

TEST REPORT

Test report no.: 1-2350/16-01-03

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Valeo Comfort and Driving Assistance

76 rue Auguste Perret - ZI Europarc 94046 CRETEIL CEDEX / FRANCE Phone: +33 1 48 84 54 00

Fax: -/-

Contact: Jerome Hugot

e-mail: jerome.hugot@valeo.com Phone: +33 1 48 84 57 14

Manufacturer

Valeo Comfort and Driving Assistance

76 rue Auguste Perret - ZI Europarc 94046 CRETEIL CEDEX / FRANCE

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification - Licence-

Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Transmitter, Key assy (model ID21A)

 Model name:
 ID Geber NG2.1

 FCC ID:
 N5F-ID21A

 IC:
 3248A-ID21A

Frequency band 260 MHz to 470 MHz

Technology tested: Proprietary RF technology with 2 different bandwidths

Antenna: Integrated antenna

Power supply: 3.0 V DC by CR2032 battery

Temperature range: -20°C to +65°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:			

Marco Bertolino Lab Manager Radio Communications & EMC Andreas Luckenbill Lab Manager Radio Communications & EMC

1 Table of contents

1	Table o	of contents	2
2	Genera	al information	
	2.1 2.2 2.3	Notes and disclaimerApplication details	3
3		andard/s and references	
4		nvironment	
5		em	
•	5.1 5.2	General descriptionAdditional information	5
6	Descri	ption of the test setup	6
	6.1 6.2 6.3	Shielded semi anechoic chamberShielded fully anechoic chamber	8
7	Seque	nce of testing	10
	7.1 7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHzSequence of testing radiated spurious 30 MHz to 1 GHzSequence of testing radiated spurious 1 GHz to 12.75 GHz	11
8	Measu	rement uncertainty	13
9	Summ	ary of measurement results	14
	9.1	Additional comments	14
10	Mea	surement results	15
	10.1 10.2 10.3 10.4	Timing of the transmitter	18 19
	10.5 10.6	Field strength of the harmonics and spurious Receiver spurious emission	26
Anı	nex A	Document history	37
Anı	nex B	Further information	37
Anı	nex C	Accreditation Certificate	38

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2016-10-25
Date of receipt of test item: 2017-01-04
Start of test: 2017-01-04
End of test: 2017-01-23

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content			32 %
Barometric pressure			1021 hpa
Power supply		V _{nom} V _{max} V _{min}	3.0 V DC by CR2032 battery No tests under extreme conditions required. No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Transmitter, Key assy (model ID21A)
Type identification :	ID Geber NG2.1
HMN :	-/-
PMN :	Remote control/key
HVIN :	ID21A
FVIN :	-/-
S/N serial number :	-/-
HW hardware status :	B101050_A
SW software status :	V5.20
Frequency band :	260 MHz to 470 MHz Low channel: 433.20 MHz / High channel: 434.64 MHz
Type of radio transmission : Use of frequency spectrum :	Modulated carrier
Type of modulation :	FSK
Number of channels :	2
Antenna :	Integrated antenna
Power supply :	3.0 V DC by CR2032 battery
Temperature :	-20°C to +65°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

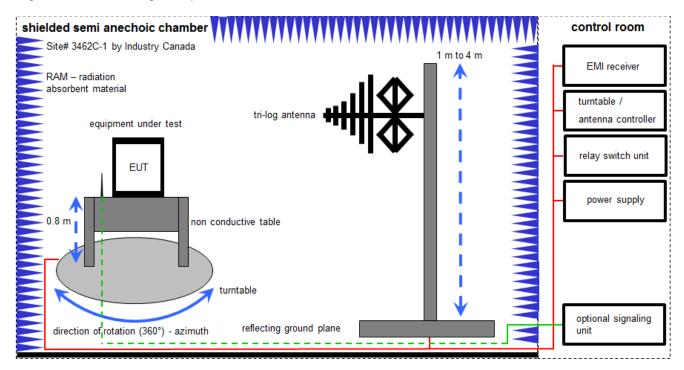
Test setup- and EUT-photos are included in test report: 1-2350/16-01-01_AnnexA

1-2350/16-01-01_AnnexB 1-2350/16-01-01_AnnexD

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval	-	-
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

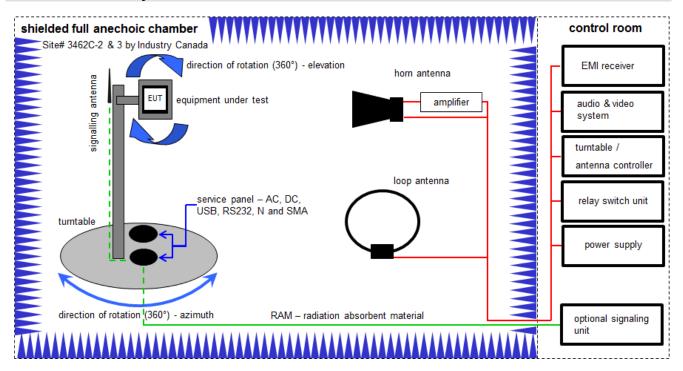
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

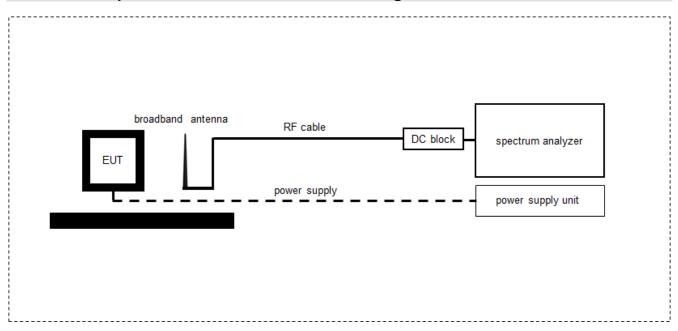
6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO	2210	300001015	k	20.05.2015	20.05.2017
2	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	k	13.08.2015	13.08.2017
3	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22050	300004482	ev	-/-	-/-
5	A, B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
6	A, B	Messrechner und Monitor	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A54 21	300004591	ne	-/-	-/-
7	A, B	NEXIO EMV- Software	BAT EMC	EMCO	2V2403033A54 21	300004682	ne	-/-	-/-
8	A, B	Vollabsorberkammer	-/-	TDK	2V2403033A54 21	300003726	ne	-/-	-/-
9	A, B	EMI Test Receiver 9kHz-26.5GHz	ESR26	R&S	101376	300005063	vlKI!	13.09.2016	13.03.2018

6.3 Test setup for normalized measurement configurations

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

 $\overline{OP [dBm]} = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 \mu W)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Signal- and Spectrum Analyzer	FSW26	R&S	101455	300004528	k	14.03.2016	14.03.2017
2	Α	HF-Cable 1 m	BPS-1551-394-BPS	Insulated Wire	080492	300001713	g	-/-	-/-

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty							
Test case Uncertainty							
Signal bandwidth	± RBW						
Maximum output field strength	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 9, Annex A	See table!	2017-02-16	-/-

Test specification clause	Test case Temperature conditions		Power source voltages	С	NC	NA	NP	Remark
§ 15.35 (c) RSS-GEN	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal					
§ 15.231 (a) (1) RSS-210 Issue 9	Switch off time	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) (3) (c) RSS-210 Issue 9	Emission bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) RSS-210 Issue 9	Field strength of Fundamental	- Infominal		\boxtimes				-/-
§ 15.209 RSS-210 Issue 9	Field strength of harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-GEN	Receiver spurious emissions (radiated)	Nominal	Nominal	\boxtimes				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

9.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: The device has two different types of transmission.

RKE – small signal bandwidth, used for pushed button method

CA – wide signal bandwidth, enabled by the car if the key is detected

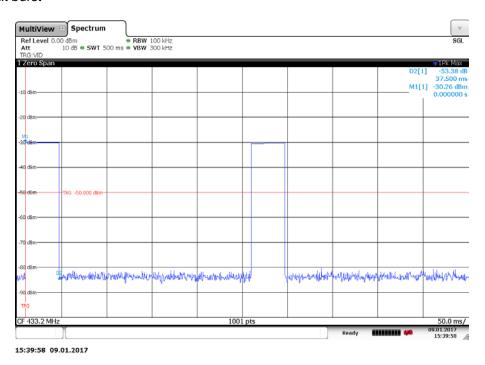
10 Measurement results

10.1 Timing of the transmitter

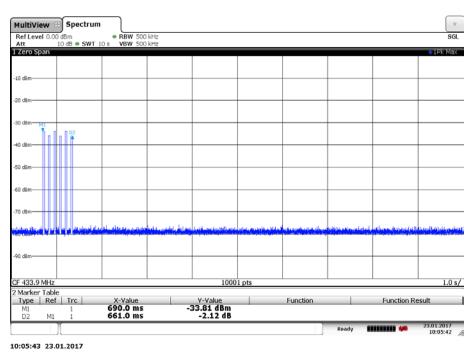
Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	See plots		
Resolution bandwidth:	100 kHz / 500 kHz		
Video bandwidth:	300 kHz / 500 kHz		
Span:	Zero		
Trace-Mode:	Single sweep		
Test setup:	See chapter 6.3 A		

Limits:


FCC	IC

(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.



Result:

Plot 1: Transmit burst

Plot 2: Timing of the transmitter

The different power levels results from the different frequencies which are used alternating by the device

Transmit time (Tx on) = 37.5 ms (Plot 1) Tx on + Tx off = 100 ms (Plot 2)

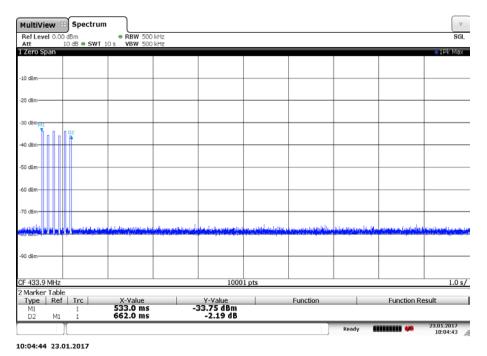
The peak-to-average correction factor is calculated with 20 x Log [Tx on/(Tx on + Tx off)]. Hereby the peak-to-average correction factor is -8.52 dB.

10.2 Switch off time

Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	10 s			
Resolution bandwidth:	500 kHz			
Video bandwidth:	500 kHz			
Span:	Zero			
Trace-Mode:	Single sweep			
Test setup:	See chapter 6.3 A			

Limits:


FCC IC

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Results:

Plot 1: TX on time

The EUT automatically ceases transmission within 662 ms after releasing the switch (worst case).

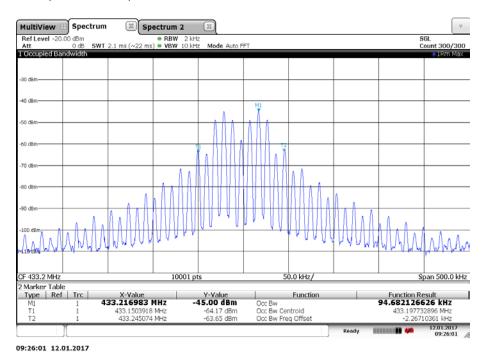
10.3 Emission bandwidth

Measurement:

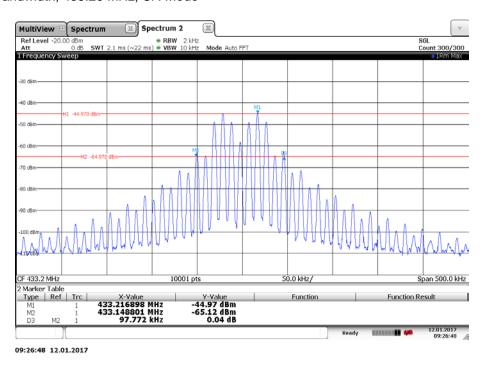
Measurement of the 99 % bandwidth of the modulated signal

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	2 kHz			
Video bandwidth:	10 kHz			
Span:	500 kHz			
Trace-Mode:	Max. hold			
Test setup:	See chapter 6.3 A			
Measurement uncertainty:	See chapter 8			

Limits:

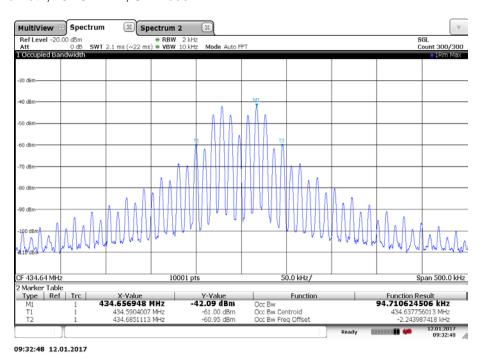

FCC	IC
433.20 MHz: The OBW shall not be wider than 0.25 %	6 of the center frequency, here maximum 1.0830 MHz.
434.64 MHz: The OBW shall not be wider than 0.25 %	6 of the center frequency, here maximum 1.0866 MHz.

Channel / MHz	Test co		Signal bandwidth / kHz		
	l Mc	ode	OBW 99%	20 dB-bandwidth	
433.20 CA	T _{nom}	V _{nom}	94.68	97.77	
434.64 CA	T _{nom}	V_{nom}	94.71	97.79	
433.20 RKE	T _{nom}	V_{nom}	39.26	42.03	
434.64 RKE	T _{nom}	V_{nom}	39.13	42.10	

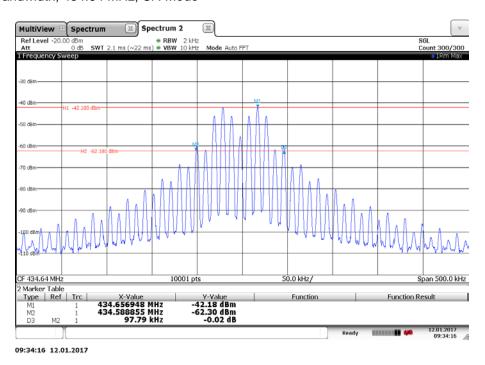


Plots:

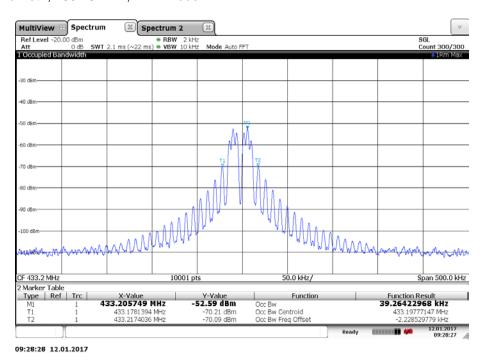
Plot 1: 99% bandwidth, 433.20 MHz, CA-Mode



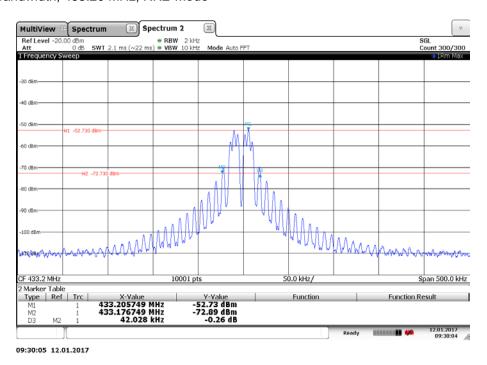
Plot 2: 20 dB bandwidth, 433.20 MHz, CA-Mode



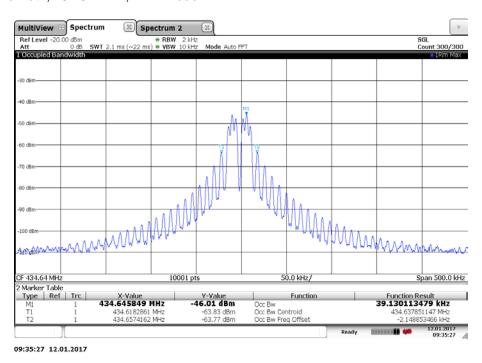
Plot 3: 99% bandwidth, 434.64 MHz, CA-Mode



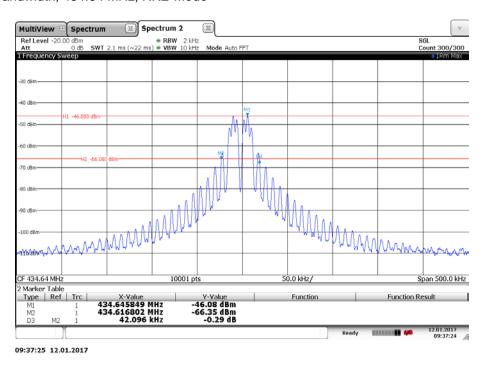
Plot 4: 20 dB bandwidth, 434.64 MHz, CA-Mode



Plot 5: 99% bandwidth, 433.20 MHz, RKE-Mode



Plot 6: 20 dB bandwidth, 433.20 MHz, RKE-Mode



Plot 7: 99% bandwidth, 434.64 MHz, RKE-Mode

Plot 8: 20 dB bandwidth, 434.64 MHz, RKE-Mode

10.4 Field strength of the fundamental

Measurement:

Measurement parameter				
Detector:	Peak / pulse averaging / quasi peak			
Sweep time:	Auto			
Resolution bandwidth:	120 kHz			
Video bandwidth:	3 x RBW			
Span:	Zero			
Trace-Mode:	Max. hold			
Test setup:	See chapter 6.1 A			
Measurement uncertainty:	See chapter 8			

Limits:

FCC			IC		
	Field strength of the fundamental.				
In addition to the provisions of S	Section 15.205, the f	ield strength of er	nissions from intentional radiators		
operated (under this Section s	hall not exceed th	e following:		
Fundamental Frequency (MHz) Field strength of (µV/n			Measurement distance (m)		
40.66 – 40.70	2,25	0	3		
70-130	1,25	0	3		
130-174 *1		3,750	3		
174-260 3,7		0	3		
260-470 *3,750 to		12,500	3		
Above 470	12,5	00	3		

^{*)} Linear interpolations

Results:

433.20 MHz, CA-Mode

Test cor	nditions	Maximum power (dBμV/m at 3 m distance)		Limit
Mode		Peak	Average	Average
T _{nom}	V _{nom}	81.4	72.9*	80.8

^{*}Value recalculated from the peak value with a correction factor of -8.52 acc. Chapter 10.1

434.64 MHz, CA-Mode

Test cor	Test conditions		Maximum power (dBµV/m at 3 m distance)	
Mode		Peak	Average	Average
T _{nom}	V _{nom}	81.3	72.8*	80.9

^{*}Value recalculated from the peak value with a correction factor of -8.52 acc. Chapter 10.1

433.20 MHz, RKE-Mode

Test cor	Test conditions		Maximum power (dBμV/m at 3 m distance)	
Mode		Peak	Average	Average
T _{nom}	V _{nom}	79.7	71.2*	80.8

^{*}Value recalculated from the peak value with a correction factor of -8.52 acc. Chapter 10.1

434.64 MHz, RKE-Mode

Test cor	nditions	Maximum power (dBμ'	Limit	
Mo	Mode		Average	Average
T _{nom}	V _{nom}	79.7		

^{*}Value recalculated from the peak value with a correction factor of -8.52 acc. Chapter 10.1

10.5 Field strength of the harmonics and spurious

Measurement:

Measurement parameter					
Detector:	Peak / average / quasi peak				
Sweep time:	Auto				
Resolution bandwidth:	200 Hz / 9 kHz / 120 kHz				
Video bandwidth:	3 x RBW				
Span:	See plots				
Trace-Mode:	Max. hold				
Test setup:	See chapter 6.1 A & 6.2 A, B				
Measurement uncertainty:	See chapter 8				

Limits:

FCC		ıc			
Field strength of the fundamental.					
In addition to the provisions of S	ection 15.205, the	ield strength of er	nissions from intentional radiators		
operated (under this Section s	hall not exceed th	e following:		
Fundamental Frequency (MHz)	Field strength (µV/	•	Measurement distance (m)		
40.66 – 40.70	22	5	3		
70-130	12	5	3		
130-174	125 to	375	3		
174-260	375		3		
260-470	375 to	1,250	3		
Above 470	1,2	50	3		

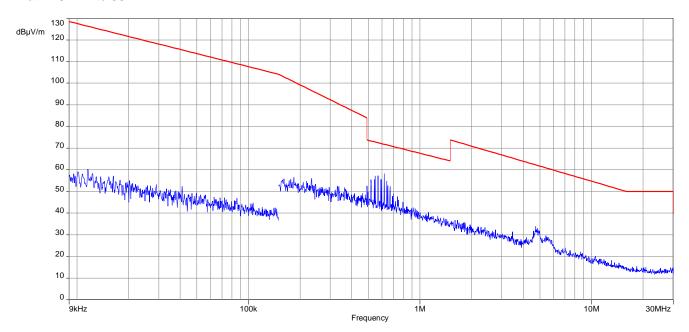
The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC		IC		
Frequency (MHz)	Field streng	gth (µV/m)	Measurement distance (m)	
0.009 - 0.490	2400/F(kHz)		300	
0.490 – 1.705	24000/F	(kHz)	30	
1.705 – 30	30)	30	
30 – 88	10	0	3	
88 – 216	15	0	3	
216 – 960	200		3	
above 960	50	0	3	

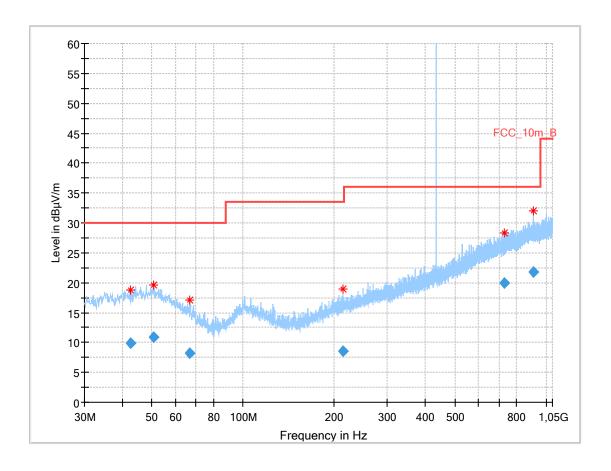
Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) 6136.3636;
- for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) 7083.3333.

Results:

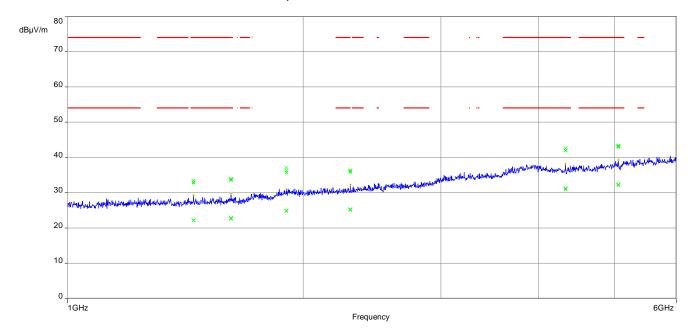

f		Limit	Amplitude of emission	
[MHz]	Detector	max. allowed		Results
[1711 12]		[dBµV/m]	[dBµV/m]	

All emissions were more than 10 dB below the peak limit. For emissions between 30 MHz and 1 GHz see result table below the plot.


Plots low channel (433.20 MHz):

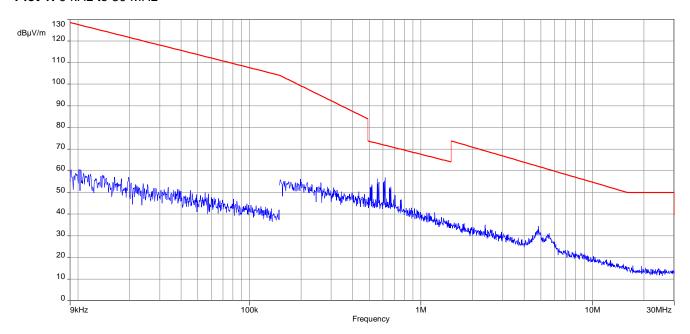
Plot 1: 9 kHz to 30 MHz

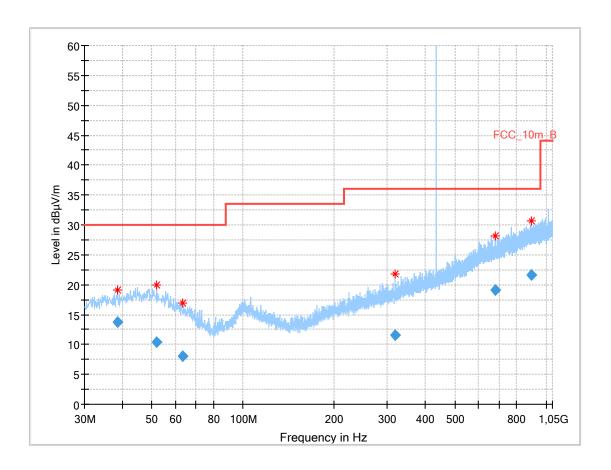
Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization



Final_Result

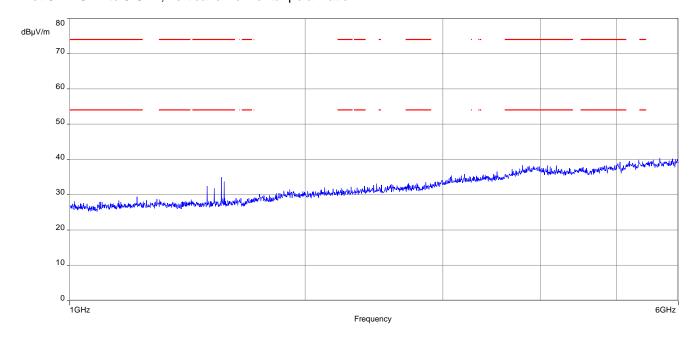
Frequency (MHz)	Quasi Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
42.682500	9.82	30.00	20.18	1000.0	120.000	173.0	V	22.0	13.4
50.860950	10.90	30.00	19.10	1000.0	120.000	273.0	Н	246.0	13.6
66.583050	8.15	30.00	21.85	1000.0	120.000	400.0	V	-5.0	10.4
213.469350	8.57	33.50	24.93	1000.0	120.000	200.0	Н	264.0	12.3
727.075650	19.92	36.00	16.08	1000.0	120.000	103.0	Н	50.0	22.2
908.932650	21.84	36.00	14.16	1000.0	120.000	98.0	V	105.0	24.2


Plot 3: 1 GHz to 6 GHz, vertical & horizontal polarization


Plots high channel (434.64 MHz):

Plot 1: 9 kHz to 30 MHz

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization



Final_Result

Frequency (MHz)	Quasi Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
38.698800	13.67	30.00	16.33	1000.0	120.000	103.0	V	-48.0	13.1
51.898350	10.46	30.00	19.54	1000.0	120.000	101.0	V	140.0	13.5
63.134550	8.01	30.00	21.99	1000.0	120.000	100.0	Н	174.0	11.2
318.397500	11.59	36.00	24.41	1000.0	120.000	200.0	V	221.0	15.0
680.387250	19.16	36.00	16.84	1000.0	120.000	400.0	V	243.0	21.4
895.820550	21.69	36.00	14.31	1000.0	120.000	172.0	V	291.0	24.1

Plot 3: 1 GHz to 6 GHz, vertical & horizontal polarization

10.6 Receiver spurious emission

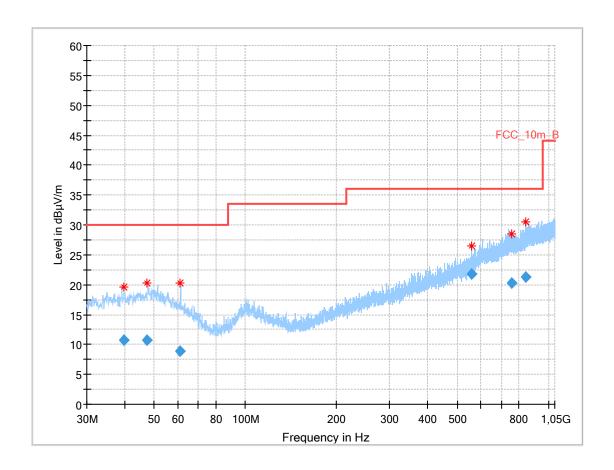
Measurement:

Measurement parameter				
Detector:	Peak / average / quasi peak			
Sweep time:	Auto			
Resolution bandwidth:	120 kHz			
Video bandwidth:	3 x RBW			
Span:	See plots			
Trace mode:	Max. hold			
Test setup:	See chapter 6.1 A & 6.2 B			
Measurement uncertainty:	See chapter 8			

Limits:

FCC	IC			
Frequency (MHz)	Field streng	gth (µV/m)	Measureme	nt distance (m)
30 - 88	10	0		3
88 - 216	15	0		3
216 - 960	20	0		3
above 960	50	0		3

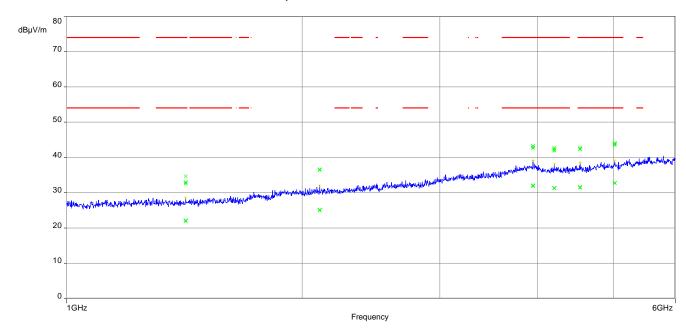
Results:


f		Limit	Amplitude of emission		
		max. allowed [dBuV/m]	[dBµV/m]	Results	
		[αδμν/π]	[αομν/ιιι]		
			<u> </u>		

All emissions were more than 10 dB below the peak limit. For emissions between 30 MHz and 1 GHz see result table below the plot.

Plots:

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization



Final_Result

Frequency (MHz)	Quasi Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
39.773400	10.65	30.00	19.35	1000.0	120.000	103.0	V	-48.0	13.2
47.395500	10.68	30.00	19.32	1000.0	120.000	171.0	V	176.0	13.7
60.885900	8.91	30.00	21.09	1000.0	120.000	273.0	V	40.0	11.7
560.006700	21.74	36.00	14.26	1000.0	120.000	400.0	V	288.0	19.6
754.939500	20.34	36.00	15.66	1000.0	120.000	400.0	V	133.0	22.7
844.913550	21.22	36.00	14.78	1000.0	120.000	359.0	V	275.0	23.5

Plot 2: 1 GHz to 6 GHz, vertical & horizontal polarization

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2017-02-16

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

OBW Occupied Bandwidth OC Operating Channel

OCW Operating Channel Bandwidth

OOB Out Of Band

Annex C Accreditation Certificate

first page

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Funk
Mobilfunk (GSM / DCS) + OTA
Elektromagnetische Verträglichkeit (EMV)
Produktsichering
SAR / EMF
Umwelt
Smart Card Technology
Bluetooth*
Automotive
WF-FI-Services
Kanadische Anforderungen
US-Anforderungen
Austik

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsnummer D-PL-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 63 Seiten.

Frankfurt, 25.11.2016

last page

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin

Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Standort Braunschweig Bundesallee 100 38116 Braunschweig

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGB. I. S. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments und des Rates vom 9. Juli 2008 bieder die Vorschriften für die Akkrediterung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. L.218 von 9. Juli 2008, S. 30). Die DAKKS ist Unterzeicherinf der Wultilateralen Absommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation (Cooperation (ILAC), Die Unterzeichner dieser Abkommen erkennen ihre Akkreditlerungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.ilac.fu

Note:

The current certificate including annex can be received on request.