+75V$ rails.

The switchmode supply is a flyback design to allow for multiple outputs with large variations in voltage levels. There are three functional areas:

- Switchmode controller
- Flyback transformer
- Rectification and filtering

3.2.1.1 Switchmode Controller

The key units of the switchmode controller are:

- Switchmode control
- Undervoltage lockout
- Overcurrent cutout
- Thermal overload protection

Optimum performance and protection is provided by external feedback, loop compensation and snubber networks.

The controller provides a 52kHz square wave which drives a switching transistor. This switches the main input power on and off through the transformer primary coil. The controller reduces the "ON" time to control the output voltage.

3.2.1.2 Flyback Transformer

The flyback transformer is the most critical component of the switchmode supply. It interfaces to the controller to provide the required output voltages.

During normal loading, operation is continuous. In the idle state, operation of the controller is discontinuous.

3.2.1.3 Rectification and Filtering

Rectification is performed for each supply by a single ultra fast recovery diode. The rectified signal is then filtered using low ESR capacitors. The diodes have fast switching times and low forward voltage drops. The capacitors have a very low resistance at the operating frequency. All of the rails have a 100nF or 22nF ceramic capacitor connecting them to ground to reduce high frequency noise.

The output of the +5V rail is used as a feedback signal to the control loop of the switchmode regulator.

3.2.2 Linear Regulators

A linear regulator (LM7805 family) provides the +5V rail. The output is filtered by two 470 μ F capacitors.

Programmable linear regulators throughout the circuit provide +8V and +3.3V.

3.3 RF Unit

The RF Unit (transmitting and receiving) is a full UHF duplex radio. The flow of transmit and receive signals is shown in the block diagram of the RF Unit (refer to Figure 3–6).

3.3.1 Transmitter

The transmitter circuit consists of three basic units:

- Transmit synthesiser
- FM modulator
- Power amplifier

3.3.1.1 Transmit Synthesiser

The transmit synthesiser operates in conjunction with the reference oscillator and the Voltage Control Oscillator (VCO) to generate the RF carrier. This carrier is in the frequency range 824.040MHz to 848.970MHz.

The TX oscillator is of PLL type. The reference frequency (9.6MHz) is divided inside the synthesiser to a low frequency. Similarly, a sample of the VCO output is fed back to the synthesiser and divided. The phases of both divided frequencies are compared in a phase comparator, which generates an error voltage. This error voltage controls the frequency of the VCO.

The frequency of the VCO is set by programming the division ratio in the synthesiser. This is accomplished by the Control unit based on the channel allocated.

The frequency stability of the RF source is determined by the stability of the reference oscillator. This reference oscillator is a Temperature Compensated Crystal Oscillator(TCXO) with a stability of $\pm 2.5\text{ppm}$ over the operating temperature range.

3.3.1.2 FM Modulator

The VCO performs the unit of the FM modulator. The TX baseband signal (a combination of voice, signalling, SAT and data) is fed to the VCO as a control voltage. Since the frequency of the VCO varies as a function of the control voltage, the baseband effectively frequency modulates the VCO output.

3.3.1.3 Power Amplifier

The modulated output from the VCO is fed through a buffer to the power amplifier, which amplifies the signal to a maximum power level of +36dBm. The Control Unit can switch the output power from +8dBm to +36dBm in increments of 4dB.

A directional coupler at the output of the power amplifier couples a small part of the RF signal into a detector and generates a DC voltage. This is used in a feedback circuit to automatically stabilise the output power. The output of the power amplifier is fed through a duplexer to the antenna connector. The duplexer facilitates the use of a single antenna for transmit and receive by filtering the two signals in two different paths.

3.3.2 Receiver

The RF signal is picked up by the antenna and passes through the duplexer. It is amplified by the LNA (Noise Figure typically 1.6dB). The amplified output is filtered in a RF filter and fed to a mixer.

In the receiver, the RX synthesiser performs the same as the TX synthesiser and is driven by the same reference oscillator. The LO to the mixer is generated by the RX synthesiser. The RX LO frequency is set at 86.85MHz above the RX frequency of the channel selected by the Control Unit on channel allocation. The output of the mixer contains the 1st IF (86.85MHz) and is filtered by a narrow band SAW filter. This filter rejects the other intermodulation products generated by the mixer.

The output of the 1st IF filter is fed to a second mixer for further down-conversion to a second IF of 450kHz. The LO frequency (86.4MHz) for this mixer is generated in a frequency multiplier by multiplying the reference oscillator frequency (9.6MHz) by nine.

The 2nd IF is processed in the IF Processor stage. This comprises two stages of ceramic filters, an IF amplifier and a limiter. The ceramic filters improve the noise and adjacent channel performance of the receiver. The IF amplifier also provides a DC output to indicate the strength of the received signal (RSSI).

The output of the IF processor goes to a quadrature detection-type FM demodulator. This demodulates the IF to recover the baseband.

3.4 Baseband Unit

The Baseband Unit is implemented almost entirely by three ICs:

ICs SA5752DK & SA5753DK together perform the audio processing functions.

IC UMA1000LT implements the modem and data processing functions.

Figure 3–3 shows a block diagram of the Baseband unit, indicating signal flow.

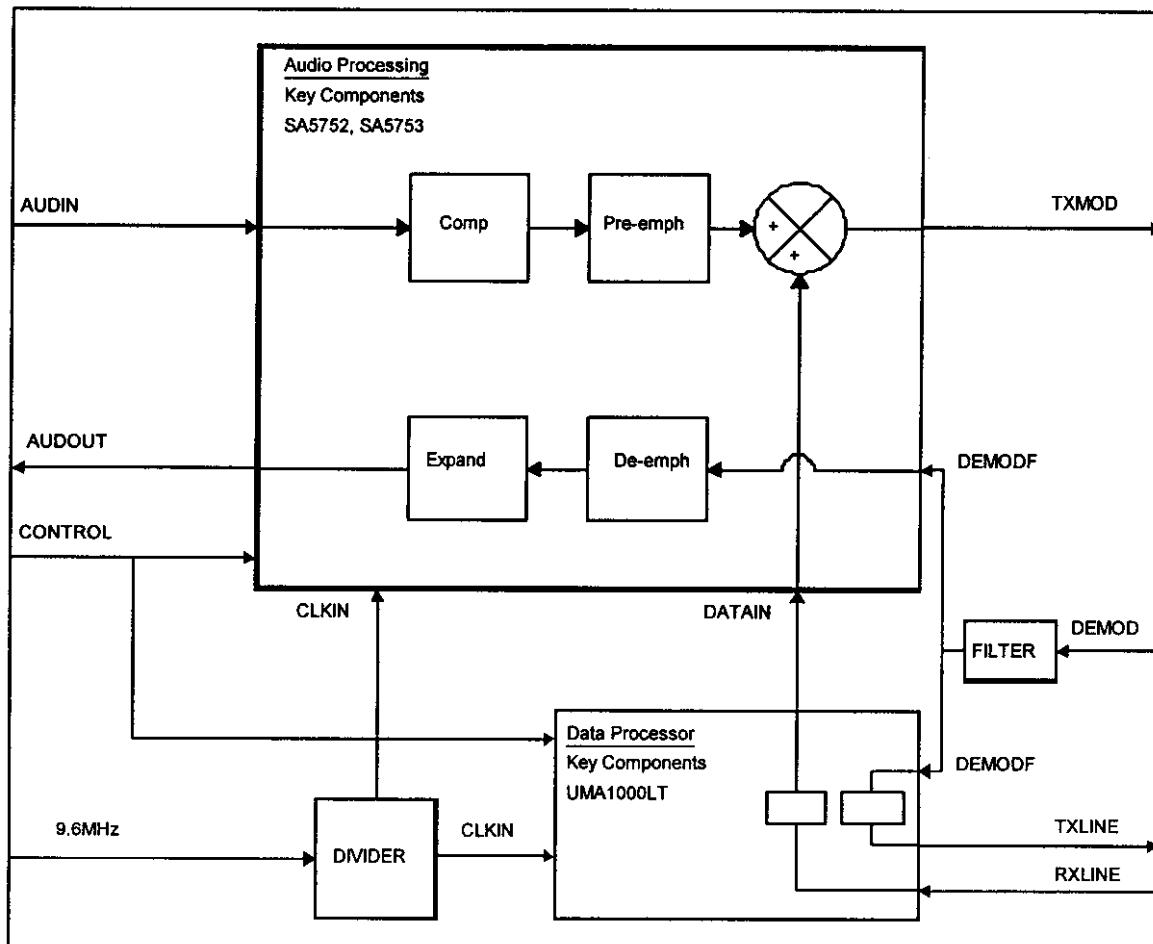


Figure 3–3 Block Diagram of Baseband Unit

3.4.1 Audio Processing

The audio processing chipset (SA5752DK and SA5753DK) performs a series of functions on the audio signals to the receiver and from the transmitter. The main functions performed are:

- Compression / expansion
- Pre-emphasis / de-emphasis
- Gain / attenuation
- Switching

All of these functions are controlled through the I²C bus. Compression / expansion and emphasis / de-emphasis can be switched on or off and attenuators have variable gain settings.

The modulating signal for the transmitter (TXMOD) is derived from the audio signal together with SAT, ST and Manchester encoded data signals from the data processor. The audio signal is passed through a compressor and undergoes pre-emphasis before being summed with the data processor signal.

The demodulated signal from the receiver passes through a low pass filter and is then routed to the data processor and the audio processor. In the audio processor the signal is processed according to programming and is finally available as the AUDOUT signal.

3.4.2 Data Processing

The data processing function provides AMPS compliant signalling. Its main functions are:

- Data encoding and decoding
- Filtering
- Error handling
- SAT recovery and regeneration
- ST generation

The functions of the data processing IC are controlled through an I²C bus. Data is transmitted and received through a dedicated serial port and is connected directly to the processor.

The main signal paths are:

- Data on the TXLINE signal is encoded, has the appropriate signalling added to it and becomes available as the DATAIN signal.
- The DEMODF signal is decoded and data is presented on the RXLINE signal. SAT is also decoded and its status is available in internal registers.

3.5

Line Interface Unit (LIU)

The LIU interfaces to the Baseband Unit internally and provides the means of connecting a telephone or modem to the SRT.

The LIU consists of a SLIC, buffers, balance networks and programming components.

Figure 3-4 is a block diagram of the LIU.

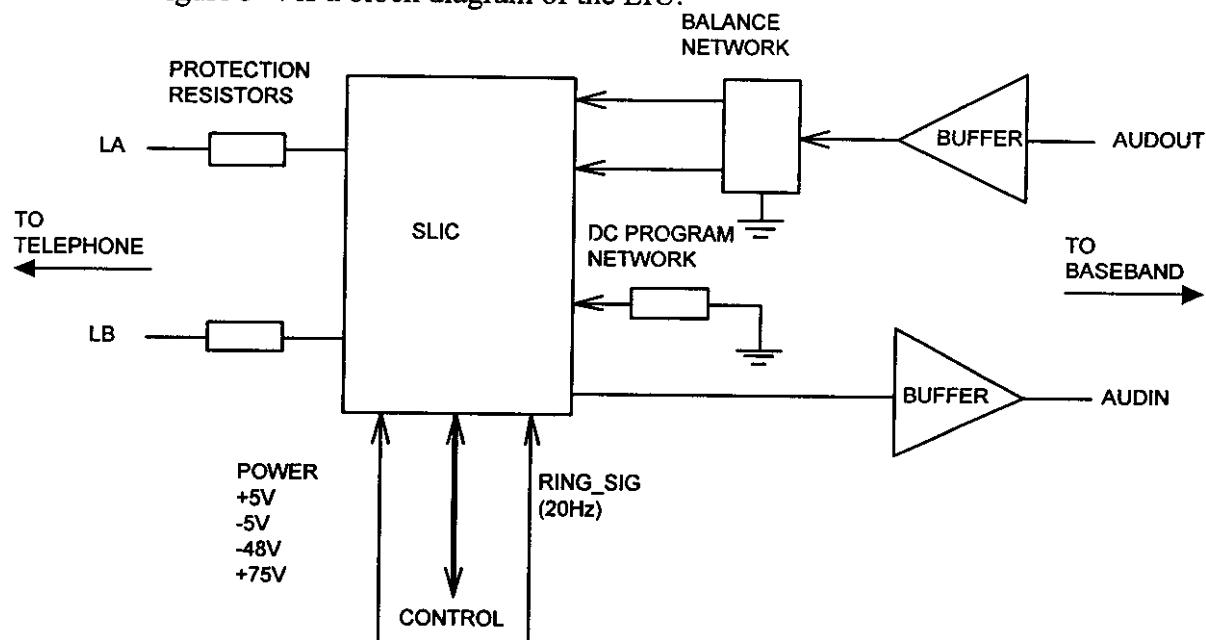


Figure 3-4 Block Diagram of LIU

3.5.1

SLIC

The SLIC is a 2 IC kit and comprises a high voltage part which drives the line (N10) and a low voltage part which contains the digital interface and the hybrid functions (N14).

3.5.2

Buffers

The LIU buffers the input and output audio to the Baseband Unit through an op-amp (N13).

3.5.3

Balance Networks and Programming Components

The networks between the buffers and the low voltage SLIC are primarily impedance balance networks. Some components program the DC characteristics and detector levels of the circuit.

Line impedance is provided by R127, R128, R136 and C110. The line impedance network determines the input impedance of the SLIC and affects the 2-wire return loss.

Hybrid balance is provided by R137, R138, R144 and C129. The hybrid balance networks affect the trans-hybrid loss or the return loss on the 4-wire interface.

XL1, XL2 and XL3 are used to select the line impedance as 600Ω or $220\Omega + 820\Omega \parallel 120\text{nF}$.

3.5.4

Interfaces

The LIU provides three interfaces:

- Baseband Unit interface
- Telephone Line interface
- Control Unit interface

3.5.4.1

Baseband Unit Interface

The LIU is connected to the Baseband Unit via a 4-wire interface. The two signals, AUDIN and AUDOUT are referenced to ground. The buffers (N13) match the levels of the signals going into and out of the LIU to the levels required by the audio processor.

3.5.4.2

Telephone Line Interface

The LIU is interfaced to a standard 2-wire interface as used in a Public Switched Telephone Network (PSTN). It is fed directly by the SLIC (N10). The signals to the standard telephone device are LA and LB (commonly referred to as tip and ring). The characteristics of this interface are controlled by programming components connected to the SLIC.

3.5.4.3 Control Unit Interface

The interface to the Control Unit consists of a parallel digital bus with the signals described in Table 3-1.

Signal	Input/Output
RING_I_CTRL	input
PWON	input
AUT	input
LIM	input
NONHK	output
NGKD	output

Table 3-1 Control unit Interface Signals

In addition, a low level 20 Hz filtered sinusoidal signal is used as an input signal for ring generation. This signal is known as RING_SIG.

3.5.5 Functional Description

A signal presented at AUDOUT is buffered by N13.2. It passes to the receive summing node (RSN) of the SLIC, which is at the junction of two balance networks. The signal is then fed to the ZAC input of the SLIC. The signal is placed across the TIP and RING pins of the high voltage SLIC and transmitted to the standard telephone device.

In the balance networks the signal on the 2-wire interface line is added to any signal which originates at the standard telephone device. The hybrid in the low voltage SLIC subtracts an amplitude and phase-modified version of the combined signal to achieve the best trans-hybrid loss possible. This signal is sampled at ZB by the low voltage SLIC and is used in the internal hybrid op-amp.

Functions such as off-hook and ring trip are detected by the SLIC and these states are available at the digital interface. The controller uses this information to trigger the SLIC into its different operational modes.

In the SRT, the SLIC operates in three different modes:

- Standby
- Ring
- Conversation

3.5.5.1 **Standby**

In standby mode the SLIC detects when a standard telephone device goes off hook. It then automatically enters conversation mode.

3.5.5.2 **Ring**

Ring mode is set by the Control Unit. When a call has been made to the SRT, the Control Unit puts the SLIC into ring mode. The 20Hz RING_SIG is amplified and a ring signal is applied to the line by the SLIC. The amplitude of the ring signal on the line is determined by the levels at VB+ and VB-.

When the telephone handset is lifted during ringing, it is detected by the internal ring trip detector in the SLIC. This automatically changes the SLIC to conversation mode.

3.5.5.3 **Conversation**

The SLIC is in conversation mode when it transmits or receives audio. The line is looped and DC current flows. The AC signals are superimposed on the DC signal and the hybrid circuit converts this 2-wire interface into the 4-wire interface to the Baseband Unit.

3.6 Control Unit

The Control Unit is based on a Philips P80CL580 Microcontroller which is comprised of an Intel 8051 core with several peripherals including parallel ports, serial ports, A/D converters, PWM, timers and an interrupt controller. Most of the support for the Microcontroller is provided by a WSI PSD312L. This provides extra I/O, ROM and SRAM. The other parts of the Control Unit are:

- Reset circuit
- Power-down circuit for PSD 312
- Non-volatile RAM
- LED indicators
- Serial line driver and receiver

Figure 3–5 is a block diagram of the Control Unit.



Figure 3–5 Block Diagram of Control Unit

3.6.1 Microcontroller

The microcontroller runs the software which implements the AMPS protocol and controls all functions in the system.

An I²C interface is implemented with three of the I/O pins and this bus is provided to the following ICs in the SRT: Non-volatile RAM, Audio Processor and Data Processor.

The processor controls functions and monitors variables in the RF, Baseband, Line Interface and Power Units.

3.6.2 PSD312L

This IC provides ROM, SRAM and extra I/O ports. The ROM contains the software which controls the system and implements the AMPS protocol.

The SRAM is available to the processor as the main system memory.

The I/O ports provide a means to access the required number of devices.

3.6.3 Reset Circuitry

The reset circuit (N7) is controlled by the V_DIG rail. When the rail reaches a predetermined level (2.9V) then reset signals are asserted in the correct form and timing relationship to the microcontroller and the PSD312L.

3.6.4 Serial Interface

A serial line driver and line receiver have been implemented using discrete components to allow connection to an external serial device. The serial levels are -5 to +5V.

3.6.5 Non-Volatile RAM

The non-volatile RAM (NVRAM) is used to store system parameters such as the serial number and the mobile identification number. Two devices (D1 and D2) work in tandem to provide failsafe backup of vital system parameters.

This page left blank
intentionally

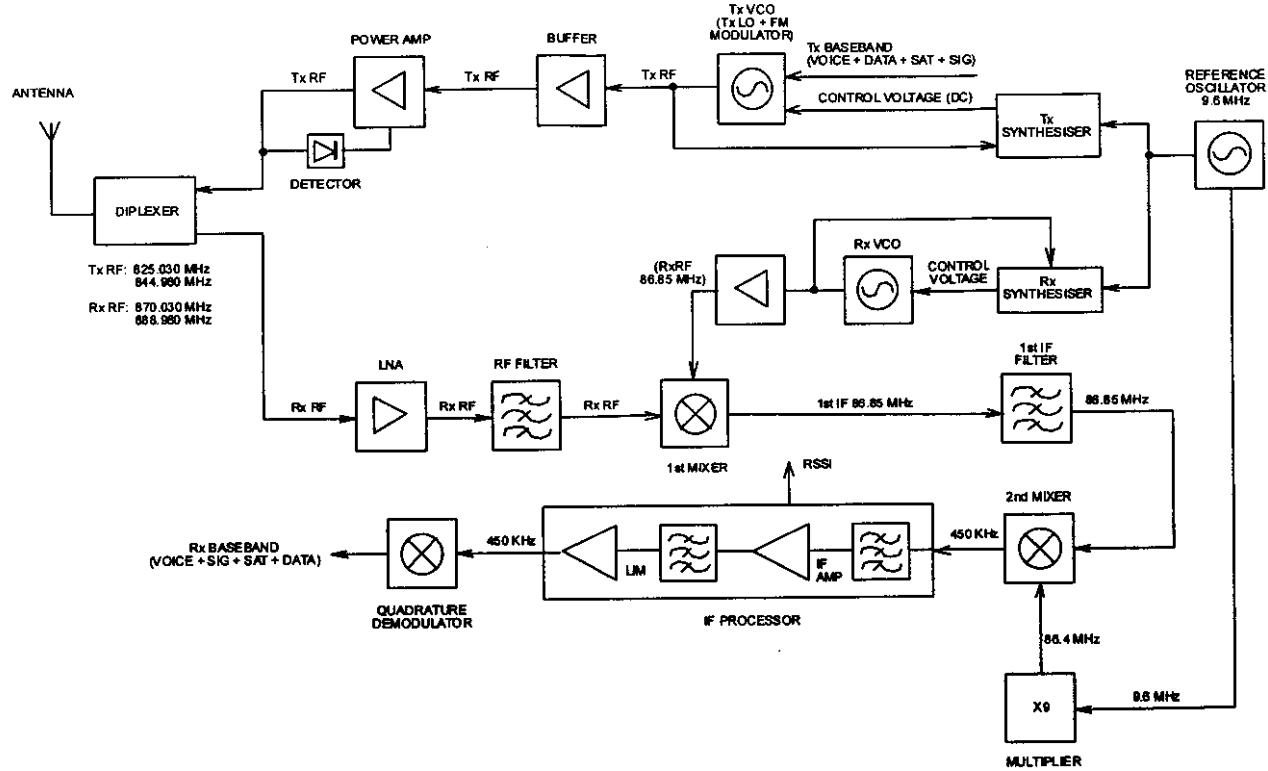


Figure 3-6 Block Diagram of RF U

Chapter 4 Programming the SRT

4.1 System requirements

The minimum system requirements are as follows:

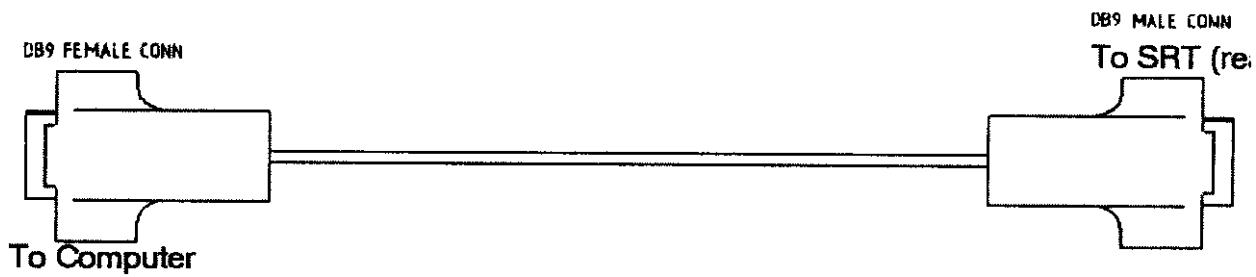
Component	Recommended	Minimum
Computer Processor	80486	80386
RAM	8Mb	4Mb
Monitor	Super VGA	VGA
DOS version	6.21 or later	6.21
Microsoft Windows for Workgroups	3.1X	3.0

Table 4-1 System Requirements

You will need at least 1 Mb available on your hard drive to install the AccessPhone Terminal Programmer software.

Note: To ensure that the AccessPhone Terminal Programmer dialogue boxes are contained within the display screen area, the windows display driver selected must be at least 640 x 480 pixels. Refer to your Microsoft documentation for more details.

4.2 Making a backup copy of your original disk


It is recommended that you make a backup copy of your AccessPhone Terminal Programmer disk, and that you write-protect the backup disk to prevent accidental erasing or overwriting of files.

4.3

Connecting PC to the SRT

To communicate with the SRT, AccessPhone Terminal Programmer requires a serial cable (provided) connection between the computer running AccessPhone Terminal Programmer and the SRT.

The standard supplied cable below allows connection on one end to a DB9 female connection on the computer running AccessPhone Terminal Programmer.

The end with the DB9 male connection is plugged in the serial port located at the back of the SRT.

Figure 4-1 SRT Serial Cable

4.4

Installing the AccessPhone Terminal Programmer software

The following steps assume that you are installing the software from drive A:\ onto drive C:\.

Start Windows, and insert the AccessPhone Terminal Programmer installation disk into drive A:\

Choose "Run..." from the File menu and type A:\ setup in the "Run..." dialogue box, then click the **OK** button or press **Enter**.

Select the default location for the AccessPhone Terminal Programmer files by pressing **Enter** or clicking on the Continue button.

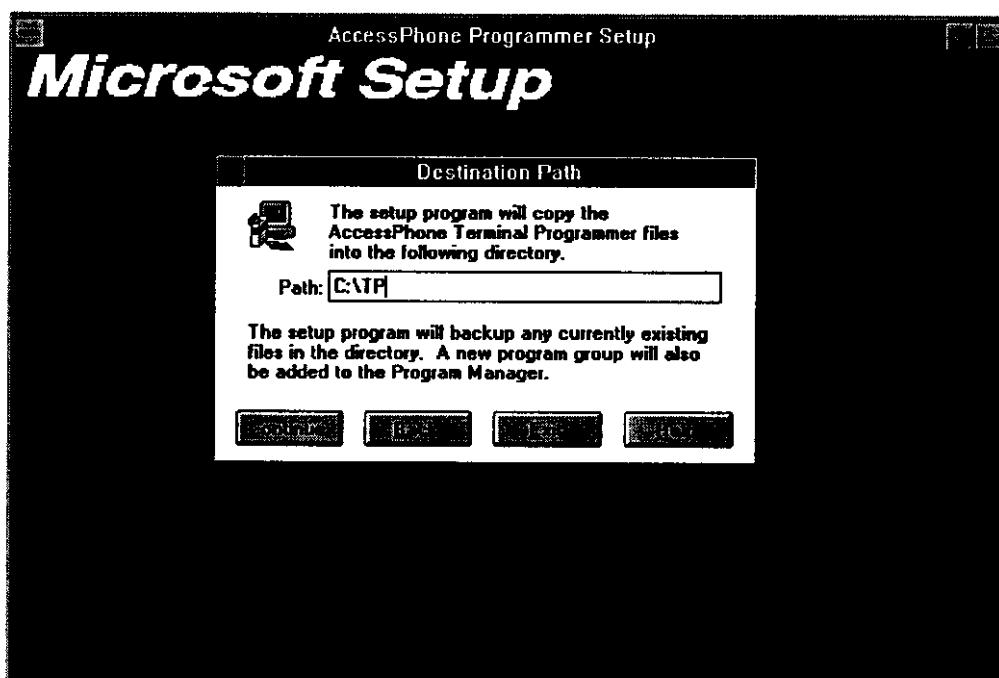


Figure 4-2 AccessPhone Programmer Setup

To specify a directory for storing the AccessPhone Terminal Programmer files, enter the location.

Click on the Continue button to install.

The setup window will be displayed on the screen. The message “Application Setup Succeeded!”

Figure 4-3 Setup Message

The AccessPhone Terminal Programmer program group, showing the program items, will be displayed in the Program Manager.

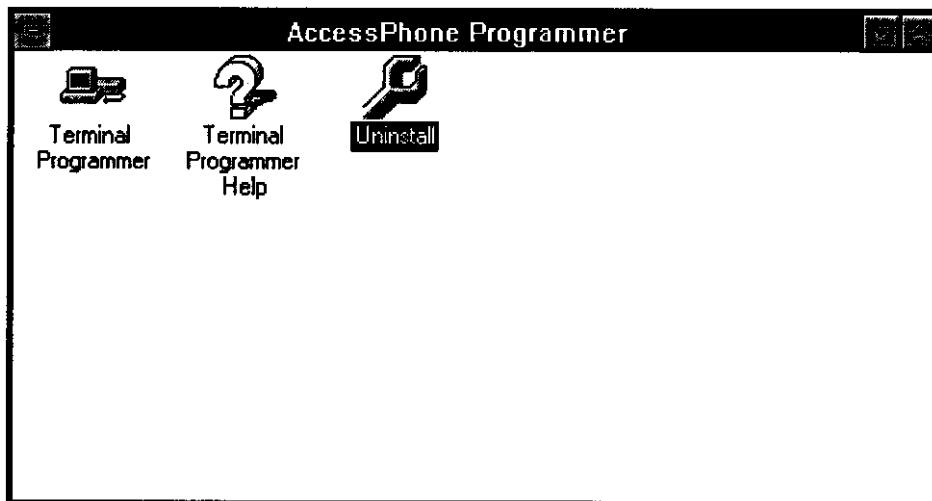


Figure 4-4 AccessPhone Programmer Group

4.5

Starting the AccessPhone Terminal Programmer

To start AccessPhone Terminal Programmer, double-click on the Terminal Programmer icon.

Terminal

Programmer

The following dialogue box will appear on screen, prompting for a Password.

Figure 4-5 Password Entry

The initial Password is:

Password

Note: The Password entry is case sensitive. This password can be changed with the "File" menu option.

Enter the Password, then click on the **OK** button.

A second dialogue box will appear on screen, prompting for passwords to different levels of access.

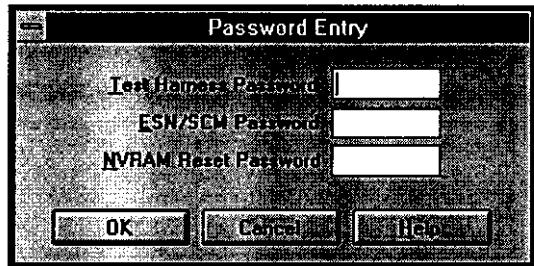


Figure 4-6 Password Entry Levels

- Test Harness Password Access for Service Provider
- ESN/SCM Password Access for Factory Personnel only
- NVRAM Reset Password Access for Factory Personnel only

Note: Passwords required can be entered now (AccessPhone Terminal Programmer will prompt for unentered passwords as they are required).

The main menu will appear on screen:

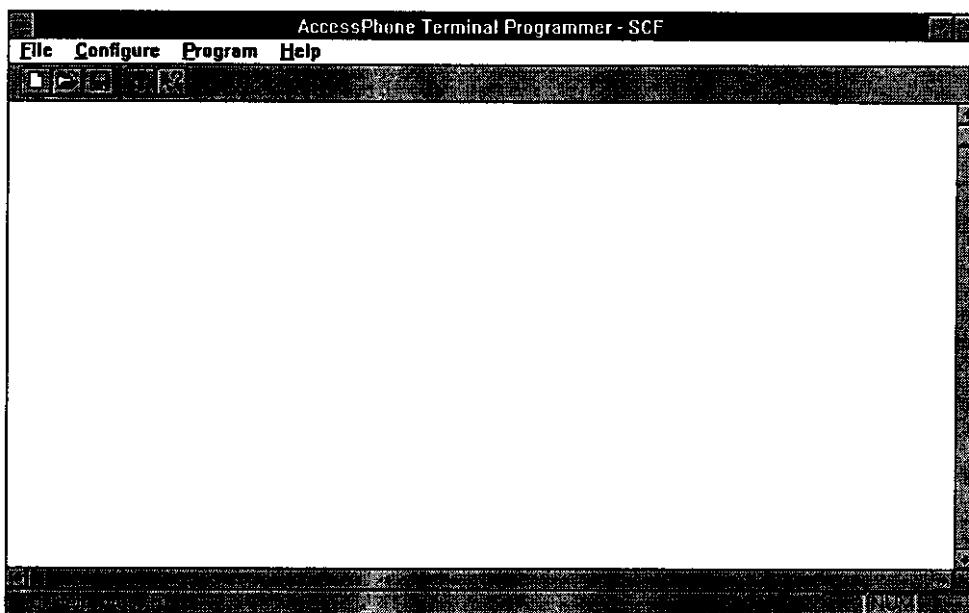


Figure 4-7 AccessPhone Terminal Programmer Main Menu

4.5.1 To change password

To change any of the three SRT passwords required for access to the three levels of AccessPhone Terminal Programmer functions, select Program from the main menu then click on Passwords:

The following dialogue box will appear on screen, prompting for an Old/New Username and an Old/New Password.

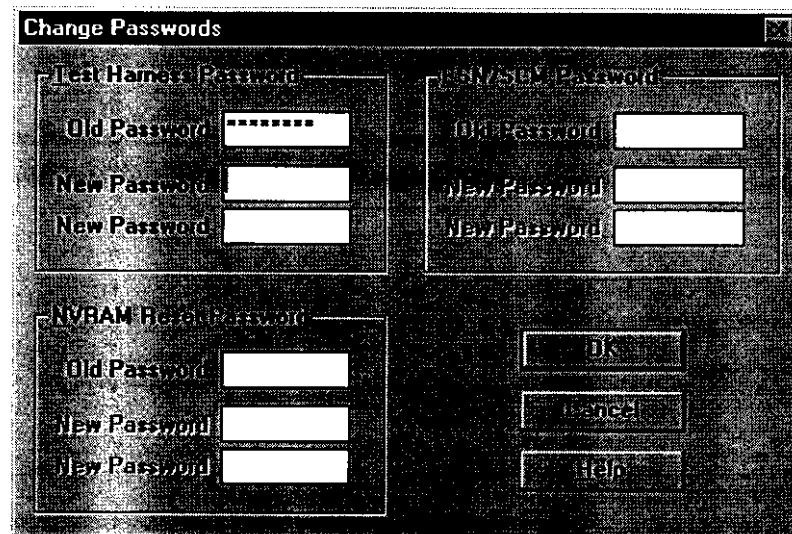


Figure 4-8 Change Passwords

The displayed dialogue box has 3 edit boxes for each of the THP, ESP and NRP passwords. Each password requires the old password to be entered as well as the new password to be entered twice for verification.

Note: You will not be able to enter a new password until you have made an entry for the old password.

The application will attempt to connect to the SRT if not already connected.

4.6 Running AccessPhone Terminal Programmer

AccessPhone Terminal Programmer operates in a Windows environment, functions such as Save, Help and Exit operate as they do under Windows.

Once AccessPhone Terminal Programmer is installed and a password selected the functions can then be accessed. This can be performed in a number of ways.

- Selecting from the pulldown menus below:
File Configure Program Help
- By clicking on one of the buttons displayed below:

- Using keystrokes as indicated in the above menu (ie Ap for the Program Menu).

4.7 File

The File Menu commands allow the management of files and printing. It also allows the user to exit the program.

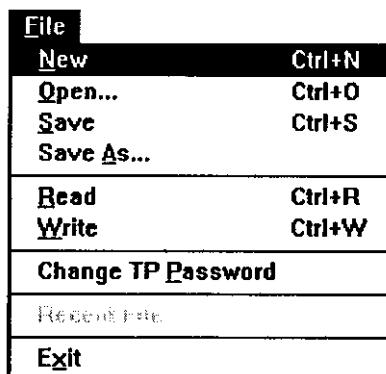


Figure 4-9 File Menu

The commands are described below:

File Menu Item	
New	Creates a new configuration file, such as when parameters are changed for a different geographical location.
Open	Opens an existing configuration file.
Save	Saves the configuration file currently open.
Save As	Saves a newly created configuration into a file, or allows an opened file to be copied and then saved under a different name.
Read	Reads SRT parameters from the connected SRT into a new SRT data file. Test Harness and ESN/SCM Password must be entered.
Write	Writes SRT parameters to the connected SRT from the opened SRT data file. Test Harness and ESN/SCM Password must be entered.
Change TP Password	Changes the AccessPhone Terminal Programmer application password.
Recent File	Not used.
Exit	Clicking on the Exit button exits you from AccessPhone Terminal Programmer and returns you to Windows.

Table 4-2 File Menu Items

4.8 Configure

The Configure Menu commands allow you change the Communications configuration, change passwords and connect to the AccessPhone.

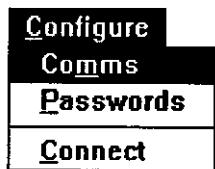


Figure 4-10 Configure Menu

4.8.1 Comms

Use this command to configure the serial port communication parameters.

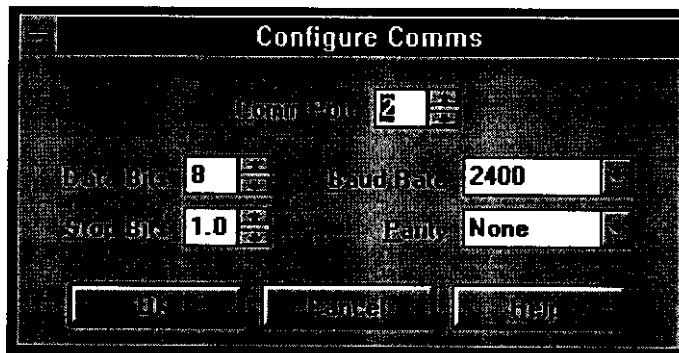


Figure 4-11 Configure Comms

To establish a connection to an SRT using these communications parameters use the Connect Command.

The following parameters are configurable, but the SRT can only communicate using the default values for data bits, stop bits, baud rate and parity.

Comm Port

The serial port used to communicate to the SRT. The range of allowable ports is 1 to 10.

The default is COM1.

Data Bits

Allowable values are 4 to 8.

The default is 8.

Stop Bits

Allowable values are 1, 1.5 and 2.

The default is 1.

Baud Rate

A range of common baud rates is provided.

The default is 2400.

Parity

Allowable values are Even, Mark, None and Odd.

The default is None.

4.8.2 Passwords

Use this command to pre-enter the passwords required for access to the SRT.

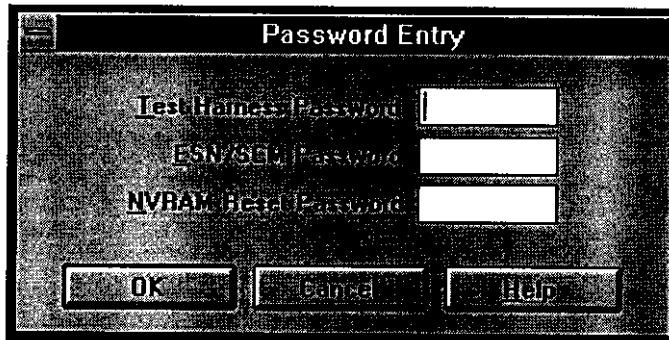


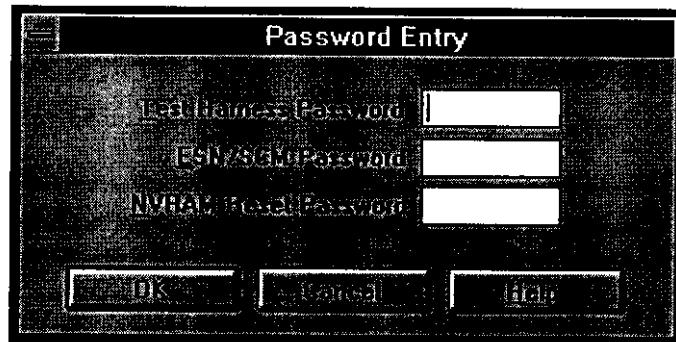
Figure 4-12 Password Entry

If the passwords are not pre-entered you will be prompted for them when they are required. If a password is entered incorrectly in the pre-entry dialogue box you will also be prompted to re-enter them when they are required.

Note: Incorrect entry of any password three times in a row will cause the application to terminate.

The password pre-entry dialogue box is automatically displayed after the application password has been entered on startup, and when trying to establish a connection if the THP has not been entered.

Test Harness Password (THP) This password is used to request access to the SRT functions. This is the only password that is mandatory to access the SRT.


ESN/SCM Password (ESP) This password is used when accessing the ESN (Electronic Serial Number) and Bandwidth parameters of the SRT. These parameters are configured using the Program Factory Command.

NVRAM Reset Password (NRP) This password is used to reset the SRT parameters to their default values. Resetting the SRT parameters to their default values is performed using the Program Defaults Command.

4.8.3 Connect

Use this command to establish a connection to the SRT. A connection must be established before any parameters can be read or written to the SRT.

Entry of the Test Harness Password is mandatory for connection to the SRT. If this has not already been entered the password entry dialogue box will be displayed.

Figure 4–13 Password Entry

If the application and Test Harness Passwords are entered on startup then the application will attempt to connect to the SRT.

Reset the SRT

When connecting or performing read /write functions the SRT will prompt to be reset.

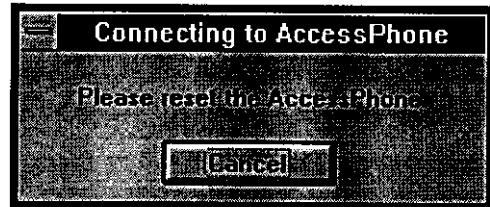


Figure 4–14 Connecting to AccessPhone

This is done by momentarily removing the power plug from the back of the SRT.

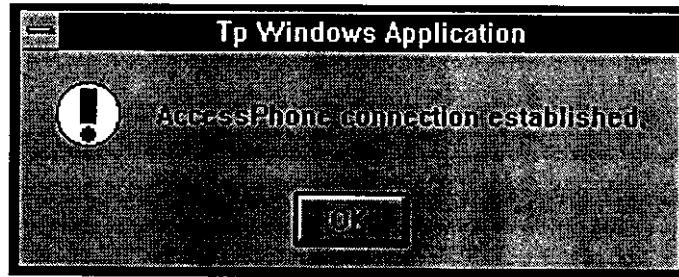


Figure 4-15 Tp Windows Application

Selecting a command that requires a connection to the SRT when the connection has not been established will cause the application to automatically attempt to connect.

The connection attempt may be cancelled at any time by selecting the Cancel button in the connection window. If a connection could not be established after a reasonable period of time the attempt will timeout. The following dialogue box will be displayed.

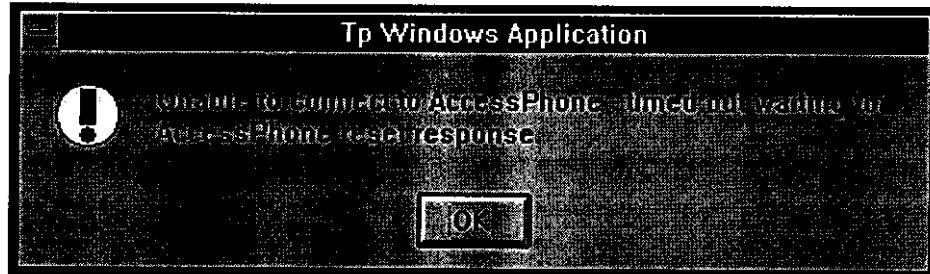


Figure 4-16 Tp Windows Application

4.9 Program

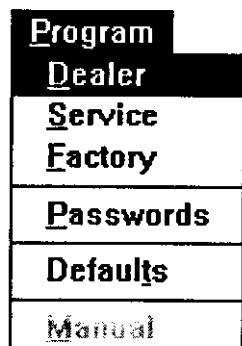


Figure 4-17 Program Menu

The Program Menu commands allow you to:

- Access three programming levels:

Dealer

Service

Factory

- Change the access Passwords to the levels.
- Set defaults
- Manually set SRT parameters

4.9.1

Dealer

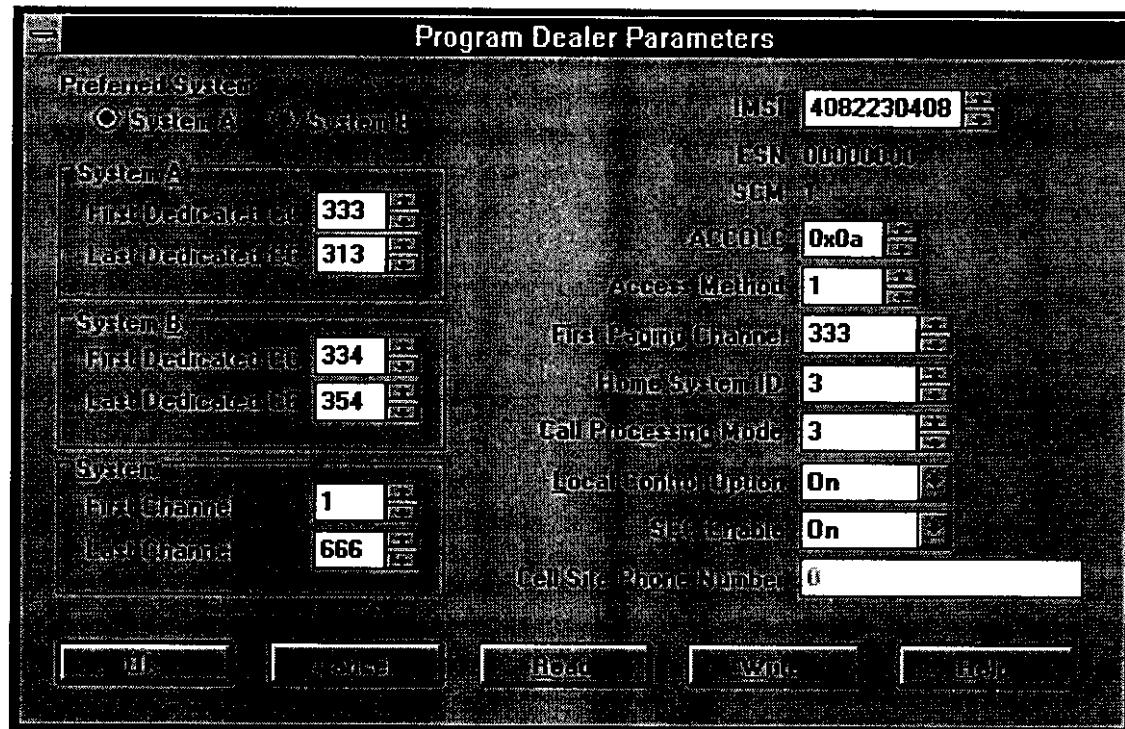


Figure 4-18 Program Dealer Parameters

Use this command to edit, view, read or write the SRT dealer parameters. The dialogue box displayed allows editing of the following dealer related parameters,

Preferred System

A pair of buttons allows selection of System A or System B as the preferred system.

The default setting is System A.

System A first dedicated control channel

System A last dedicated control channel

A pair of controls allows specification of the first and last dedicated control channels for System A. The value of the bandwidth parameter in the Factory Parameters determines the range of allowable values. If the bandwidth value is 20 the range is 1 to 666, otherwise if the bandwidth value is 25 then the range is 1 to 1023.

As the SRT is capable of full 25 MHz AMPS bandwidth the range of possible channels is 1 to 1023.

Default values are 333 and 313 respectively.

System B first dedicated control channel**System B last dedicated control channel**

A pair of controls allows specification of the first and last dedicated control channels for System B. The value of the bandwidth parameter in the Factory Parameters determines the range of allowable values. If the bandwidth value is 20 the range is 1 to 666, otherwise if the bandwidth value is 25 then the range is 1 to 1023.

As the SRT is capable of the full 25 MHz AMPS bandwidth the range of possible channels is 1 to 1023.

Default values are 334 and 354 respectively.

System First Channel**System Last Channel**

A pair of controls allow specification of the first and last dedicated control channels for the System. The value of the bandwidth parameter in the Factory Parameters determines the range of allowable values. If the bandwidth value is 20 the range is 1 to 666, otherwise if the bandwidth value is 25 then the range is 1 to 1023.

As the SRT is capable of the full 25 MHz AMPS bandwidth the range of possible channels is 1 to 1023.

Default values are 1 and 666 respectively.

IMSI Number

The mobile stations 10 digit IMSI value as defined in ITU E.212.

ESN

The ESN value is an 8 digit hexadecimal number uniquely identifying each SRT. The ESN value cannot be modified in the Dealer Parameters dialogue box. This value might not be supported by older versions of the SRT firmware (N/A displayed).

SCM

The SCM value is the mobile's Station Class Mark as defined in EIA/TIA-553 section 2.3.3. It defines the Mobile Station's power class, bandwidth and transmission characteristics (continuous or not continuous).

The SRT SCM of 8 means it is a power class I device capable of full 25 MHz operation and continuous transmission.

This value cannot be modified and might not be supported by older versions of the SRT firmware (N/A displayed).

Access Overload Class (ACCOLC)

This value is used by the cellular system the SRT is currently operating on to forbid the SRT from making calls. In time of heavy traffic the system can temporarily suspend mobiles from originating call based on their access overload class. The system can stop from one to sixteen classes from originating calls.

The SRT can still register and receive calls when it is not allowed to originate calls.

A control allows configuration of the Access Overload Class. The value is displayed in hexadecimal format, but can be entered in either hexadecimal or decimal. To enter values in hexadecimal use the "0x" prefix, otherwise for decimal omit this prefix.

The ranges of allowable values are 0 to F, with a default value of 0x0A.

This value is normally set to the last digit of the IMSI for normal mobiles and A to F for emergency and test mobiles (see EIA/ISB-16 for details).

Access Method

On originations or registrations the mobile can send IMSI or IMSI and ESN. A control allows the Access Method to be set.

This value can be 0 (IMSI) or 1 (IMSI and ESN), with the default being 1.

Note: This parameter should not be changed from the default

First Paging Channel

Cellular systems can use one set of control channels for mobiles accessing the system (referred to as access channels) and one set of control channels for paging mobiles (called paging channels). If this is the case then the SRT must be told of where the first paging channel is using this parameter.

If the paging and access channels are combined then this parameter should be set to the first control channel for A or B band (depending on the preferred system selection).

A control allows selection of the First Paging Channel. The value of the bandwidth parameter in the Factory Parameters determines the range of allowable values. If the bandwidth value is 20 the range is 1 to 666, otherwise if the bandwidth value is 25 then the range is 1 to 1023.

As the SRT is capable of the full 25 MHz AMPS bandwith device the range of possible channels is 1 to 1023.

The default value is 333.

Home System ID

All cellular systems transmit a system identification or SID on their control channel. The SRT compares this system ID against its Home System ID to determine if it is roaming or not.

A hexadecimal control allows specification of the Home System ID. This value may be entered in either hexadecimal or decimal format. To enter values in hexadecimal use the "0x" prefix, otherwise for decimal omit this prefix.

This value may range from 0 to 32767 (0x7FFF).

The default is 3.

Call Processing Mode

A control allows selection of the Call Processing Mode. This values are;

- 1 Handset picked up will automatically dial numbers to access system cellsite.
- 2 After dialling number a end of dial character must be entered.
- 3 End of dial character is detected by time out (**default**).

Local Control Option

This parameter defines whether or not the SRT should respond to local control messages from the cellular system. These messages are used to instruct mobiles to perform specific actions (which are not defined in the AMPS standard).

A selection box allows the Local Control Option to be turned either on or off.

The default option is on.

Serial Call Control (SCC)

A selection box allows the Serial Call Control to be turned either on or off.

The default option is on.

Cell Site Phone Number

An edit box allows specification of the Cell Site Phone Number. This can be any number up to 16 digits in length.

This parameter is only enabled if the Call Processing Mode is set to 1.

OK

Click the OK button to accept any changes made to the open SRT data file.

Cancel

Click the Cancel button to undo any changes and close the dialogue box.

Read

Click the Read button to read only the dealer parameters from the SRT. The application will prompt for any required passwords, and will attempt to connect to the SRT if it is not already connected.

Write

Click the Write button to write only the dealer parameters to the SRT. The application will prompt for any required passwords, and will attempt to connect to the SRT if it is not already connected.

4.9.2 Service

Use this command to edit, view, read or write the SRT service parameters.

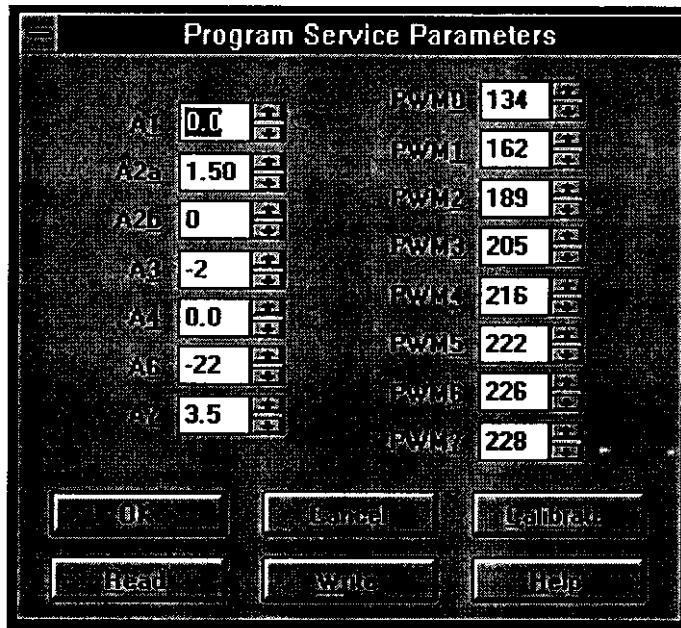


Figure 4-19 Program Service Parameters

The dialogue box displayed allows editing of the following service related parameters,

A1 TX Microphone Gain

This parameter is used to adjust nominal input audio level to yield zero compression level (77.5mVRMS).

A control allows specification of the A1 parameter value. This parameter can range from -12.0 to 0.0 at steps of 0.8.

The default value is 0.0.

A2a TX Gain (Fine)

This parameter is used to adjust zero compression level to produce nominal channel deviation (2.9kHz peak).

A control allows specification of the A2a parameter value. This parameter can range from -3.75 to +3.75 at steps of 0.25.

The default value is 1.50.

A2b TX Gain (Coarse)

Not used

A3 TX Data Level

This parameter is used to adjust TX data modulation for 8 kHz peak deviation of the carrier.

A control allows specification of the A3 parameter value. This parameter can range from -17 to -2 at steps of 1.

The default value is -2.

A4 TX Limiter Gain

This parameter is used to adjust TX deviation limiting to less than 12 kHz peak.

A control allows specification of the A4 parameter value. This parameter can range from -3.5 to +3.5 at steps of 0.5.

The default value is 0.0

A6 RX Audio Level Gain

This parameter is used to adjust RX zero compression level (77.5mVRMS) to yield nominal audio level.

A control allows specification of the A6 parameter value. This parameter can range from -30 to 0 at steps of 2.

The default value is -22.

A7 RX Zero Detector Gain

This parameter is used to adjust nominal RX modulation level (2.9kHz peak) to RX zero compression level.

A control allows specification of the A7 parameter value. This parameter can range from -3.5 to +3.5 at steps of 0.5.

The default value is +3.5.

PWM

PWM means Pulse Width Modulation. A D/A converter is built with the PWM signal of the processor and a low pass filter. The reconstructed analogue DC level is compared with the rectified TX signal in a comparator.

The output of the comparator controls the PA gain and thus the TX power level.

The EIA/TIA-553 (AMPS) standard (section 2.1.2.2) defines 8 power levels (attenuation levels) from level 0 (max power) to level 7 (minimum power) at 4 dB steps. Mobiles are instructed to power up/down by the basestation.

For a class I device such as the SRT the levels are defined as:

SRT Level	
0	6
1	2
2	-2
3	-6
4	-10
5	-14
6	-18
7	-22

Table 4-3 SRT Levels

PWM0 to PWM7 are the ADC values, which define these power levels in the SRT.

PWM0

A control allows specification of the PWM0 parameter value. This value may be in the range from 0 to 255.

The default value is 134.

PWM1

A control allows specification of the PWM1 parameter value. This value may be in the range from 0 to 255.

The default value is 162.

PWM2

A control allows specification of the PWM2 parameter value. This value may be in the range from 0 to 255.

The default value is 189.

PWM3

A control allows specification of the PWM3 parameter value. This value may be in the range from 0 to 255.

The default value is 205.

PWM4

A control allows specification of the PWM4 parameter value. This value may be in the range from 0 to 255.

The default value is 216.

PWM5

A control allows specification of the PWM5 parameter value. This value may be in the range from 0 to 255.

The default value is 222.

PWM6

A control allows specification of the PWM6 parameter value. This value may be in the range from 0 to 255.

The default value is 226.

PWM7

A control allows specification of the PWM7 parameter value. This value may be in the range from 0 to 255.

The default value is 228.

OK

Click the OK button to accept any changes made to the open SRT data file.

Cancel

Click the Cancel button to undo any changes and close the dialogue box.

Read

Click the Read button to read only the service parameters from the SRT. The application will prompt for any required passwords, and will attempt to connect to the SRT if it is not already connected.

AccessPhone Terminal Programmer will prompt to save changes to the **scf.dat** file.

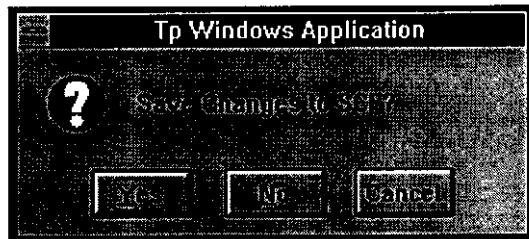


Figure 4-20 Save Changes to SCF

If Yes is selected then the screen below will display requesting a file name and location.

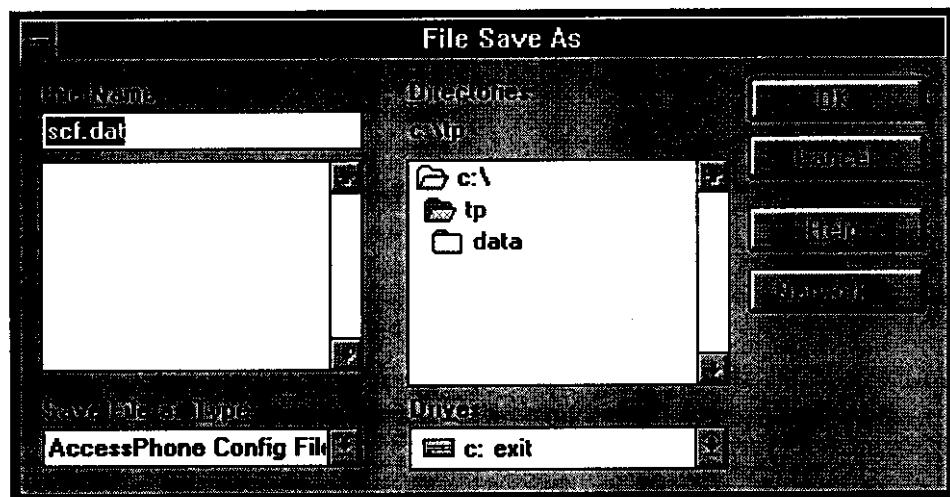


Figure 4-21 File Save As

If a No is selected or after the previous data is saved then the screen below will display showing the transfer of data.

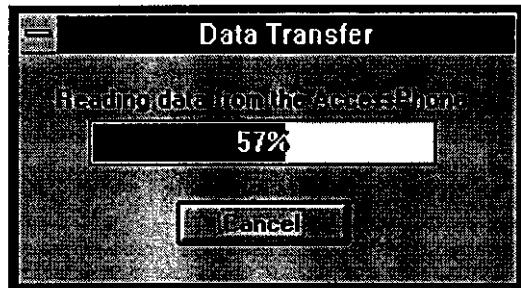


Figure 4-22 Data Transfer (reading)

Write

Click the Write button to write only the service parameters to the SRT. The application will prompt for any required passwords, and will attempt to connect to the SRT if it is not already connected.

AccessPhone Terminal Programmer will prompt you to accept changes made as shown;

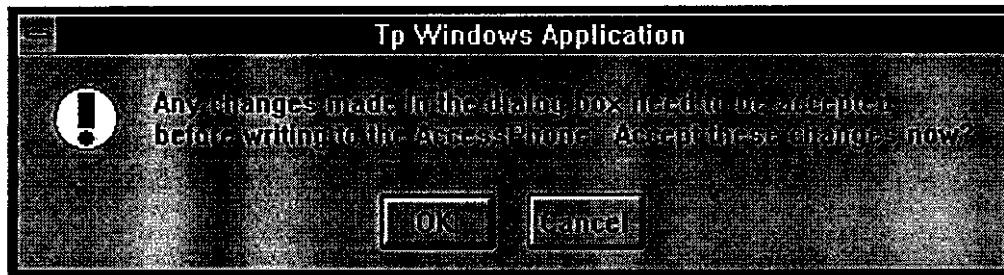


Figure 4-23 Accept changes

If OK is clicked then the data transfer screen will display as shown;

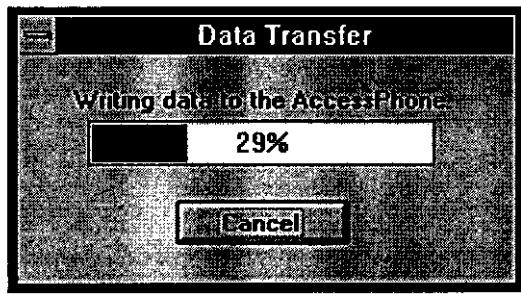


Figure 4-24 Data Transfer (write)

Calibrate

Click the Calibrate button to calibrate the A/D Converter on the SRT. Follow the steps as shown on the displayed menu.

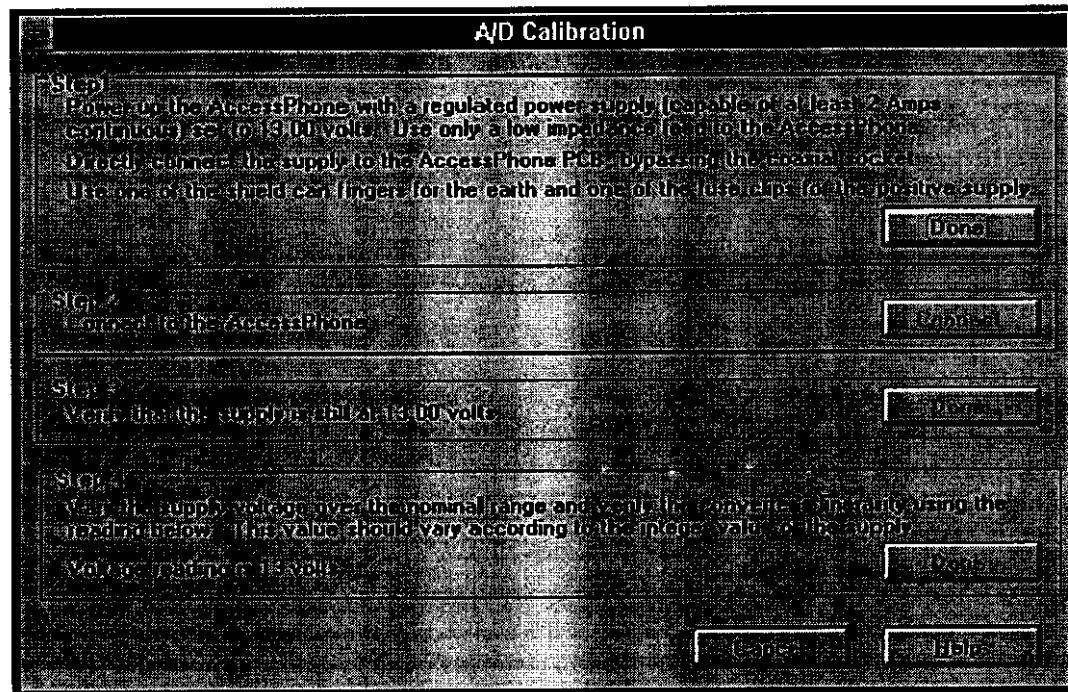


Figure 4-25 A/D Calibration

4.9.3 Factory

Use this command to edit, view, read or write the SRT factory parameters.

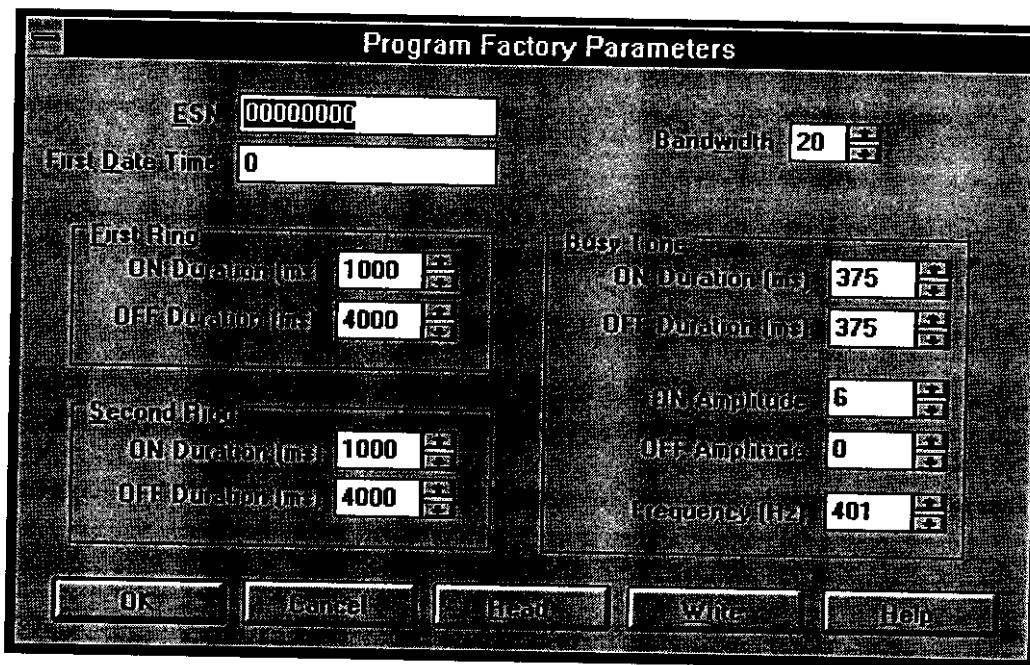


Figure 4-26 Program Factory Parameters

The dialogue box displayed allows editing of the following factory related parameters,

ESN

An edit box is provided for specification of the SRT ESN. The value may be any 8-digit number, with the default value equal to 0.

This value is in hexadecimal.

First Date Time

An edit box is provided for specification of the First Date Time parameter value. The value may be any alphanumeric string no longer than 12 characters.

The default value is an empty string.

Bandwidth

A control is provided for specification of the Bandwidth parameter value. This value may either be 20 or 25. This value also determines the maximum value of the channel parameters in the Dealer Parameters. If the Bandwidth is 20 then the maximum channel is 666, otherwise if the Bandwidth is 25 then the maximum channel is 1023.

First Ring On Duration**First Ring Off Duration****Second Ring On Duration****Second Ring Off Duration**

Four controls are provided for specification of the ring timing parameter values. These values are in milliseconds and may range from 1 to 9999.

The default values are 1000, 4000, 1000 and 4000 milliseconds respectively.

Busy Tone On Duration**Busy Tone Off Duration**

Pair of controls is provided for specification of the busy tone timing parameter values. These values are in milliseconds and may range from 1 to 999.

The default values are 375 milliseconds for both.

Busy Tone On Amplitude**Busy Tone Off Amplitude**

A pair of controls is provided for specification of the busy tone on and off amplitudes. These values may be in the range from 0 to 15, with 0 being off.

The default values are 6 and 0 respectively.

An entry of 1 will produce 2dB of attenuation, 2 will produce 4dB and so on to an entry of 15 producing 30dB of attenuation.

Busy Tone Frequency

A control is provided for specification of the busy tone frequency. This value is in Hertz (Hz) and may be one of a series of values in the range 336 to 85714. If an invalid value is entered the control will select the closest allowable value.

The default value is 401 Hz.

OK

Click the OK button to accept any changes made to the open SRT data file.

Cancel

Click the Cancel button to undo any changes and close the dialogue box.

Read

Click the Read button to read only the factory parameters from the SRT. The application will prompt for any required passwords, and will attempt to connect to the SRT if it is not already connected.

Write

Click the Write button to write only the factory parameters to the SRT. The application will prompt for any required passwords, and will attempt to connect to the SRT if it is not already connected.

4.9.4 **Defaults**

Use this command to reset the SRT parameters of the connected SRT. This includes resetting of the THP, ESP and NRP passwords to their default values.

CAUTION

You must provide all details that are prompted for. Failure to enter these details may cause the SRT to enter a state where it cannot be accessed at all and will not function.

4.9.5 **Manual**

This command is only available to ADI production personnel.

4.10

Help

AccessPhone Terminal Programmer Help provides a quick way to find information on how to perform a particular task or information on aspects of AccessPhone Terminal Programmer. Within a help topic there may be one or more jumps (in green) which can be clicked (or selected and press E) to display a new Help topic.

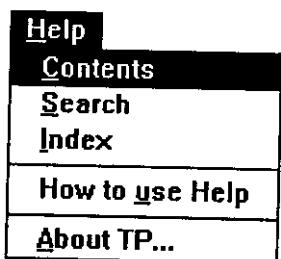


Figure 4-26 Help

The Help window can be resized or moved like any other window.

4.10.1

Contents

Contents displays AccessPhone Terminal Programmer Help contents.

4.10.2

Search

Search allows searches for key words within the help function.

4.10.3

Index

Index provides a jump off point to help on the four major command groupings:

- File menu
- Configure Menu
- Program menu
- Help menu

4.10.4 **How to use Help**

How to use Help describes how to use the function within AccessPhone Terminal Programmer

4.10.5 **About TP**

About AccessPhone Terminal Programmer displays current information on the AccessPhone Terminal Programmer package.

This page left blank
intentionally

Chapter 5 Maintenance, Removal and Replacement Procedures

5.1 Preventive Maintenance

The SRT does not require any special maintenance procedures.

To prolong the life of the equipment it should be operated in a dry, dust-free environment, away from direct heat.

Check the SRT periodically for corrosion of connectors and damaged insulation on attached cables.

5.2 Removal Procedures

CAUTION

Only suitably trained and qualified personnel should attempt removal of the SRT PCA.

The SRT Printed Circuit Assembly has static-sensitive devices. Wear an earthed wrist strap to prevent damage to these devices.

5.2.1 Required Equipment

PosiDriv Screwdriver

5.2.2 Disassembly

The SRT contains a single Printed Circuit Assembly (PCA). During testing and fault-finding it may be necessary to remove the PCA. Use the following instructions to remove the PCA from the SRT:

1. Turn off the power source to the SRT (AC adaptor plug pack or optional battery pack) and disconnect the power plug at the rear of the equipment.
2. Disconnect the standard telephone device connector at the rear of the equipment.
3. Disconnect the antenna BNC connector at the rear of the equipment.
4. Unscrew the two screws at the rear panel of the equipment and remove the rear panel. Stow the screws and the panel in a safe place.

Figure 5-1 SRT (rear)

5. Locate the two screws on the bottom panel of the SRT. These screws hold the PCA in place. Holding the equipment horizontally, unscrew and remove the two screws and stow in a safe place.

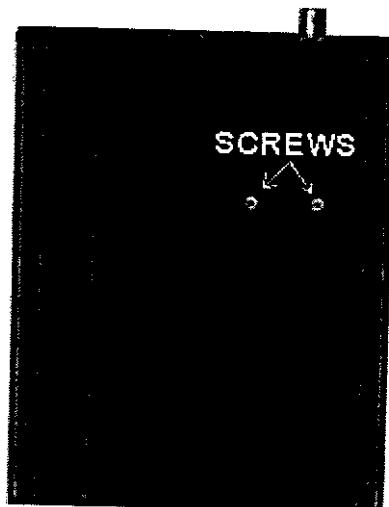


Figure 5-2 SRT (bottom)

1. Hold the edge of the PCA and gently slide the board out of the rails in the SRT case.



Figure 5-3 SRT (open)

7. Place it on an anti-static mat. The PCA is now ready for further disassembly if required.

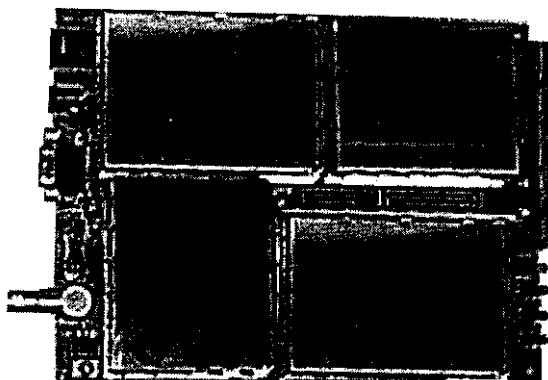


Figure 5-4 PCA

5.2.1 Removing the RF Covers from the PCA

The PCA is divided into four areas by the RF covers. These covers reduce electromagnetic interference to components on the PCA. The areas enclosed by the RF covers are roughly coincident with four functional units of the SRT: Receiver, Transmitter, Baseband and Control, LIU and Power Supply.

The SRT Printed Circuit Assembly has static-sensitive devices. Wear an earthed wrist strap to prevent damage to these devices.

To remove the RF Cover, gently and evenly prise upwards the clipped edge of the RF Cover. Remove and place in a safe place.

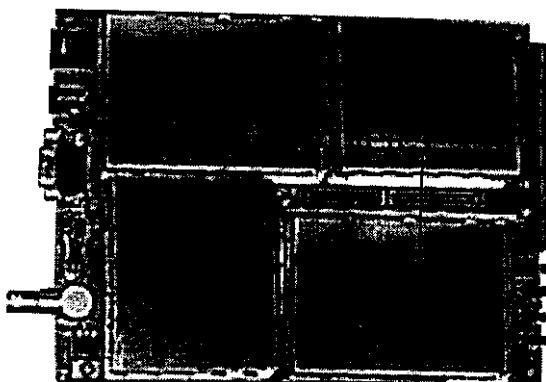


Figure 5-5 RF Covers

5.3 Replacement Procedures

The replacement procedures for the PCA and the RF Covers are the reverse of the removal procedures.

5.4 Replacing the Fuse

To gain access to the fuse on the PCA, repeat steps 1 to 4 of the removal procedures for the PCA. The fuse is located at the edge of the board and can be replaced without further disassembly of the SRT.

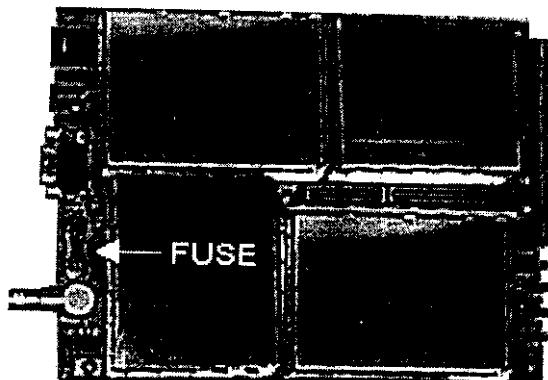


Figure 5-6 Fuse location

This page left blank
intentionally

APPENDIX A

SRT Specifications

General

SRT dimensions	
Maximum Width	160 mm
Maximum Height	35 mm
Maximum Depth	210 mm
Weight	
	1 kg
Power requirements	
Main AC Power Supply	110 V AC or 240 V AC (using adaptor plug pack)
DC Power	11 to 15 V DC
Power consumption (Max)	
	4 W (standby), 8 W (typical), 18 W (Maximum)
Transmit power	
	4 W (maximum)
Transmit method	
	Full duplex voice channel
Air Interface	
	Advanced Mobile Phone System (AMPS) E1A-T1A-553
Telephone Interface	
	Compatible with standard DTMF formats
Dialling Method	
	Tone
Diagnostics	
	Built-in
Environmental Conditions	
Operating Temperature	-30°C to +60° C
Operating Humidity	95% (non-condensing)

This page left blank
intentionally

APPENDIX B

This appendix contains the following diagrams for the SRT:

ASH-CD-00913	(sheet 1 of 14)	Top Level Schematic
ASH-CD-00913	(sheet 2 of 14)	Top Level Schematic
ASH-CD-00913	(sheet 3 of 14)	Power
ASH-CD-00913	(sheet 4 of 14)	RF
ASH-CD-00913	(sheet 5 of 14)	RF
ASH-CD-00913	(sheet 6 of 14)	Baseband
ASH-CD-00913	(sheet 7 of 14)	Baseband
ASH-CD-00913	(sheet 8 of 14)	Line Interface Unit
ASH-CD-00913	(sheet 9 of 14)	Line Interface Unit
ASH-CD-00913	(sheet 10 of 14)	Control Unit
ASH-CD-00913	(sheet 11 of 14)	Control Unit
ASH-CD-00913	(sheet 12 of 14)	Control Unit
ASH-CD-00913	(sheet 13 of 14)	Signal Cross-Reference
ASH-CD-00913	(sheet 14 of 14)	Unit Cross-Reference

This page left blank
intentionally

DSCH, MGR
ASH-CD-00913
USED ON
Engineering
ASH-5-02794

TOP LEVEL SCHEMATIC - SYSTEM OVERVIEW
ISONEX - 3000

Battery Connection

12V + BATT

0V GND

5V

4.5V

2.5V

1.8V

1.2V

0.9V

0.5V

0.3V

0.2V

0.1V

0.05V

0.02V

0.01V

0.005V

0.002V

0.001V

0.0005V

0.0002V

0.0001V

0.00005V

0.00002V

0.00001V

0.000005V

0.000002V

0.000001V

0.0000005V

0.0000002V

0.0000001V

0.00000005V

0.00000002V

0.00000001V

0.000000005V

0.000000002V

0.000000001V

0.0000000005V

0.0000000002V

0.0000000001V

0.00000000005V

0.00000000002V

0.00000000001V

0.000000000005V

0.000000000002V

0.000000000001V

0.0000000000005V

0.0000000000002V

0.0000000000001V

0.00000000000005V

0.00000000000002V

0.00000000000001V

POWER
SHEET 3

TEST1

TEST2

TEST3

TEST4

TEST5

TEST6

TEST7

TEST8

TEST9

TEST10

TEST11

TEST12

TEST13

TEST14

TEST15

TEST16

TEST17

TEST18

TEST19

TEST20

TEST21

TEST22

TEST23

TEST24

TEST25

TEST26

TEST27

TEST28

TEST29

TEST30

TEST31

TEST32

TEST33

TEST34

TEST35

TEST36

TEST37

TEST38

TEST39

TEST40

TEST41

TEST42

TEST43

TEST44

TEST45

TEST46

TEST47

Battery Connection

12V + BATT

0V GND

5V

4.5V

2.5V

1.8V

1.2V

0.9V

0.5V

0.3V

0.2V

0.1V

0.05V

0.02V

0.01V

0.005V

0.002V

0.001V

0.0005V

0.0002V

0.0001V

0.00005V

0.00002V

0.00001V

0.000005V

0.000002V

0.000001V

0.0000005V

0.0000002V

0.0000001V

0.00000005V

0.00000002V

0.00000001V

0.000000005V

0.000000002V

0.000000001V

0.0000000005V

0.0000000002V

0.0000000001V

0.00000000005V

0.00000000002V

0.00000000001V

0.000000000005V

0.000000000002V

0.000000000001V

0.0000000000005V

0.0000000000002V

0.0000000000001V

0.00000000000005V

0.00000000000002V

0.00000000000001V

Battery Connection

12V + BATT

0V GND

5V

4.5V

2.5V

1.8V

1.2V

0.9V

0.5V

0.3V

0.2V

0.1V

0.05V

0.02V

0.01V

0.005V

0.002V

0.001V

0.0005V

0.0002V

0.0001V

0.00005V

0.00002V

0.00001V

0.000005V

0.000002V

0.000001V

0.0000005V

0.0000002V

0.0000001V

0.00000005V

0.00000002V

0.00000001V

0.000000005V

0.000000002V

0.000000001V

0.0000000005V

0.0000000002V

0.0000000001V

0.00000000005V

0.00000000002V

0.00000000001V

0.000000000005V

0.000000000002V

0.000000000001V

0.0000000000005V

0.0000000000002V

0.0000000000001V

0.00000000000005V

0.00000000000002V

0.00000000000001V

Battery Connection

12V + BATT

0V GND

5V

4.5V

2.5V

1.8V

1.2V

0.9V

0.5V

0.3V

0.2V

0.1V

0.05V

0.02V

0.01V

0.005V

0.002V

0.001V

0.0005V

0.0002V

0.0001V

0.00005V

0.00002V

0.00001V

0.000005V

0.000002V

0.000001V

0.0000005V

0.0000002V

0.0000001V

0.00000005V

0.00000002V

0.00000001V

0.000000005V

0.000000002V

0.000000001V

0.0000000005V

0.0000000002V

0.0000000001V

0.00000000005V

0.00000000002V

0.00000000001V

0.000000000005V

0.000000000002V

0.000000000001V

0.0000000000005V

0.0000000000002V

0.0000000000001V

0.00000000000005V

0.00000000000002V

0.00000000000001V

Battery Connection

12V + BATT

0V GND

5V

4.5V

2.5V

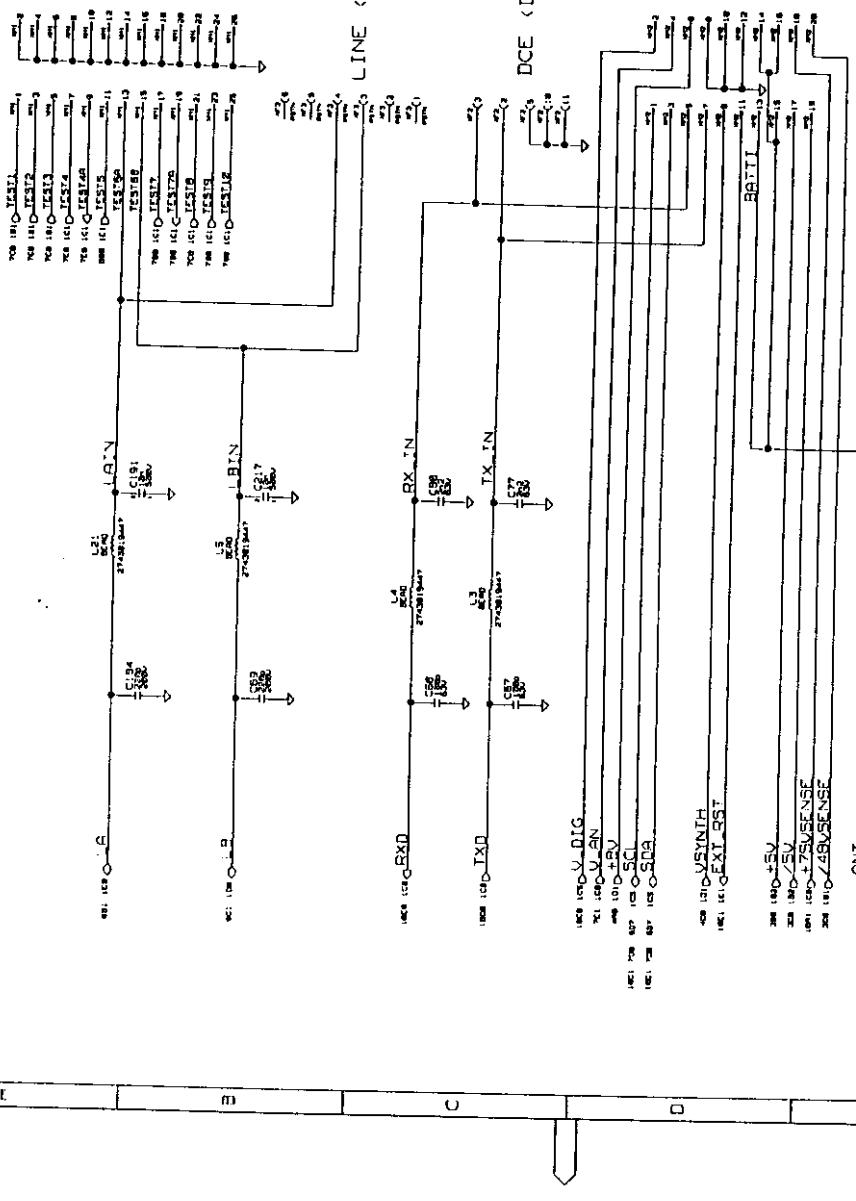
1.8V

1.2V

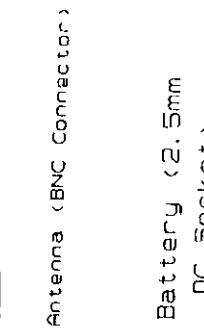
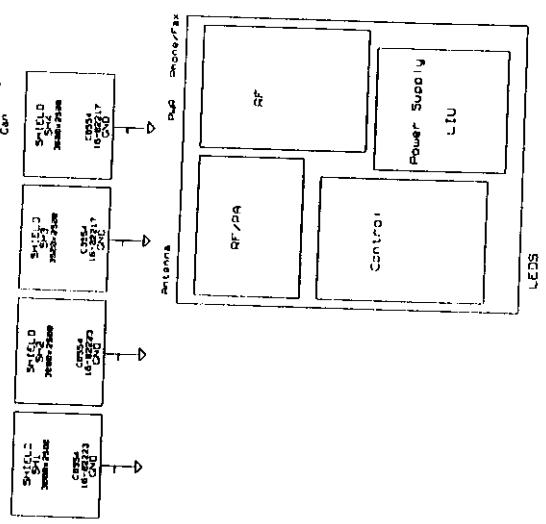
0.9V

0.5V

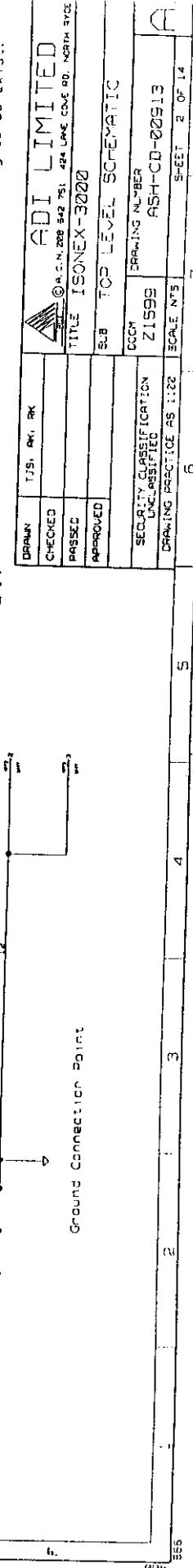
0.3V


0.2V

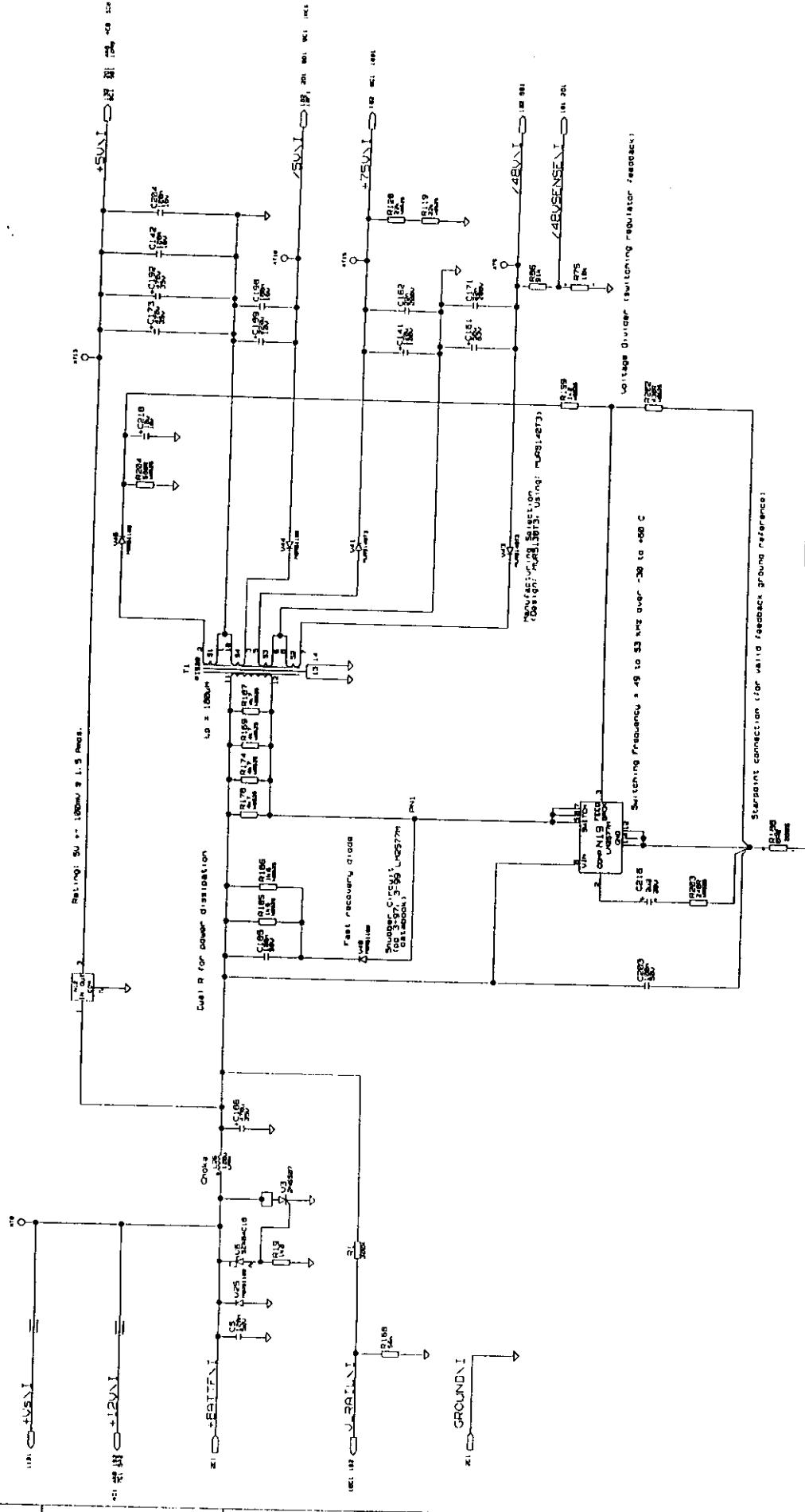
0.1V



1
"BER
J-00913
Dewitt
ASR

254-85-02794

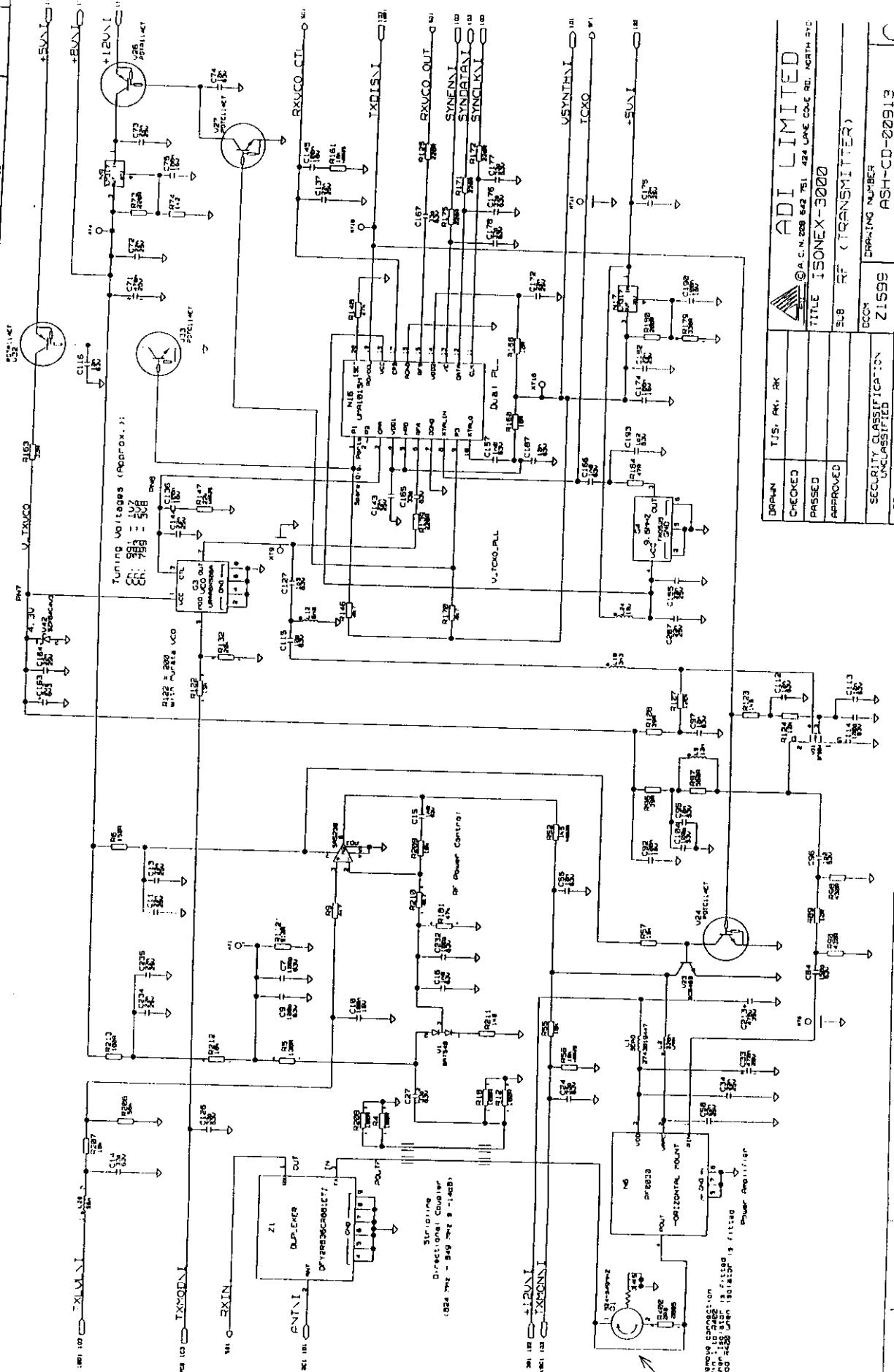

TOP LEVEL SCHEMATIC - EXTERNAL CONNECTIONS

Electromagnetic Emission and Interference Signals


ADI LIMITED	
<small>© A.D.I. 2002 522-751</small>	<small>024 LINE CODE 00. NORTH AMERICA</small>
150NEX-32222	

SEARCHED:	1
SERIALIZED:	265505
INDEXED:	ASR
FILED:	00913
USED ON:	05-06-2022

۱۳۳-۱۳۴

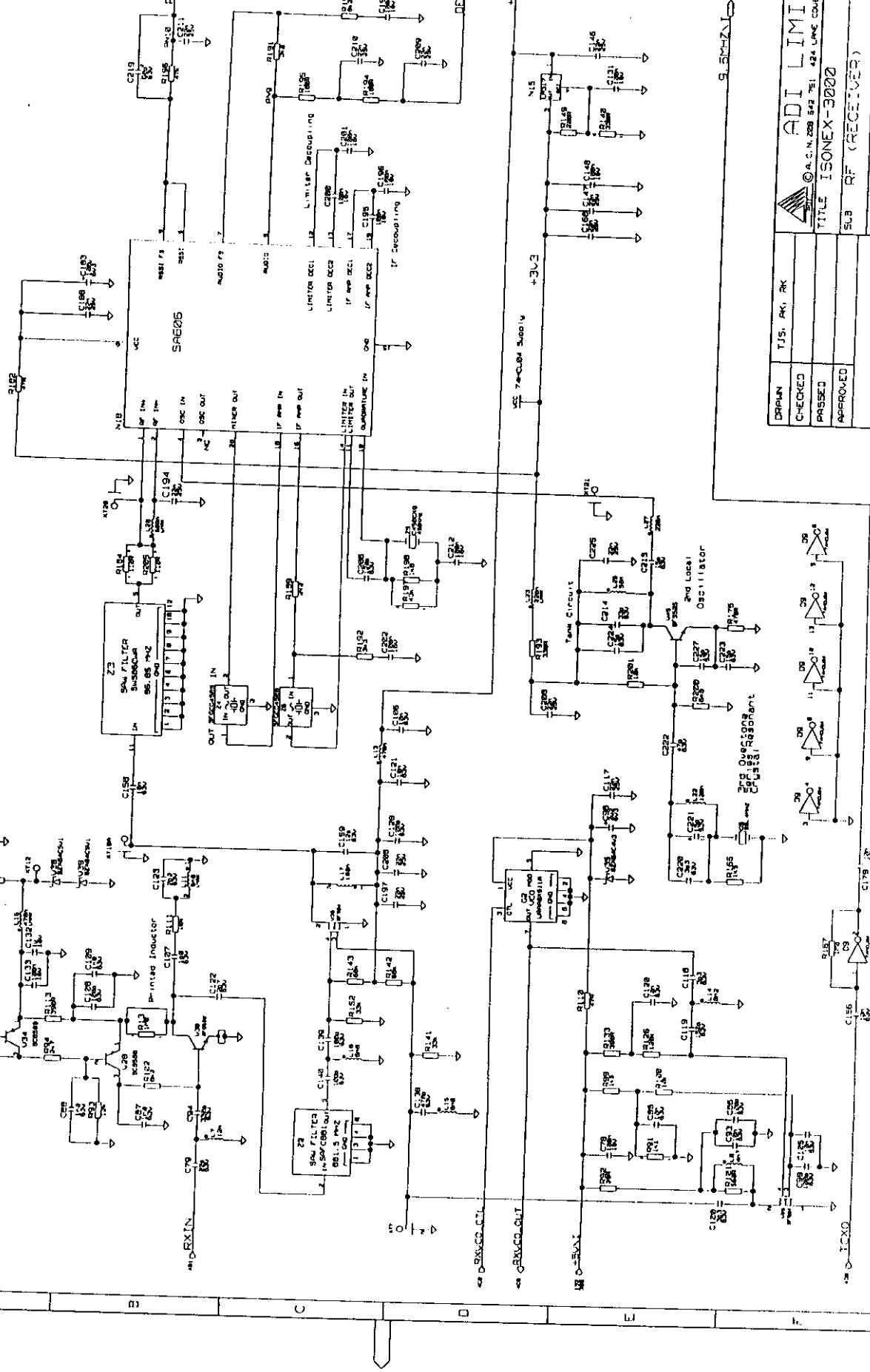

POWER CIRCUITS

PCB DIRECTIVES USE:		SHEET 5 OF 14	
DRAWN	TJS, AE, RK	ADT LIMITED	
CHECKED		© A.C.M. 2025 542 751 422 LANE CO. LTD. NORTH DURBAN	
PASSED		TITLE ISONEX-3020	
APPROVED		SUB POWER SUPPLY	
SECURITY CLASSIFICATION UNCLASSIFIED		DCCM 21595	DRAWING NUMBER ASH-CD-202913
DRAWING PRACTICE AS 1:22		SCALE 1:5	SCALE 1:5
		5	5
		4	4
		3	3
		2	2

ISS	DATE	CHANGE	APPROVAL
7			8
2. 20	12/12/97	See 2nd March 98	
3. 21	21/12/98	See 2nd March 98	
1.20	25/03/98	See 3rd March 98	
1.01	15/07/98	See Ch 77.13	

RF - TRANSMITTER

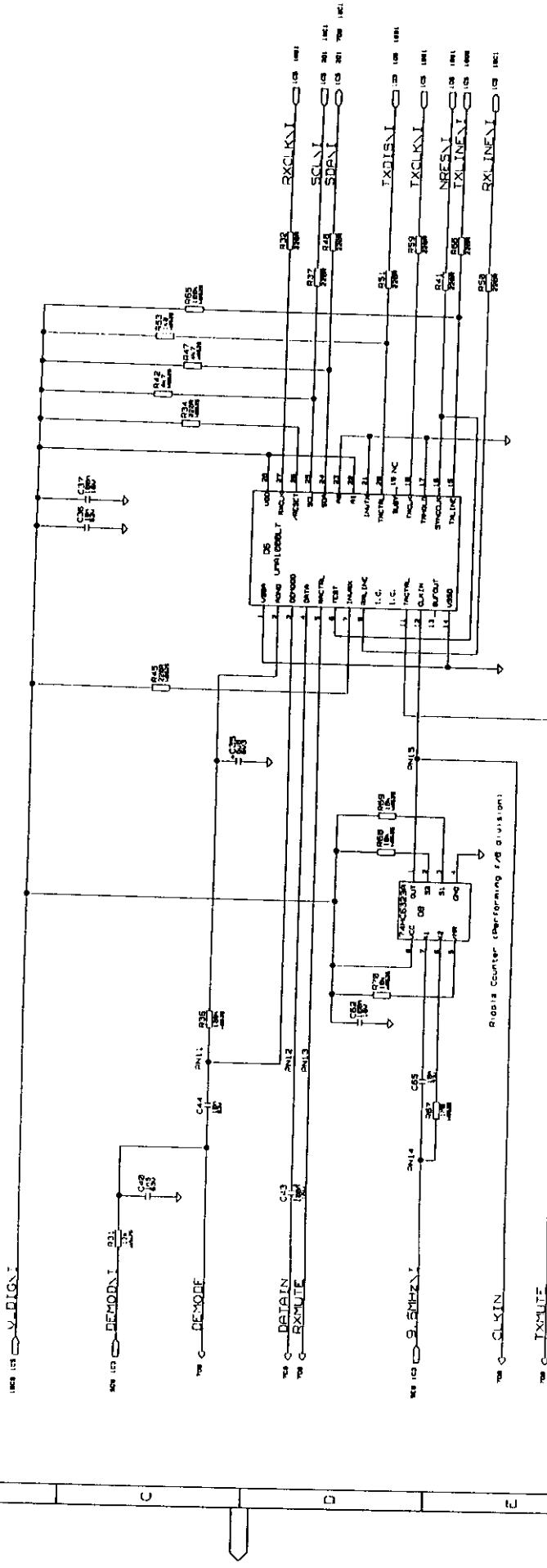
ADT LIMITED	
@ A.C.N. 202 642 751 124 LANE COVE RD. NORTH SYDNEY 2060	
TITLE ISONEX-30200	
SUB RF (TRANSMITTER)	
DRAWN	TJS, AR, AR
CHECKED	
APPROVED	
SECURITY CLASSIFICATION	DRAWING NUMBER
UNCLASSIFIED	Z1595
DRAFTING PRACTICE AS : 1:20	SCALE 1:5
SHEET 4 OF 14	


1	2	3	4	5	6	7	8
▼ ▷ ▷ ▷ ▷ ▷ ▷				▼ ▷ ▷ ▷ ▷ ▷ ▷			
SECURITY CLASSIFICATION UNCLASSIFIED		DRAWING PRACTICE AS 1:22		SCALE N:5		SHEET 4 OF 14	
21596		ASH-CD-22913					

1
DRAWN: 11-22-09
ASJ. - D-00913
USED CN
951-AS-22794

SEARCHED _____
INDEXED _____
SERIALIZED **AS-13-002913**
FILED _____
USE D CN
AS-13-002913

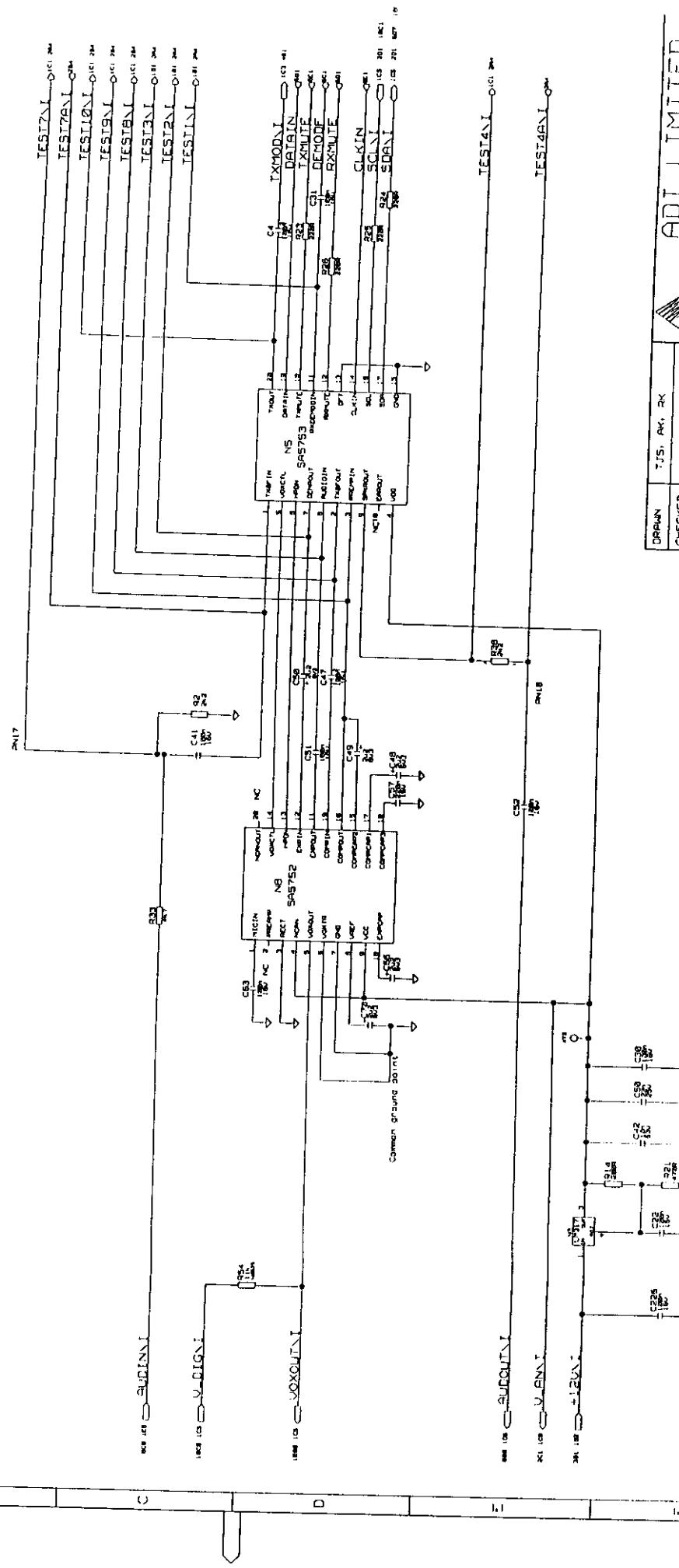
ISS	DATE	CHANGE
2.20	24.12.97	\$50 Eng. Mach. 12
2.21	21.03.98	\$50 Eng. Mach. 12
1.10	10.03.98	\$50 Eng. Mach. 12
1.10	10.03.98	\$50 Eng. Mach. 12


RF - RECEIVER

DRIPPLIN	TJS	PK	PK	ADT LIMITED
CHEKED				© A.C.N. 228 542 751 424 LINE COVE RD. NORTH B.C.
PASSED				TITLE ISONEX-3000
APPROVED				20
SUB RF (RECEIVED)				
DRAWING NUMBER				
21599				ASH-CD-222913
SECURITY CLASSIFICATION				
UNCLASSIFIED				
DRAWING PRACTICE AS 1.22				
SCALE NTS				
				5 OF 14
				7
				5

SECURITY CLASSIFICATION	UNCLASSIFIED	DRAWING NUMBER	ASH-C-222913
DOCN	Z1595	SCALE	1:22
DRAWING PRACTICE AS	1:22	SIZE	5 OF 14
5	7		

BASEBAND - DPROC

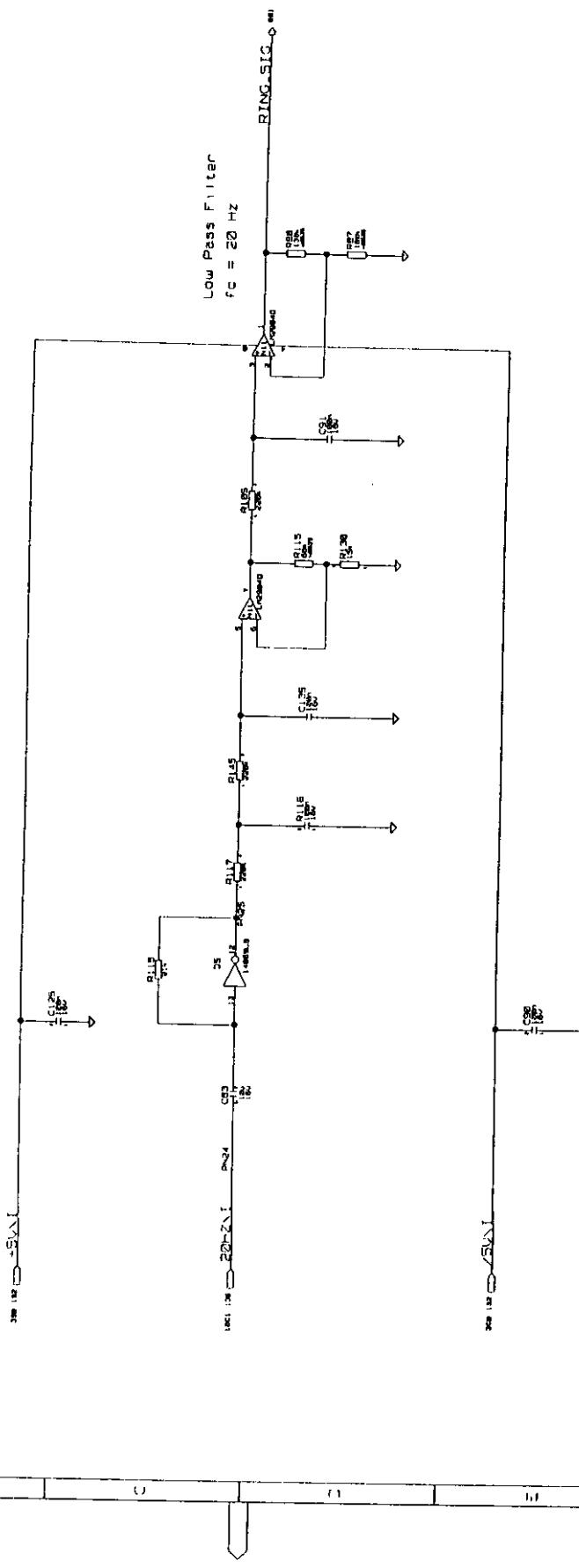

אכ"ג דיאטוגרפיה מודרנית

ADT LIMITED	
G. A. C. N. 288 542 751 424-LINE CODE RD. NORTH 2475	
TITLE ISONEX-3000	
SUB B-3 SECOND (DPROC)	
DRAWN TJS. RK	
CHECKED	
PASSED	
APPROVED	
SECURITY CLASSIFICATION UNCLASSIFIED	
DRAWING PRACTICE AS 122	
DCCN 21599 DRAWING NUMBER ASH-CD-202913	
SCALE 1:22	
SHEET 3 OF 14	
6	
5	
4	
3	
2	
1	
0	

DRAWING - 52
ASH - 20913
USED ON 11/14/04
ASME - AS-022794

BASEBAND - APPROC

ECS CIRCUIT FUSES USED:

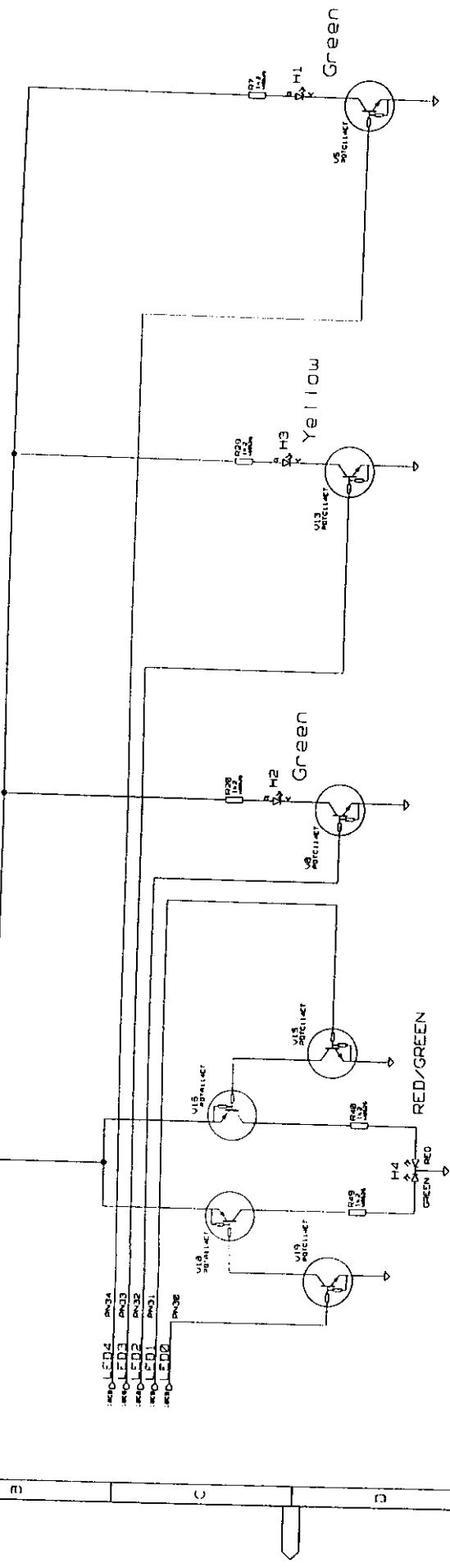

DRAWN	TJS. RY. RK	ADT LIMITED	
CHECKED		© 6.C.4.1988 542 751 421 LADIE CO. 2000-2	
PASSED		TITLE ISONEX-3000	
APPROVED	.	S.3 BASEBAND (AFROC)	
SECURITY CLASSIFICATION UNCLASSIFIED		DRAWING NUMBER ASH-CD-0251.3	
DRAWING PRACTICE AS 1.22		SCALE NTS	
		SHEET 7	OF 12
		5	5
		4	4
		3	3
		2	2
		1	1

1
DRAWING
ASR-000913
13ER

LTIU - RING SIGNAL FILTERS

5	6	7	ISS. DATE	CHANGE	8 APPROVAL
---	---	---	-----------	--------	---------------

ADI LIMITED	
DRAWN BY: T.S. AK. RK	
CHECKED	
APPROVED	
PASSED	
TITLE: ISONEX-30202	
SGB LIU (ZINCING FILTER)	
DCCN: Z1599	
DRAWING NUMBER: ASH-CD-22913	
SECURITY CLASSIFICATION: UNCLASSIFIED	
DRAWING SCALE: 1:120	
DRAWING PRACTICE: AS 1120	
SHEET 3 OF 14	
5	
4	
3	
2	
1	



DRAFTER: H.E.R.
AS: -0-02913
USED ON
ASH-95-22794

1
2
3
4
5
6
7
8

AMPS SRT - CONTROL - INDICATORS

Bottom/Bottom View:

RSSI Indicator

TX Indicator

ROAM Indicator

POWER Indicator

Front Panel

- (G) POWER Indicator
- (G) TX Indicator
- (G) ROAM Indicator
- (G) RSSI Indicator
- (R/C) ADI

DRAFTER	T.15, A.R. RK	APPROVED	© A.C.N. 008 542 751 422 LANE COVE RD. NORTH SYDNEY
CHECKED		PASSED	TITLE ISONEX-30200
PASSED		APPROVED	SB CONTROL INDICATORS
SECURITY CLASSIFICATION		DRAWING NUMBER	
DRAFTING PRACTICE AS 1122		21599	ASH-CD-22913
SCALE		1:22	1 OF 14
MATERIALS			
DATE			
REVISION			

1
2
3
4
5
6
7
8

DRAWN BY
ASH -00913
USED ON
45-45-02784

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
444410
444411
444412
444413
444414
444415
444416
444417
444418
444419
444420
444421
444422
444423
444424
444425
444426
444427
444428
444429
444430
444431
444432
444433
444434
444435
444436
444437
444438
444439
444440
444441
444442
444443
444444
444445
444446
444447
444448
444449
4444410
4444411
4444412
4444413
4444414
4444415
4444416
4444417
4444418
4444419
4444420
4444421
4444422
4444423
4444424
4444425
4444426
4444427
4444428
4444429
4444430
4444431
4444432
4444433
4444434
4444435
4444436
4444437
4444438
4444439
4444440
4444441
4444442
4444443
4444444
4444445
4444446
4444447
4444448
4444449
44444410
44444411
44444412
44444413
44444414
44444415
44444416
44444417
44444418
44444419
44444420
44444421
44444422
44444423
44444424
44444425
44444426
44444427
44444428
44444429
44444430
44444431
44444432
44444433
44444434
44444435
44444436
44444437
44444438
44444439
44444440
44444441
44444442
44444443
44444444
44444445
44444446
44444447
44444448
44444449
444444410
444444411
444444412
444444413
444444414
444444415
444444416
444444417
444444418
444444419
444444420
444444421
444444422
444444423
444444424
444444425
444444426
444444427
444444428
444444429
444444430
444444431
444444432
444444433
444444434
444444435
444444436
444444437
444444438
444444439
444444440
444444441
444444442
444444443
444444444
444444445
444444446
444444447
444444448
444444449
4444444410
4444444411
4444444412
4444444413
4444444414
4444444415
4444444416
4444444417
4444444418
4444444419
4444444420
4444444421
4444444422
4444444423
4444444424
4444444425
4444444426
4444444427
4444444428
4444444429
4444444430
4444444431
4444444432
4444444433
4444444434
4444444435
4444444436
4444444437
4444444438
4444444439
4444444440
4444444441
4444444442
4444444443
4444444444
4444444445
4444444446
4444444447
4444444448
4444444449
44444444410
44444444411
44444444412
44444444413
44444444414
44444444415
44444444416
44444444417
44444444418
44444444419
44444444420
44444444421
44444444422
44444444423
44444444424
44444444425
44444444426
44444444427
44444444428
44444444429
44444444430
44444444431
44444444432
44444444433
44444444434
44444444435
44444444436
44444444437
44444444438
44444444439
44444444440
44444444441
44444444442
44444444443
44444444444
44444444445
44444444446
44444444447
44444444448
44444444449
444444444410
444444444411
444444444412
444444444413
444444444414
444444444415
444444444416
444444444417
444444444418
444444444419
444444444420
444444444421
444444444422
444444444423
444444444424
444444444425
444444444426
444444444427
444444444428
444444444429
444444444430
444444444431
444444444432
444444444433
444444444434
444444444435
444444444436
444444444437
444444444438
444444444439
444444444440
444444444441
444444444442
444444444443
444444444444
444444444445
444444444446
444444444447
444444444448
444444444449
4444444444410
4444444444411
4444444444412
4444444444413
4444444444414
4444444444415
4444444444416
4444444444417
4444444444418
4444444444419
4444444444420
4444444444421
4444444444422
4444444444423
4444444444424
4444444444425
4444444444426
4444444444427
4444444444428
4444444444429
4444444444430
4444444444431
4444444444432
4444444444433
4444444444434
4444444444435
4444444444436
4444444444437
4444444444438
4444444444439
4444444444440
4444444444441
4444444444442
4444444444443
4444444444444
4444444444445
4444444444446
4444444444447
4444444444448
4444444444449
44444444444410
44444444444411
44444444444412
44444444444413
44444444444414
44444444444415
44444444444416
44444444444417
44444444444418
44444444444419
44444444444420
44444444444421
44444444444422
44444444444423
44444444444424
44444444444425
44444444444426
44444444444427
44444444444428
44444444444429
44444444444430
44444444444431
44444444444432
44444444444433
44444444444434
44444444444435
44444444444436
44444444444437
44444444444438
44444444444439
44444444444440
44444444444441
44444444444442
44444444444443
44444444444444
44444444444445
44444444444446
44444444444447
44444444444448
44444444444449
444444444444410
444444444444411
444444444444412
444444444444413
444444444444414
444444444444415
444444444444416
444444444444417
444444444444418
444444444444419
444444444444420
444444444444421
444444444444422
444444444444423
444444444444424
444444444444425
444444444444426
444444444444427
444444444444428
444444444444429
444444444444430
444444444444431
444444444444432
444444444444433
444444444444434
444444444444435
444444444444436
444444444444437
444444444444438
444444444444439
444444444444440
444444444444441
444444444444442
444444444444443
444444444444444
444444444444445
444444444444446
444444444444447
444444444444448
444444444444449
4444444444444410
4444444444444411
4444444444444412
4444444444444413
4444444444444414
4444444444444415
4444444444444416
4444444444444417
4444444444444418
4444444444444419
4444444444444420
4444444444444421
4444444444444422
4444444444444423
4444444444444424
4444444444444425
4444444444444426
4444444444444427
4444444444444428
4444444444444429
4444444444444430
4444444444444431
4444444444444432
4444444444444433
4444444444444434
4444444444444435
4444444444444436
4444444444444437
4444444444444438
4444444444444439
4444444444444440
4444444444444441
4444444444444442
4444444444444443
4444444444444444
4444444444444445
4444444444444446
4444444444444447
4444444444444448
4444444444444449
44444444444444410
44444444444444411
44444444444444412
44444444444444413
44444444444444414
44444444444444415
44444444444444416
44444444444444417
44444444444444418
44444444444444419
44444444444444420
44444444444444421
44444444444444422
44444444444444423
44444444444444424
44444444444444425
44444444444444426
44444444444444427
44444444444444428
44444444444444429
44444444444444430
44444444444444431
44444444444444432
44444444444444433
44444444444444434
44444444444444435
44444444444444436
44444444444444437
44444444444444438
44444444444444439
44444444444444440
44444444444444441
44444444444444442
44444444444444443
44444444444444444
44444444444444445
44444444444444446
44444444444444447
44444444444444448
44444444444444449
444444444444444410
444444444444444411
444444444444444412
444444444444444413
444444444444444414
444444444444444415
444444444444444416
444444444444444417
444444444444444418
444444444444444419
444444444444444420
444444444444444421
444444444444444422
444444444444444423
444444444444444424
444444444444444425
444444444444444426
444444444444444427
444444444444444428
444444444444444429
444444444444444430
444444444444444431
444444444444444432
444444444444444433
444444444444444434
444444444444444435
444444444444444436
444444444444444437
444444444444444438
444444444444444439
444444444444444440
444444444444444441
444444444444444442
444444444444444443
444444444444444444
444444444444444445
444444444444444446
444444444444444447
444444444444444448
444444444444444449
4444444444444444410
4444444444444444411
4444444444444444412
4444444444444444413
4444444444444444414
4444444444444444415
4444444444444444416
4444444444444444417
4444444444444444418
4444444444444444419
4444444444444444420
4444444444444444421
4444444444444444422
4444444444444444423
4444444444444444424
4444444444444444425
4444444444444444426
4444444444444444427
4444444444444444428
4444444444444444429
4444444444444444430
4444444444444444431
4444444444444444432
4444444444444444433
4444444444444444434
4444444444444444435
4444444444444444436
4444444444444444437
4444444444444444438
4444444444444444439
4444444444444444440
4444444444444444441
4444444444444444442
4444444444444444443
4444444444444444444
4444444444444444445
4444444444444444446
4444444444444444447
4444444444444444448
4444444444444444449
44444444444444444410
44444444444444444411
44444444444444444412
44444444444444444413
44444444444444444414
44444444444444444415
44444444444444444416
44444444444444444417
44444444444444444418
44444444444444444419
44444444444444444420
44444444444444444421
44444444444444444422
44444444444444444423
44444444444444444424
44444444444444444425
44444444444444444426
44444444444444444427
44444444444444444428
44444444444444444429
44444444444444444430
44444444444444444431
44444444444444444432
44444444444444444433<br

DRAWN	TJS, RK, RK	ADT LIMITED	
CHECKED		© A.C.N. 2000 342 TS1 424 LINE COVE RD. NORTH SYDNEY	
PASSED		TITLE ISONEX-3000	
APPROVED		SUB SIGNALS CROSS-REFERENCE	
SECURITY CLASSIFICATION UNCLASSIFIED		DRAWING NUMBER ASH-C-D-22913	SET 1 OF 14
DRAWING PRACTICE = S 1:22		SCALE 1:22	SCALE NTS

DR. B. N. A. S. I. - 00913

APPENDIX C

Obtaining SRT Parameters

To configure the SRT to the distributor requirement a checklist is included to be completed by the distributor and/or representative.

This page left blank
intentionally

SRT CONFIGURATION

**Forward completed form to the Senior Production Controller
 Telecommunications Division Osborne Park
 18 Hasler Rd Osborne Park WA 6017, Australia.
 Tel: +61 8 9273 0888 Fax: +61 8 9446 5038**

SALESPERSON	NAME:	SIGNATURE:
<input type="text"/>	<input type="text"/>	
CUSTOMER	<input type="text"/>	
COUNTRY	<input type="text"/>	
CUSTOMER ORDER #	<input type="text"/>	

ORDER QUANTITIES

ITEM	PART #	QUANTITY
SRT DEFAULT CONFIGURATION	FM-1217-00	<input type="text"/>
SRT CUSTOM CONFIGURATION	FM-1227-00	<input type="text"/>
USER GUIDE - CHINESE (OPTION)	MN-1230-47	<input type="text"/>
POWER SUPPLY 90-264VAC 47/440Hz	FP-1226-76	<input type="text"/>
POWER SUPPLY 198-264VAC 50/60Hz	FP-1230-34	<input type="text"/>
UPS	FM-1229-43	<input type="text"/>
WHIP ANTENNA	AN-1224-00	<input type="text"/>
YAGI ANTENNA - 6 ELEMENT	AN-1225-54	<input type="text"/>
YAGI ANTENNA 15 ELEMENT	AN-1225-55	<input type="text"/>
VERTICAL COLLINEAR ANTENNA	AN-1225-56	<input type="text"/>
BATTERY CABLE 12V	TBA	<input type="text"/>
TECHNICAL MANUAL	MN-1225-63	<input type="text"/>
PROGRAMMING KIT	FM-1230-40	<input type="text"/>

REQUIRED CONFIGURATION INFORMATION

	REQUIRED	DEFAULT
SYSTEM A FIRST CONTROL CHANNEL:	<input type="text"/>	333
SYSTEM A LAST CONTROL CHANNEL:	<input type="text"/>	313
SYSTEM B FIRST CONTROL CHANNEL:	<input type="text"/>	334
SYSTEM B LAST CONTROL CHANNEL:	<input type="text"/>	354
PREFERRED SYSTEM SELECT:	<input type="text"/>	A
FIRST PAGING CHANNEL:	<input type="text"/>	333
HOME SYSTEM ID	<input type="text"/>	3
IMSI RANGES	<input type="text"/>	
MINIMUM CALL DIGITS	<input type="text"/>	3
CALL PROCESSING MODE SELECT	<input type="text"/>	3
RING CADENCE	<input type="text"/>	1000,4000,1000, 4000

OPTIONAL CUSTOMER INFORMATION

ACCESS OVERLOAD CLASS	LAST IMSI DIGIT
<input type="text"/>	
<input type="text"/>	400Hz
<input type="text"/>	-12dB
<input type="text"/>	375,375
<input type="text"/>	426Hz
<input type="text"/>	-12dB
<input type="text"/>	0
<input type="text"/>	#
<input type="text"/>	YES
<input type="text"/>	ADI

DISTRIBUTOR REQUIRED INFORMATION

TEST HARNESS PASSWORD	<input type="text"/>	yiedgobo
------------------------------	----------------------	----------

Appendix D Parts List

General

The following tables identify the parts of the SRT (part number FM-1217-00):

- Table D-1 SRT Assembly
- Table D-2 Adaptor Plug Pack, and External Antenna

Table D-1 SRT Assembly Parts List

Item	Description	Part Number	Qty
1	Case, SRT	MF-1229-61	1
2	Rubber feet, adhesive backed	FT-1216-76	4
3	End caps, moulded	PW-1229-82	1 pr
4	SRT artwork, front panel	LB-1229-86	1
5	Screw, No.4 x 3/8" LG, Pan hd, self tap	NB-1216-81	4
6	Warning/compliance label, SRT	LB-1227-22	1
7	Printed Circuit Assembly, SRT	SA-1216-83	1
8	Gasket	CO-1230-42	1
9	Screw, M3 x 6 LG, CSK HD to AS1427, XREC, ST/ST	NB-POSI-06	2
10	Carton, SRT, packing (not shown)	PK-1229-84	1
11	Packing, bubble-wrap, pocket 280 x 220 x 50 mm (not shown)	PK-1229-85	1

Table D-2 AC Adaptor Plug Pack, Antenna and Battery Pack Parts List

Item	Description	Part Number	Qty
1	Power SUP 90-264VAC/13.5VDC 40W	FP-1226-76	1
2	Antenna 1/2 wave whip 820-845MHz	AN-1224-00	1
3	Antenna Yagi 9dB 6 Element 881MHz	AN-1225-54	1
5	Antenna Yagi 15dB 16 Element 881MHz	AN-1225-55	1
6	Antenna colinear 6dB 881MHz	AN-1225-56	1

This page left blank
intentionally