

# **GT2GM-M Wireless Module**

## **User Manual**

|                                     |                   |                                  |
|-------------------------------------|-------------------|----------------------------------|
| Status :                            | File Indicator :  | EL_GT2GM-M Hardware Design Guide |
| [ <input type="checkbox"/> ]Draft   | Current Version : | 1.2                              |
| [ <input type="checkbox"/> ]Release | Author :          |                                  |
| [ <input type="checkbox"/> ]Revise  | Date :            | 2012-07-18                       |

## Version History

## Contents

|                                            |    |
|--------------------------------------------|----|
| Revision History.....                      | 2  |
| Contents .....                             | 3  |
| Version History .....                      | 2  |
| 1   Introduction.....                      | 4  |
| 1.1 Overview.....                          | 4  |
| 1.2 Electrical features.....               | 4  |
| 1.3 RF features .....                      | 4  |
| 1.4 SW features.....                       | 4  |
| 1.5 Terms and Abbreviations.....           | 4  |
| 2   Feature.....                           | 5  |
| 3   Block Diagram.....                     | 6  |
| 4   ELECTRICAL SPECIFICATION .....         | 6  |
| 4.1 Supply Voltage .....                   | 6  |
| 4.2 Recommended Operation Conditions ..... | 6  |
| 4.3 Power Consumption.....                 | 7  |
| 4.4 Radio Performance.....                 | 8  |
| 4.5. Output power.....                     | 8  |
| 4.6 Sensitivity .....                      | 8  |
| 5   PIN definition.....                    | 10 |
| 6   Functional description.....            | 11 |
| 6.1       ANT PORT.....                    | 11 |
| 6.2       VBAT Pin (Pin 2~4).....          | 12 |
| 6.3       Charge in Pin (Pin 1).....       | 12 |
| 6.4       UART interface .....             | 12 |
| 6.5       GPIOs.....                       | 13 |
| 6.6       LED.....                         | 13 |
| 6.7       SIM card interface.....          | 13 |
| 6.8       Power on .....                   | 14 |
| 7   Mechanical Structure(mm).....          | 15 |
| 8   Important announcement.....            | 16 |
| 9   Construction and setup.....            | 17 |

# 1 Introduction

## 1.1 Overview

The GT2GM-M module is a tiny, standards-based, wireless data modem that provides GPRS wireless data connectivity, it suitable for embedding environment in some wireless products, such as wireless modem, handheld computers、GPS Tracker 、other machine-to-machine devices and vertical applications. In addition, The GT2GM-M module allows you access to the Internet easier and convenient.

## 1.2 Electrical features

Input supply voltage:

- VBAT—Min 3.3 V, Max 4.2V

Typical DC power consumption(Total):

- Standby current: 2 mA
- GPRS ( 1Tx+4Rx ) Data current: 300 mA—350 mA
- MCP(Nordflash+SRAM) working current:20mA@1.8V**
- Baseband CPU working current:40mA@2.8V**
- RF Power amplifier working current:500mA@3.8V**

## 1.3 RF features

- 2G band support : PCS 1.9GHz
- Support for GPRS multi-slot class 12

## 1.4 SW features

- Standard AT command interface
- embedded TCP/IP、 UDP protocol stack

## 1.5 Terms and Abbreviations

|      |                                                 |
|------|-------------------------------------------------|
| JTAG | Joint Test Action Group                         |
| ADC  | Analog to Digital Converter                     |
| LED  | light-emitting diode                            |
| PA   | Power Amplifier                                 |
| UART | Universal Asynchronous Receiver and Transmitter |
| RF   | Radio Frequency                                 |
| I/O  | Input / Output                                  |
| PD   | Pull Down                                       |
| PU   | Pull Up                                         |

GPIO general purpose input or output port

## 2 Feature

| Item                                         | Description                                                                                               |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Temperature range                            | Normal range: -20°C to +70°C (full compliant)<br>Storage: -40°C to 85°C                                   |
| Weight (in g)                                | 6g (typical)                                                                                              |
| Physical dimension                           | 29.5 x 26.0 x 2.4 mm                                                                                      |
| Connector Type                               | 36 Pin stamp                                                                                              |
| Power supply                                 | External input : 3.3V to 4.2V                                                                             |
| Power consumption                            | Off mode: 0 A (typical)<br>Sleep mode: 0.8mA<br>Standby mode: 2.0mA                                       |
| SIM card                                     | Support 3.0V SIM card                                                                                     |
| GPIOs                                        | Support 8 GPIOs output                                                                                    |
| UART                                         | UART1:For debug and flash download, RF calibration or AT command Communication.<br>UART2:For data service |
| Power on key pin                             | Low level for power on system.                                                                            |
| System Voltage<br>(GPIO Voltage)             | 2.8V                                                                                                      |
| Input/Output<br>Impedance<br>(ANT impedance) | 50 ohm                                                                                                    |
| TCP/IP,UDP                                   | Built-in TCP/IP ,UDP protocol stack                                                                       |

### 3 Block Diagram




Figure 1 GT2GM-M Block Diagram

### 4 ELECTRICAL SPECIFICATION

#### 4.1 Supply Voltage

| Symbol         | Parameter                                                  | Min | Typ | Max | Unit |
|----------------|------------------------------------------------------------|-----|-----|-----|------|
| VBAT           | PMIC, PA                                                   | 3.3 | 3.8 | 4.2 | V    |
| Voltage Ripple | 2%, 0~100kHz (Max. values not exceeding operating voltage) |     |     |     |      |
| Input current  | VBAT                                                       |     | 1.2 |     | A    |

#### 4.2 Recommended Operation Conditions

##### 4.2.1 TEMPERATURE, HUMIDITY

| Symbol         | Parameter                     | Min | Typ | Max | Unit |
|----------------|-------------------------------|-----|-----|-----|------|
| T <sub>a</sub> | Ambient Operation Temperature | -20 |     | 70  | C    |
| T <sub>s</sub> | Storage Temperature           | -40 | 25  | 85  | C    |
| Humidity       | Relative Humidity             |     |     | 95% | %    |

#### 4.2.2 Digital signal DC electrical specifications

| Symbol                   | Parameter        | Min      | Typ | Max       | Unit |
|--------------------------|------------------|----------|-----|-----------|------|
| Supply voltage           | VCC<br>Regulated | 2.7      | 2.8 | 2.9       | V    |
| Low level input voltage  | VIL              | -0.3     | 0   | 0.35*VCC  | V    |
| High level input voltage | VIH              | 0.65*VCC | 2.8 | VCC+0.3 V | V    |

#### 4.3 Power Consumption

The power consumption is typical value measured at 25 C temperature.

| Operation |  | Parameters               |  | Min            | Typ | Max | Unit |    |
|-----------|--|--------------------------|--|----------------|-----|-----|------|----|
|           |  | Input Voltage            |  | 3.4            | 3.6 | 4.2 | V    |    |
| GPRS      |  | Off mode                 |  | 500            | 600 | 700 | uA   |    |
|           |  |                          |  | 382            | 375 | 373 | mA   |    |
|           |  | Data transfer<br>1Rx 1Tx |  | PCL=5,TX=33dBm | 162 | 154 | 152  | mA |
|           |  |                          |  | PCL=0,TX=30dBm | 311 | 308 | 305  | mA |
| GPRS      |  | 850MHZ                   |  | PCL=15,TX=0dBm | 138 | 131 | 127  | mA |
|           |  |                          |  | PCL=5          | 387 | 385 | 381  | mA |
|           |  | 1900MHZ                  |  | PCL=0          | 339 | 335 | 331  | mA |

#### 4.4 Radio Performance

Over full range of values specified in the “Recommended Operation Condition”

| Features       | Description                                                                    |
|----------------|--------------------------------------------------------------------------------|
| Frequency Band | GPRS : Dualband, 850/1900                                                      |
| Max. TX power  | Class 4 (+33dBm ±2dB) for EGPRS 850<br>Class 1 (+30dBm ±2dB) for PCS/GPRS 1900 |

#### 4.5. Output power

| TRP(dBm) |             |           |     |                       |         |                |
|----------|-------------|-----------|-----|-----------------------|---------|----------------|
| Band     | Designation | Freq(MHz) | TCH | Conducted Power (dBm) | FS SPEC | Test criterion |
| GSM 850  | TX          | 824.20    | 128 | 31.5                  | 26.50   | CTIA 2.2.2     |
|          | TX          | 836.60    | 190 | 31.5                  |         |                |
|          | TX          | 848.80    | 251 | 31.5                  |         |                |
| GSM 1900 | TX          | 1850.20   | 512 | 28.5                  | 25.50   | CTIA 2.2.2     |
|          | TX          | 1880.00   | 661 | 28.5                  |         |                |
|          | TX          | 1909.80   | 810 | 28.5                  |         |                |

#### 4.6 Sensitivity

| TIS(dBm) |             |           |     |                             |         |                |
|----------|-------------|-----------|-----|-----------------------------|---------|----------------|
| Band     | Designation | Freq(MHz) | TCH | Conducted Sensitivity (dBm) | FS SPEC | Test criterion |

|          |    |         |     |         |                |                       |
|----------|----|---------|-----|---------|----------------|-----------------------|
| GSM 850  | RX | 869.20  | 128 | -107.00 | <b>-99.00</b>  | <b>CTIA<br/>2.2.2</b> |
|          | RX | 881.60  | 190 | -107.00 |                |                       |
|          | RX | 893.80  | 251 | -107.00 |                |                       |
| GSM 1900 | RX | 1930.20 | 512 | -107.00 | <b>-101.00</b> | <b>CTIA<br/>2.2.2</b> |
|          | RX | 1960.00 | 661 | -107.00 |                |                       |
|          | RX | 1989.80 | 810 | -107.00 |                |                       |

## 5 PIN definition

| Pin name     | DI<br>R | Pin<br>Numbe<br>r                  | First Function(Note 1)                                                | Second function(Note<br>1) |
|--------------|---------|------------------------------------|-----------------------------------------------------------------------|----------------------------|
| GND          | I       | 5,7,16,<br>17<br>32,33,3<br>435,36 | Ground                                                                | Same as left               |
| GSM ANT      | I/O     | 6                                  | Antenna feed point                                                    | Same as left               |
| VBAT         | I       | 2,3,4                              | Power supply                                                          | Same as left               |
| VCHG         | I       | 1                                  | Battery Charging input port (DC 5V—7V)                                | Same as left               |
| System_reset | I       | 9                                  | System reset pin(low level valid)                                     | Same as left               |
| GPIO3        | I/O     | 8                                  | General purpose input or output port with pull<br>up 47K              | KCOL4                      |
| PWRKEY       | I       | 10                                 | POWER KEY(low level valid in 2 seconds)                               | Same as left               |
| SIMDAT       | I/O     | 11                                 | SIM card data signal                                                  | Same as left               |
| SIMCLK       | I       | 12                                 | SIM card clock signal                                                 | Same as left               |
| SIMRST       | I       | 13                                 | General purpose input output                                          | Same as left               |
| SIMVCC       | I       | 14                                 | SIM card power supply(Need added C=100nF<br>to GND)                   | Same as left               |
| VIO          | O       | 15                                 | <u>2.8V@100mA</u> output DC voltage                                   | Same as left               |
| GPIO45       | I/O     | 18                                 | General purpose input or output port with pull<br>down 47K            | KROW7                      |
| URXD1        | I/O     | 19                                 | UART 1 data receiving port(for debug,<br>download S/W, AT command)    | Same as left               |
| UTXD1        | I/O     | 20                                 | UART 1 data transmitting port(for debug,<br>download S/W, AT command) | Same as left               |
| UTXD2        | I/O     | 21                                 | UART 2 data transmitting port                                         | Same as left               |
| URXD2        | I/O     | 22                                 | UART 2 data receiving port                                            | Same as left               |

|         |     |    |                                                                          |                     |
|---------|-----|----|--------------------------------------------------------------------------|---------------------|
| LED     | I   | 23 | LED sink port                                                            | Same as left        |
| GPIO1   | I/O | 24 | General purpose input or output port with pull up 47K,or interrupt input | KCOL6               |
| GPIO2   | I/O | 25 | General purpose input or output port with pull up 47K                    | KCOL5               |
| EINT0   | I   | 26 | Interrupt input port                                                     | Same as left        |
| GPIO33  | I/O | 27 | General purpose input or output port with pull down 47K                  | Speaker negative    |
| GPIO44  | I/O | 28 | General purpose input or output port with pull down 47K                  | Speaker positive    |
| LED_GPS | I   | 29 | LED sink port (For GPS signal indication)                                | Same as left        |
| SCL     | O   | 30 | I2C Serial clock port or GPIO15                                          | Microphone positive |
| SDA     | I/O | 31 | I2C Serial data port or GPIO17                                           | Microphone negative |

Note 1: You can only use first function or second function in one time, don't using alternately.

**Default is first Function.**

## 6 Functional description

### 6.1 ANT PORT

In this module, we have one antenna port (PIN 6:ANT) for signal transfer. To reduce the RF trace loss, the antenna port in the module had better be as close as possible to the antenna pad in the PCB. For maximum transmitter power and receiver sensitivity, a 50  $\Omega$  transmission line is suggested to connect the antenna pad and the antenna port of the module. In addition, the RF signal will be impacted by high data rate. We strongly suggest the audio trace and SIM signal trace to be short as possible and as far away as possible from the RF trace and power line. To prevent cross coupling, signal traces on your PCB must not be routed through the module backside.

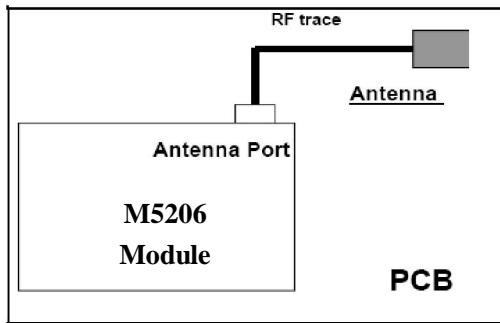



Figure2 GT2GM-M module placement

The antenna pad in your PCB should be 3~5mm wide and there must not be any other traces and ground under the pad. If needed, the matching network can be added between the antenna pad and antenna port. The recommended circuit is shown as below:

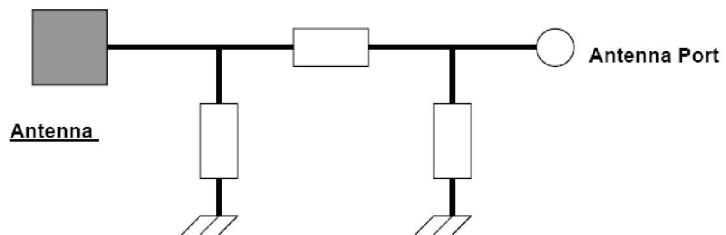



Figure 3 GT2GM-M Antenna match

## 6.2 VBAT Pin (Pin 2~4)

The Power amplifier is supplied by the VBAT pin. During transmitting mode, high output power will draw a large amount of current. The width of this power trace that is connected to the VBAT pin could not be less than 60mil. In addition, it is better to shunt a 100uf@6.3V (low ESR) bypass capacitor on VBAT pins to prevent voltage drop and to reduce ripple.(The maximum current should be 1500mA in some time)

## 6.3 Charge in Pin (Pin 1)

In this module, we added the charge manage circuit for lithium battery, the max charge Circuit should be 400mA. The charge voltage 5.5V+/-0.5V.

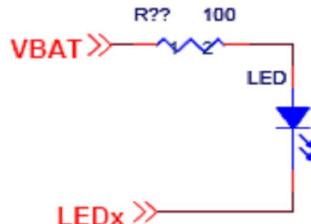
## 6.4 UART interface

The UART1 used as debug 、 software download or as AT command control

| Pin name | DIR | Pin Number | Function unit                 |
|----------|-----|------------|-------------------------------|
| TXD1     | O   | 20         | UART 1 data transmitting port |
| RXD1     | I   | 19         | UART 1 data receiving port    |

The UART2 used as transmitting DATA between the module from user, only supply 2 signals as follow table:

| Pin name | DIR | Pin Number | Function unit                 |
|----------|-----|------------|-------------------------------|
| TXD2     | O   | 21         | UART 2 data transmitting port |
| RXD2     | I   | 22         | UART 2 data receiving port    |


This module also support baud rate from 9600 to 921600

## 6.5 GPIOs

The GT2GM-M module has 8 GPIOs (PIN8,PIN18,PIN24,PIN25,PIN27, PIN28, PIN30,PIN30): Please refer to corresponding programming application for details as to all the GPIO ports.

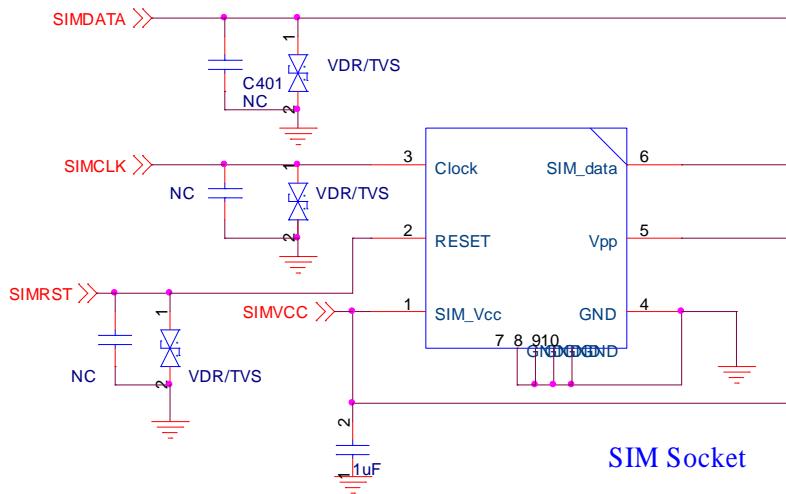
## 6.6 LED

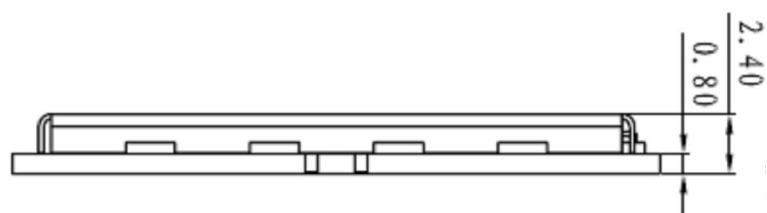
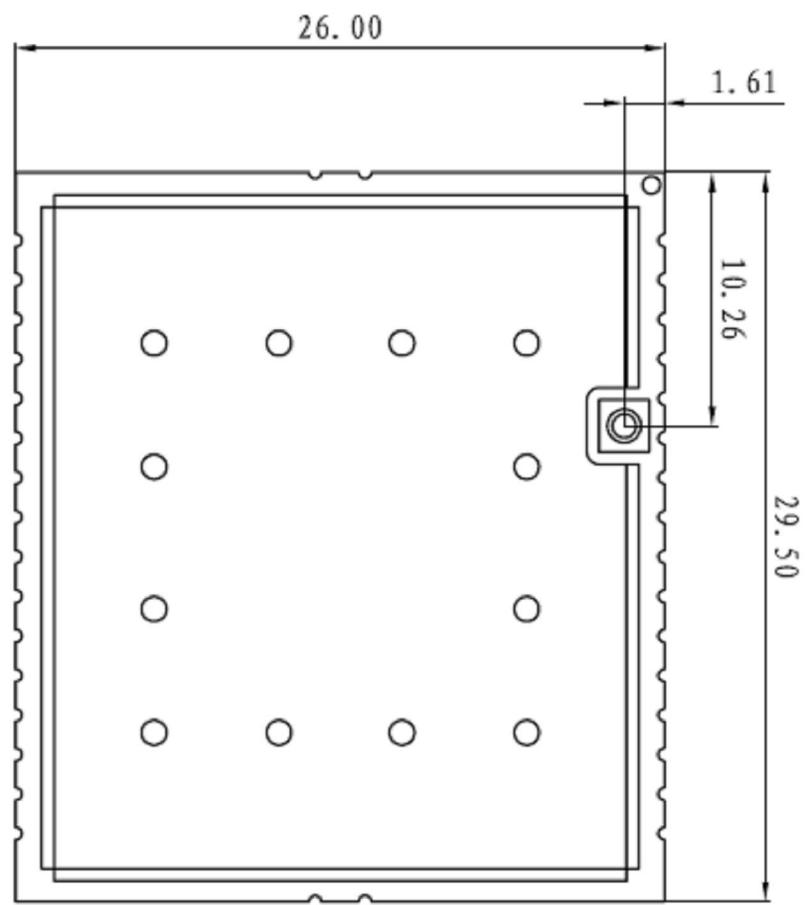
GT2GM-M module has 2 LED driver pin(pin23 & pin29), please ref. the following sch.

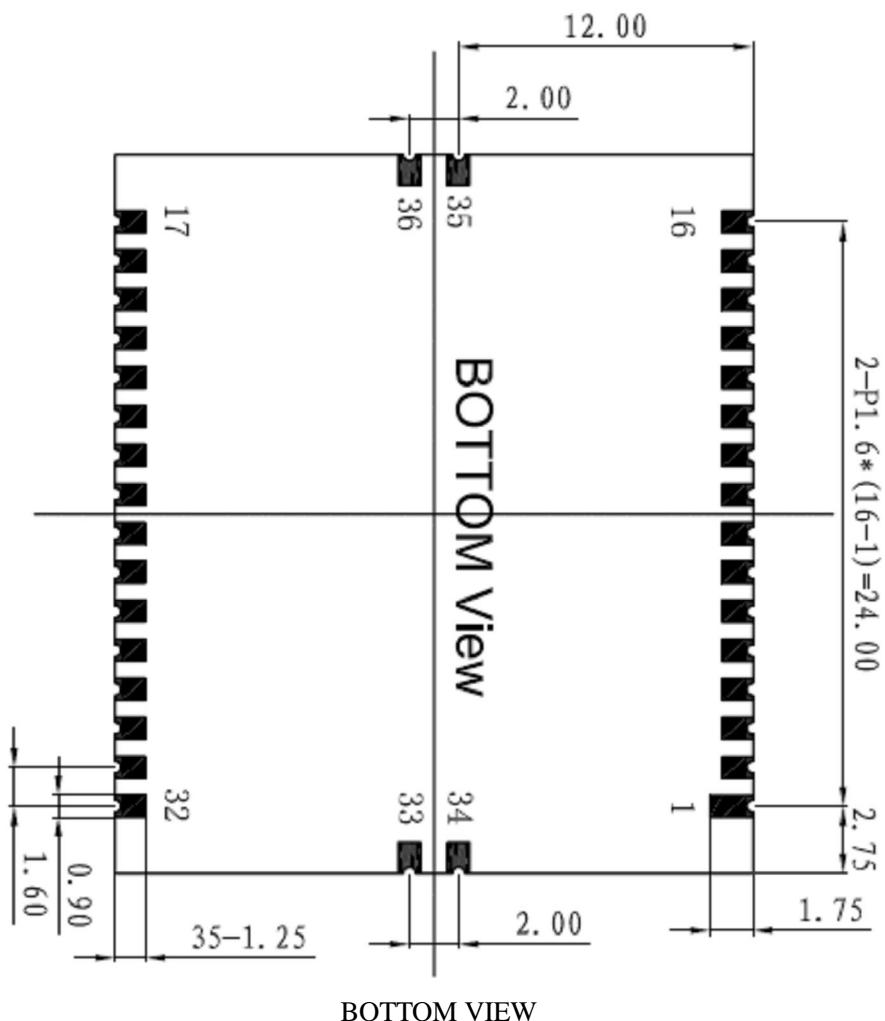


## 6.7 SIM card interface

In the Current Version of hardware, The module includes a SIM Socket. When the user use this interface, You must use the Voltage Dependent Resistor (VDR) or TVS component on the transmission signal in the same time. The SIM Card digital interface in the GT2GM-M ensures the translation of logic levels between GT2GM-M and the SIM Card, for the transmission of 3 different signals: clock signal (SIMCLK,PIN12), reset signal (SIMRST,PIN13) from GT2GM-M to the SIM Card; and serial data signal from GT2GM-M to the SIM Card (SIMDATA,PIN11). The SIM card interface can be programmed to drive a 3.0V SIM Card. Importance that the Voltage Dependent Resistor (VDR) or TVS component is necessary on the transmission signal , and the bias cap is lower than 30pF was suggested. The bypass cap of VCC net was suggested 1uF, and it must be added in your design.






Figure4 SIM card interface


reference circuit

## 6.8 Power on

The pin 10(powerkey) is for power on the module, please keep 2 seconds low level and then turn to high level to power on the module.

## 7 Mechanical Structure(mm)





## 8 Important announcement

The device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference; changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is

connected.

Consult the dealer or an experienced radio/TV technician for help.

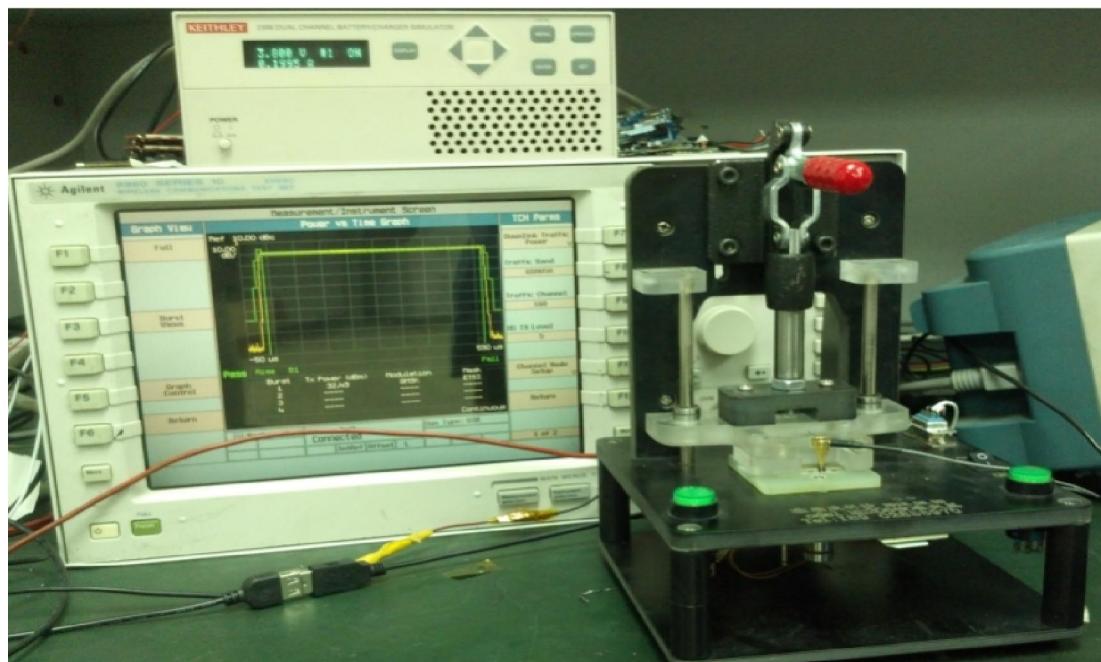
Please notice that if the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains FCC ID:N69-715000" any similar wording that expresses the same meaning may be used.

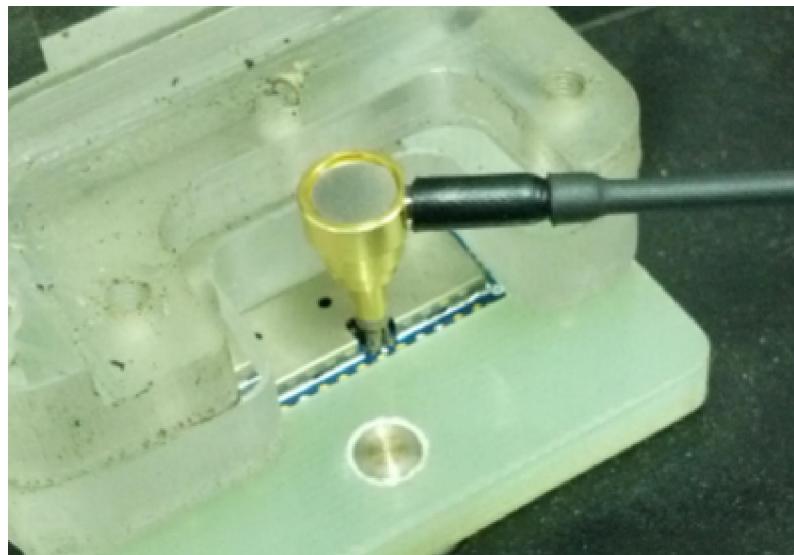
The antennas used for this transmitter as shown in this filing must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter

## 9 Construction and setup

The Module test is comprised of following basic steps. The first is to put the DUT into module test jig and the second is to connect the PC terminal emulator and start the measurement tool, and then stop the test program:

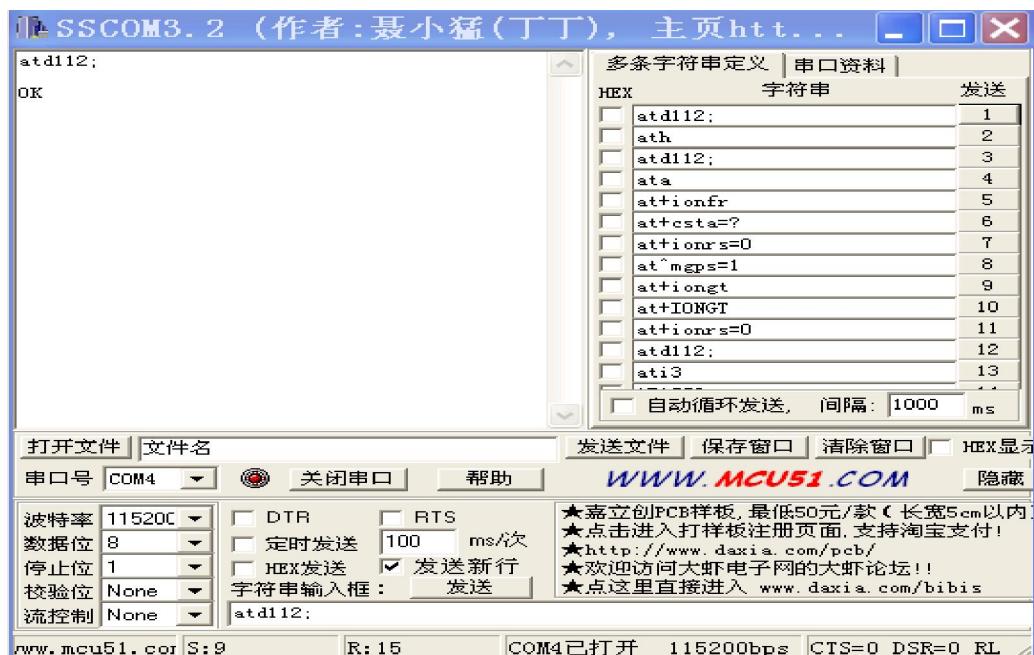
1) Setup the test platform


a. Supply the DC POWER to JIG: Voltage=3.8V and Current=1.0A




b. Connect the PC UART to the JIG, and then open the software tool SS COM32

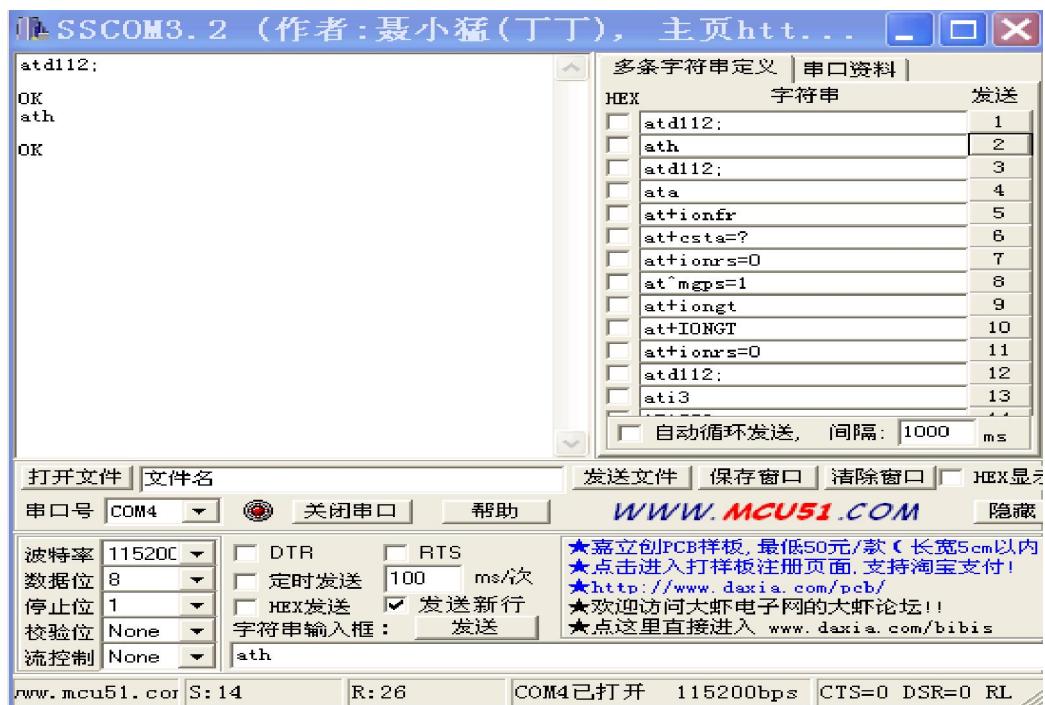



c. Put the GT2GM-M module into the JIG, connect the HP8960 with RF cable





2) Start to test


Send the AT command to the module by the software tool, and then the user can control the module by PC





### 3) End the test program

The user can stop the test program by AT command "ATH"



## 10. Installation information

The Tracker uses a simple cabling arrangement and supports splicing into an OBDII extension for power. Connection to the vehicle is made through a 3mm pitch rectangular header connection common to the automotive market.

As any GPS location device, the Module should be installed in a vehicle, so that it has an unobstructed view of the sky during normal operation. Double sided foam tape can be used to secure the surface not facing the sky, if needed.