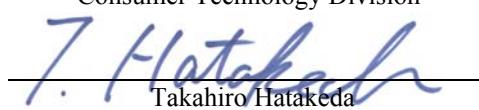
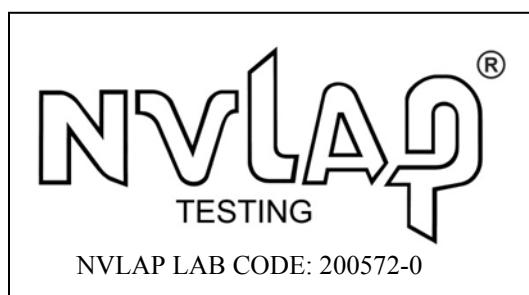

SAR TEST REPORT

Test Report No. : 11598956H-C-R2


Applicant : Leica Camera AG
Type of Equipment : Communication module
Model No. : 5370M
FCC ID : N5A5370
Test regulation : FCC47CFR 2.1093
Test Result : Complied
Reported SAR(1g) Value : **The highest reported SAR(1g)**
Body : 0.42 W/kg


1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
2. The results in this report apply only to the sample tested.
3. This sample tested is in compliance with the limits of the above regulation.
4. The test results in this report are traceable to the national or international standards.
5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
6. This test report covers SAR technical requirements. It does not cover administrative issues such as Manual or non-SAR test related Requirements. (if applicable)
7. This report is a revised version of 11598956H-C-R1. 11598956H-C-R1 is replaced with this report.

Date of test: January 23, 2017
Representative test engineer:

Shuichi Ohyama
Engineer
Consumer Technology Division

Approved by :

Takahiro Hatake
Leader
Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation.
*As for the range of Accreditation in NVLAP, you may refer to the WEB address,
http://japan.ul.com/resources/emc_accredited/

REVISION HISTORY

Original Test Report No.: 11598956H-C

CONTENTS**PAGE**

SECTION 1 : Customer information.....	4
SECTION 2 : Equipment under test (E.U.T.).....	4
2.1 Identification of E.U.T.....	4
2.2 Product description.....	4
SECTION 3 : Test standard information	5
3.1 Test Specification	5
3.2 Procedure.....	5
3.3 Exposure limit	6
3.4 Test Location.....	6
SECTION 4 : Test result.....	7
4.1 Stand-alone SAR result.....	7
SECTION 5 : Description of the operating mode	8
5.1 Output power operating modes.....	8
5.2 Output power measurement results.....	8
5.3 SAR testing operating modes	9
5.4 Confirmation after SAR testing.....	9
SECTION 6 : RF Exposure Conditions (Test Configurations)	10
6.1 SAR test exclusion considerations according to KDB447498 D01	10
SECTION 7: Description of the Body setup.....	12
7.1 Test position for Body setup.....	12
SECTION 8 : Test surrounding	13
8.1 Measurement uncertainty	13
SECTION 9 : Parameter Check	14
SECTION 10 : System Check confirmation.....	16
SECTION 11 : SAR Test data for WLAN 2.4GHz.....	17
11.1 Method of measurement	17
11.2 Result of Body SAR	17
SECTION 12 : Test instruments.....	18
APPENDIX 1 : SAR Measurement data	19
1. Evaluation procedure	19
2. Measurement data	20
APPENDIX2 : System Check	23
System check result Body 2450MHz	23
APPENDIX 3 : System specifications	25
1. Configuration and peripherals.....	25
2. Specifications.....	26
3. System Check Dipole SAR Calibration Certificate -Dipole 2450MHz(D2450V2,S/N:713).....	30
4. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3922).....	38
5. System check uncertainty	49
APPENDIX 4: Photographs of test setup	50
1. Photographs of EUT	50
2. Antenna position	51
3. Photographs of setup.....	52

SECTION 1 : Customer information

Company Name : Leica Camera AG
 Address : Am Leitz-Park 5, 35578 Wetzlar, Germany
 Telephone Number : +49 6442-2080-282
 Facsimile Number : +49 6442-2080-170
 Contact Person : Dennis Steuer

SECTION 2 : Equipment under test (E.U.T.)**2.1 Identification of E.U.T.****<Information of the EUT>**

Type of Equipment : Communication module
 Model No. : 5370M
 Serial No. : LCM002
 Rating : DC 3.3 V
 Receipt Date of Sample : January 5, 2017
 Country of Mass-production : China
 Condition of EUT : Production prototype

2.2 Product description**General Specification****<EUT>**

Clock frequency (crystal) : 37.4 MHz for communication module

<Host device>

Clock frequency(ies) in the system : 48 MHz and 32.768 kHz and 25 MHz

Radio Specification**[WLAN (IEEE802.11b/g/n-20)]**

Radio Type : Transceiver
 Frequency of Operation : 2412-2462MHz
 Bandwidth & Channel spacing : 20MHz & 5MHz
 Modulation : DSSS and OFDM
 Antenna type : Monopole Pattern Antenna
 Antenna Gain : 0.8dBi
 Power Supply (inner) : DC 1.2 V / DC 3.3 V

SECTION 3 : Test standard information

3.1 Test Specification

Title : **FCC47CFR 2.1093**

Radiofrequency radiation exposure evaluation: portable devices.

: **IEEE Std 1528-2013:**

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

: **Published RF exposure KDB procedures**

<input checked="" type="checkbox"/> KDB447498D01(v06)	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
<input type="checkbox"/> KDB447498D02(v02r01)	SAR Measurement Procedures for USB Dongle Transmitters
<input type="checkbox"/> KDB648474D04(v01r03)	SAR Evaluation Considerations for Wireless Handsets
<input type="checkbox"/> KDB941225D01(v03r01)	SAR Measurement Procedures for 3G Devices
<input type="checkbox"/> KDB941225D05(v02r05)	SAR for LTE Devices
<input type="checkbox"/> KDB941225D06(v02r01)	SAR test procedures for devices incorporating SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR)
<input checked="" type="checkbox"/> KDB941225D07(v01r02)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
<input type="checkbox"/> KDB616217D04(v01r02)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
<input checked="" type="checkbox"/> KDB865664D01(v01r04)	SAR Measurement Requirements for 100MHz to 6 GHz
<input checked="" type="checkbox"/> KDB248227D01(v02r02)	SAR Measurement Procedures for 802.11a/b/g Transmitters

Reference

[1]SPEAG uncertainty document (AN 15-7/AN19-17) for DASY 5 System from SPEAG (Schmid & Partner Engineering AG).

3.2 Procedure

Transmitter	WLAN
Test Procedure	Published RF exposure KDB procedures
Category	FCC47CFR 2.1093

Note: UL Japan, Inc. 's SAR Work Procedures 13-EM-W0429 and 13-EM-W0430

3.3 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

**NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE
SPATIAL PEAK(averaged over any 1g of tissue) LIMIT
1.6 W/kg**

3.4 Test Location

*Shielded room for SAR testings

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

SECTION 4 : Test result

4.1 Stand-alone SAR result

Reported SAR

Measured SAR is scaled to the maximum tune-up tolerance limit by the following formulas.

Reported SAR = Measured SAR [W/kg] · Scaled factor *1

Maximum tune-up tolerance limit is by the specification from a customer.

Body SAR

Mode	Frequency	Measured power [dBm]*2	Measured power [mW]	Maximum tune-up tolerance limit [dBm]	Maximum tune-up tolerance limit [mW]	Measured SAR [W/kg]	Scaled factor	Reported SAR [W/kg]
WLAN11b	2412MHz	9.33	8.57	10.50	11.22	0.324	1.309	0.424

Note

*1 Scaled factor = Maximum tune-up tolerance limit [mW] / Measured power [mW]

*2 The sample used by the SAR test is not more than 2 dB lower than the maximum tune-up tolerance limit. That is, measured power is included the tune-up tolerance range.

WLAN Maximum tune-up tolerance limit

Mode	Maximum tune-up tolerance limit [dBm]	Maximum tune-up tolerance limit [mW]
WLAN 11b	10.50	11.22
WLAN 11g	10.50	11.22
WLAN 11n20	10.50	11.22

SECTION 5 : Description of the operating mode

5.1 Output power operating modes

Mode	Frequency Band	Test Frequency	Remarks
WLAN	2412-2462MHz	2412MHz (1 ch) 2437MHz (6 ch) 2462MHz (11 ch)	DSSS(11b) OFDM(11g, 11n-20)

*The power value of the EUT was set for testing as follows (setting value might be different from product specification value);
Power settings: 11b/g/n-20: 9 dBm
Software: C611A wireless test firmware Ver,1.0

*This setting of software is the worst case.
Any conditions under the normal use do not exceed the condition of setting.
In addition, end users cannot change the settings of the output power of the product.

5.2 Output power measurement results

Output power measurement for WLAN

11b 1 Mbps

Freq. [MHz]	Reading [dBm]	Cable Loss [dB]	Atten. Loss [dB]	Result	
				[dBm]	[mW]
2412	-2.50	1.80	10.03	9.33	8.57
2437	-2.66	1.80	10.03	9.17	8.26
2462	-2.80	1.81	10.03	9.04	8.02

11g 6 Mbps

Freq. [MHz]	Reading [dBm]	Cable Loss [dB]	Atten. Loss [dB]	Result	
				[dBm]	[mW]
2412	-2.39	1.80	10.03	9.44	8.79
2437	-2.44	1.80	10.03	9.39	8.69
2462	-2.63	1.81	10.03	9.21	8.34

11n-20 MCS 0

Freq. [MHz]	Reading [dBm]	Cable Loss [dB]	Atten. Loss [dB]	Result	
				[dBm]	[mW]
2412	-2.59	1.80	10.03	9.24	8.39
2437	-2.65	1.80	10.03	9.18	8.28
2462	-2.78	1.81	10.03	9.06	8.05

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

5.3 SAR testing operating modes

The operating mode for SAR testing was decided by the output power

Mode	Frequency Band	Test Frequency	Note
WLAN	2412-2462MHz	2412MHz (1 ch) *1	DSSS(11b) *2

*The power value of the EUT was set for testing as follows (setting value might be different from product specification value);
 Power settings: 11b : 9 dBm
 Software: C611A wireless test firmware Ver,1.0

*This setting of software is the worst case.
 Any conditions under the normal use do not exceed the condition of setting.
 In addition, end users cannot change the settings of the output power of the product.

*1 Highest measured output power channel was tested initially according to KDB248227D01.

The other channel was not required since SAR value of highest measured output power channel was less than 0.8 W/kg.

*2 SAR is not required for the following 2.4 GHz OFDM conditions according to KDB248227D01.

When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

5.4 Confirmation after SAR testing

It was checked that the power drift [W] is within $\pm 5\%$. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY5 system calculation Power drift value[dB] = $20\log(E_a)/(E_b)$

Before SAR testing : E_b [V/m]

After SAR testing : E_a [V/m]

Limit of power drift[W] = $\pm 5\%$

$X[dB] = 10\log(P) = 10\log(1.05/1) = 10\log(1.05) - 10\log(1) = 0.212$ dB

from E-filed relations with power.

$p = E^2 / \eta = E^2 /$

Therefore, The correlation of power and the E-filed

$X[dB] = 10\log(P) = 10\log(E)^2 = 20\log(E)$

Therefore,

The calculated power drift of DASY5 System must be the less than ± 0.212 dB.

SECTION 6 : RF Exposure Conditions (Test Configurations)

6.1 SAR test exclusion considerations according to KDB447498 D01

The following is based on KDB447498D01.

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR}$$

When the calculated threshold value by a numerical formula above-mentioned in the following table is 3.0 or less, SAR test is excluded.

SAR exclusion calculations for antenna <50mm from the user

Antenna	Tx Interface	Frequency (MHz)	Tune-up Limit		Separation Distances (mm)						Calculated Threshold Value					
			dBm	mW	Top	Bottom	Right	Left	Front	Rear	Top	Bottom	Right	Left	Front	Rear
WLAN	11b	2462	10.50	11	5	5	5	108	5	5	3.5 -MEASURE-	3.5 -MEASURE-	3.5 -MEASURE-	-	3.5 -MEASURE-	3.5 -MEASURE-
WLAN	11g	2462	10.50	11	5	5	5	108	5	5	3.5 -MEASURE-	3.5 -MEASURE-	3.5 -MEASURE-	-	3.5 -MEASURE-	3.5 -MEASURE-
WLAN	11n20	2462	10.50	11	5	5	5	108	5	5	3.5 -MEASURE-	3.5 -MEASURE-	3.5 -MEASURE-	-	3.5 -MEASURE-	3.5 -MEASURE-

Notes:

- 1) The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2) Power and distance are rounded to the nearest mW and mm before calculation
- 3) The result is rounded to one decimal place for comparison
- 4) The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

When the separation of antenna to EUT's surfaces and edges are ≤ 50 mm, the separation distance used for the SAR exclusion calculations is 5 mm.

2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following.

$$a) [(3.50) / (\sqrt{f(\text{GHz})})] + (\text{test separation distance} - 50 \text{ mm}) \cdot (f(\text{MHz}) / 150) \text{ mW at } > 100 \text{ MHz and } \leq 1500 \text{ MHz}$$

$$b) [(3.50) / (\sqrt{f(\text{GHz})})] + (\text{test separation distance} - 50 \text{ mm}) \cdot 10 \text{ mW at } > 1500 \text{ MHz and } \leq 6 \text{ GHz}$$

When output power is less than the calculated threshold value by a numerical formula above-mentioned in the following table, SAR test is excluded.

SAR exclusion calculations for antenna >50mm from the user

Antenna	Tx Interface	Frequency (MHz)	Tune-up Limit		Separation Distances (mm)						Calculated Threshold Value					
			dBm	mW	Top	Bottom	Right	Left	Front	Rear	Top	Bottom	Right	Left	Front	Rear
WLAN	11b	2462	10.50	11	5	5	5	108	5	5	-	-	-	673.4 mW -EXEMPT-	-	-
WLAN	11g	2462	10.50	11	5	5	5	108	5	5	-	-	-	673.4 mW -EXEMPT-	-	-
WLAN	11n20	2462	10.50	11	5	5	5	108	5	5	-	-	-	673.4 mW -EXEMPT-	-	-

Notes:

- 1) The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2) Power and distance are rounded to the nearest mW and mm before calculation

Based on KDB941225D07, UMPC mini-tablet devices must be tested for 1-g SAR on all surfaces and side edges with a transmitting antenna located at ≤ 25 mm from that surface or edge, at 5 mm separation from a flat phantom, for the data modes, wireless technologies and frequency bands supported by the device to determine SAR compliance.

No.	Position	WLAN		
		Test required	Antenna	Separation of antenna to EUT's surfaces and edges [mm]
1	Front	<input type="checkbox"/>	Internal	28.88
2	Rear	<input checked="" type="checkbox"/>	Internal	2.95
3	Left	<input type="checkbox"/>	Internal	107.78
4	Right	<input checked="" type="checkbox"/>	Internal	7.28
5	Top	<input type="checkbox"/>	Internal	47.625
6	Bottom	<input checked="" type="checkbox"/>	Internal	16.5

SECTION 7: Description of the Body setup

7.1 Test position for Body setup

i) Procedure for SAR testing

-The tested procedure was performed according to the KDB 941225 D07 (SAR Evaluation Procedures for UMPC Mini-Tablet Devices).

ii) Test mode

WLAN 2.4 GHz	Data transmission mode (11b)
---------------------	-------------------------------------

iii) Test position

No.	Position	Test distance	WLAN
			Tested
1	Front	0mm	<input type="checkbox"/>
2	Rear	0mm	<input checked="" type="checkbox"/>
3	Left	0mm	<input type="checkbox"/>
4	Right	0mm	<input checked="" type="checkbox"/>
5	Top	0mm	<input type="checkbox"/>
6	Bottom	0mm	<input checked="" type="checkbox"/>

*The test was conservatively performed with test distance 0mm.

SECTION 8 : Test surrounding

8.1 Measurement uncertainty

This measurement uncertainty budget is suggested by IEEE Std 1528(2013) and IEC62209-2:2010, and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

<0.3 – 3GHz range Body>

Error Description	Uncertai value ±	Probability distribution	divisor	(ci) 1g	Standard (1g)
Measurement System					
Probe calibration	± 6.00	Normal	1	1	± 6.00
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{3}$	0.7	± 1.9
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	0.7	± 3.9
Boundary effects	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7
Detection limit	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6
Modulation response	± 2.4	Rectangular	$\sqrt{3}$	1	± 1.4
Readout electronics	± 0.3	Normal	1	1	± 0.3
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5
Integration time	± 2.6	Rectangular	$\sqrt{3}$	1	± 1.5
RF ambient Noise	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7
RF ambient Reflections	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7
Probe Positioner	± 0.4	Rectangular	$\sqrt{3}$	1	± 0.2
Probe positioning	± 2.9	Rectangular	$\sqrt{3}$	1	± 1.7
Max.SAR Eval.	± 2.0	Rectangular	$\sqrt{3}$	1	± 1.2
Test Sample Related					
Device positioning	± 2.9	Normal	1	1	± 2.9
Device holder uncertainty	± 3.6	Normal	1	1	± 3.6
Power drift	± 5.0	Rectangular	$\sqrt{3}$	1	± 2.9
Power Scaling	+ 0.0	Rectangular	$\sqrt{3}$	1	± 0.0
Phantom and Setup					
Phantom uncertainty	± 6.1	Rectangular	$\sqrt{3}$	1	± 3.5
Algorithm for correcting SAR for deviations in permittivity and conductivity	± 1.9	Normal	1	1	± 1.9
Liquid conductivity (meas.)	- 1.1	Rectangular	1	0.78	+ 0.9
Liquid permittivity (meas.)	- 1.9	Rectangular	1	0.23	- 0.4
Liquid conductivity - temp.unc (below 2deg.C.)	± 5.2	Rectangular	$\sqrt{3}$	0.78	± 2.3
Liquid permittivity - temp.unc (below 2deg.C.)	± 0.8	Rectangular	$\sqrt{3}$	0.23	± 0.1
Combined Standard Uncertainty					
± 11.302					
Expanded Uncertainty (k=2)					
± 22.6					

*. Table of uncertainties are listed for ISO/IEC 17025.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

SECTION 9 : Parameter Check

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit. The dielectric parameters measurement is reported in each correspondent section.

According to KDB865664 D01, +/- 5% tolerances are required for ϵ_r and σ and then below table which is the target value of the simulated tissue liquid is quoted from KDB865664 D01.

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000 \text{ kg/m}^3$)

For SAR system check

DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
							ϵ_r	52.7	51.6	-2.1	+/-5
23-Jan	24.0	42	MSL 2450	23.5	2450	σ [mho/m]	1.95	1.94	-0.4	+/-5	*1

For SAR measurement

DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
							ϵ_r	52.8	51.7	-1.9	+/-5
23-Jan	24.0	42	MSL 2450	23.5	2412	σ [mho/m]	1.91	1.89	-1.1	+/-5	*2

σ : Conductivity / ϵ_r : Relative Permittivity

*1 The Target value is a parameter defined in KDB 865664D01.

*2 The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

**Correlation confirmation with measured TSL parameters of the calibration certificate of system validation dipoles
(Refer to Appendix 3)**

+/- 6% limit for deviation provided by manufacture tolerances are required for ϵ_r and σ and then below table which is the target value of the simulated tissue liquid is quoted from data measured TSL parameters of dipole calibration.

Freq [MHz]	Model,S/N	Head		Body	
		ϵ	σ	ϵ	σ
2450	D2450,713	37.9	1.88	51.6	2.04

DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
23-Jan	24.0	42	MSL 2450	23.5	2450	ϵ_r	51.6	51.6	0.0	+/-6	*1
						σ [mho/m]	2.04	1.94	-4.8	+/-6	

ϵ_r : Relative Permittivity / σ : Conductivity

*1 The Target value is a parameter defined in each Dipole.

SECTION 10 : System Check confirmation

The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.

The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm ± 0.5 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm ± 0.5 cm for measurements > 3 GHz.

The DASY system with an E-Field Probe was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom).

The standard measuring distance was 10 mm (above 1GHz to 6GHz) and 15 mm (below 1GHz) from dipole center to the simulating liquid surface.

The coarse grid with a grid spacing of 12 mm (1GHz to 3GHz) and 15 mm (below 1GHz) was aligned with the dipole.

For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.

Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.

Distance between probe sensors and phantom surface was set to 3 mm.

For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm

The dipole input power (forward power) was 100 mW(For 5GHz band) or 250 mW(For other band).

The results are normalized to 1 W input power.

Freq [MHz]	Model,S/N	Head		Head *1		Body *1	
		(IEEE1528)	(IEEE1528)	(SPEAG) 1g [W/kg]	(SPEAG) 10g[W/kg]	(SPEAG) 1g [W/kg]	(SPEAG) 10g[W/kg]
2450	D2450,713	52	24.2	53.6	24.92	52	24.44

*1 The target(reference) SAR values can be obtained from the calibration certificate of system validation dipoles(Refer to Appendix 3). The target SAR values are SAR measured value in the calibration certificate scaled to 1W.

Date Tested	Model,S/N	T.S. Liquid		Measured Results		Target (Ref. Value)	Delta $\pm 10\%$
				Zoom Scan	Normalize to 1 W		
1/23/2017	D2450,713	Body	1g	12.60	50.4	52.00	-3.08
			10g	5.81	23.24	24.44	-4.91

SECTION 11 : SAR Test data for WLAN 2.4GHz

11.1 Method of measurement

(1)Method of measurement

Step.1 The searching for the worst mode.

The test was performed at the highest measured output power channel.

Note:

* Highest measured output power channel was tested initially according to KDB248227D01.

The other channel was not required since SAR value of highest measured output power channel was less than 0.8W/kg.

* SAR is not required for the following 2.4 GHz OFDM conditions according to KDB248227D01.

When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. Refer to (4) OFDM mode exclusion considerations.

* Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg in accordance to KDB865664 D1.

11.2 Result of Body SAR

Test Position	Mode	Dist. (mm)	Ch #.	Freq. (MHz)	Power (dBm)		Scaled factor	1-g SAR (W/kg)	
					Tune-up limit	Meas.		Meas.	Scaled
Bottom	802.11b	0	1	2412	10.50	9.33	1.31	0.0000156	0.0000204
			6	2437	10.50	9.17	1.36		
			11	2462	10.50	9.04	1.40		
Right	802.11b	0	1	2412	10.50	9.33	1.31	0.037	0.048
			6	2437	10.50	9.17	1.36		
			11	2462	10.50	9.04	1.40		
Rear	802.11b	0	1	2412	10.50	9.33	1.31	0.324	0.424
			6	2437	10.50	9.17	1.36		
			11	2462	10.50	9.04	1.40		

Note(s):

1. Scaled factor = Maximum tune-up tolerance limit [mW] / Measured power [mW]
2. Scaled SAR (Reported SAR)= Measured SAR [W/kg] · Scaled factor
3. Highest measured output power channel was tested initially according to KDB248227D01.
4. According to KDB248227D01
 - 1) Highest reported SAR is ≤ 0.4 W/kg. Therefore, further SAR measurements within this exposure condition are not required.
 - 2) Highest reported SAR is > 0.4 W/kg. Due to the highest reported SAR for this test position, other test positions in standalone exposure condition were evaluated until a SAR ≤ 0.8 W/kg was reported.
 - 3) For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are considered.

OFDM mode exclusion considerations

OFDM was excluded from the following table according to KDB248227D01.

Maximum tune-up tolerance limit		Maximum tune-up tolerance limit		OFDM scaled factor *3	Estimated SAR of OFDM Reported SAR(1g) [W/kg] *4	Exclusion limit [W/kg]	Standalone SAR tested				
DSSS		OFDM(11g/n20)									
[dBm]	[mW]	[dBm]	[mW]								
10.50	11.22	10.50	11.22	1.000	0.424	< 1.2	<input type="checkbox"/>				

*3 OFDM scaled factor = Maximum tune-up tolerance limit of OFDM [mW] / Maximum tune-up tolerance limit of DSSS [mW]

*4 Estimated SAR of OFDM= Reported SAR of DSSS[W/kg] · OFDM scaled factor

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

SECTION 12 : Test instruments

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MPM-09	Power Meter	Anritsu	ML2495A	6K00003348	SAR	2016/10/17 * 12
MPSE-12	Power sensor	Anritsu	MA2411B	011598	SAR	2016/10/17 * 12
MAT-58	Attenuator(10dB)	Suhner	6810.19.A	-	SAR	2016/12/15 * 12
MCC-170	Microwave Cable	Junkosha	MWX221	1409S493	SAR	2016/03/11 * 12
MNA-03	Vector Reflectometer	Copper Mountain Technologies	PLANAR R140	0030913	SAR	2016/04/22 * 12
MDPK-03	Dielectric assessment kit	Schmid&Partner Engineering AG	DAK-3.5	0008	SAR	2016/04/12 * 12
MOS-37	Digital thermometer	LKM electronic	DTM3000	-	SAR	2016/07/28 * 12
COTS-MSAR-04	Dielectric assessment software	Schmid&Partner Engineering AG	DAK	-	SAR	-
MDAE-03	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	1372	SAR	2016/06/10 * 12
MPB-09	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3922	SAR	2016/12/14 * 12
MPF-04	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1207	SAR	2016/05/07 * 12
MDH-03	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	SAR	Pre Check
MOS-35	Digital thermometer	HANNA	Checktemp 4	-	SAR	2016/07/28 * 12
COTS-MSAR-03	Dasy5	Schmid&Partner Engineering AG	DASY5	-	SAR	-
MRBT-04	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F13/5PPLA1/A/ 01	SAR	2016/06/01 * 12
MPM-11	Dual Power Meter	Agilent	E4419B	MY45102060	SAR	2016/08/24 * 12
MPSE-15	Power sensor	Agilent	E9301A	MY41498311	SAR	2016/08/24 * 12
MPSE-16	Power sensor	Agilent	E9301A	MY41498313	SAR	2016/08/24 * 12
MRFA-24	Pre Amplifier	R&K	R&K CGA020M602-2633R	B30550	SAR	2016/06/27 * 12
MSG-10	Signal Generator	Agilent	N5181A	MY47421098	SAR	2016/11/09 * 12
MAT-78	Attenuator	Telegrartner	J01156A0011	0042294119	SAR	Pre Check
MPM-15	Power Meter	Agilent	N1914A	MY53060017	SAR	2016/06/27 * 12
MPSE-21	Power sensor	Agilent	N8482H	MY52460010	SAR	2016/06/27 * 12
MHDC-12	Dual Directional Coupler	Hewlett Packard	772D	2839A0016	SAR(2-18GHz)	Pre Check
MDA-07	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	713	SAR(D2450)	2016/09/13 * 12
MMSL2450	Tissue simulation liquid (Body)	Schmid&Partner Engineering AG	MSL2450V2	SL AA 245 BA	SAR*Daily Check Target Value ±5%	Pre Check

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

SAR room is checked before every testing and ambient noise is <0.012W/kg

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

APPENDIX 1 : SAR Measurement data

1. Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm or 10mm x 10mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30mm x 30mm x 30mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3GHz and a volume of 28 mm x 28mm x 22.5mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for 5GHz band.

And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

(1). The data at the surface were extrapolated, since the center of the dipoles is 1mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

(2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

(3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

***1. Ratio step method parameters used:**

The first measurement point: 2mm from the phantom surface, the initial grid separation: 2mm, subsequent graded grid ratio: 1.5
These parameters comply with the requirement of the KDB 865664D01.

2. Measurement data

WLAN 2.4G 11b 1Mbps 2412MHz Bottom 0mm

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.892$ S/m; $\epsilon_r = 51.727$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.59, 7.59, 7.59); Calibrated: 2016/12/14;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1372; Calibrated: 2016/06/10

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207

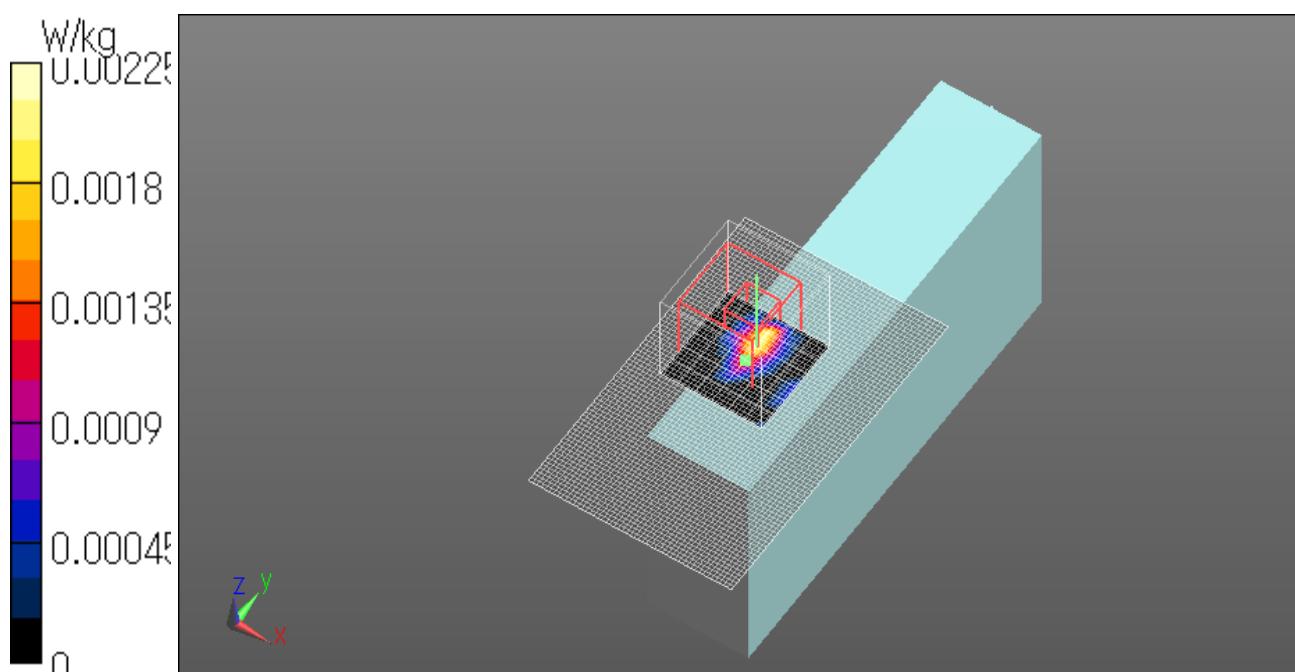
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (51x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.00320 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.503 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 0.00111 W/kg

SAR(1 g) = 1.56e-005 W/kg; SAR(10 g) = 1.56e-006 W/kg

Maximum value of SAR (measured) = 0.00225 W/kg

Date: 2017/01/23

Ambient Temp. : 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

WLAN 2.4G 11b 1Mbps 2412MHz Right 0mm

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.892$ S/m; $\epsilon_r = 51.727$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.59, 7.59, 7.59); Calibrated: 2016/12/14;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1372; Calibrated: 2016/06/10

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207

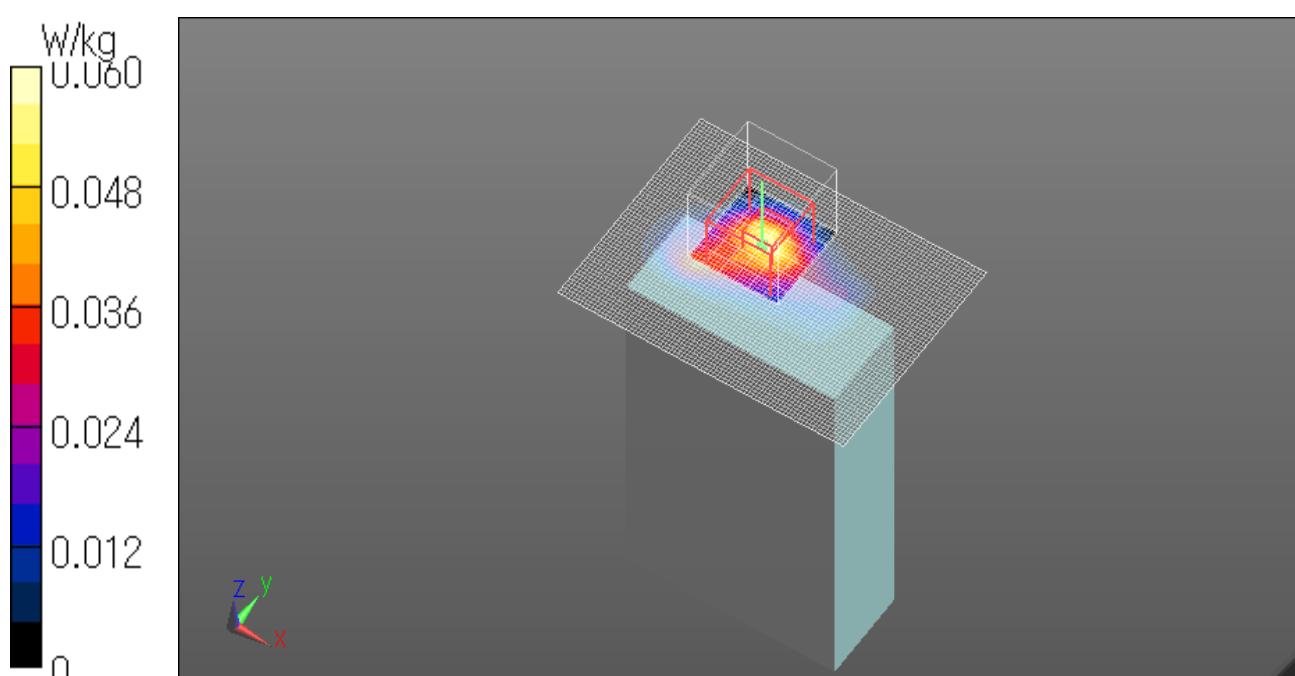
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0717 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.665 V/m; Power Drift = -0.14 dB


Peak SAR (extrapolated) = 0.0890 W/kg

SAR(1 g) = 0.037 W/kg; SAR(10 g) = 0.016 W/kg

Maximum value of SAR (measured) = 0.0605 W/kg

Date: 2017/01/23

Ambient Temp. : 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

WLAN 2.4G 11b 1Mbps 2412MHz Rear 0mm

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2412$ MHz; $\sigma = 1.892$ S/m; $\epsilon_r = 51.727$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.59, 7.59, 7.59); Calibrated: 2016/12/14;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1372; Calibrated: 2016/06/10

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207

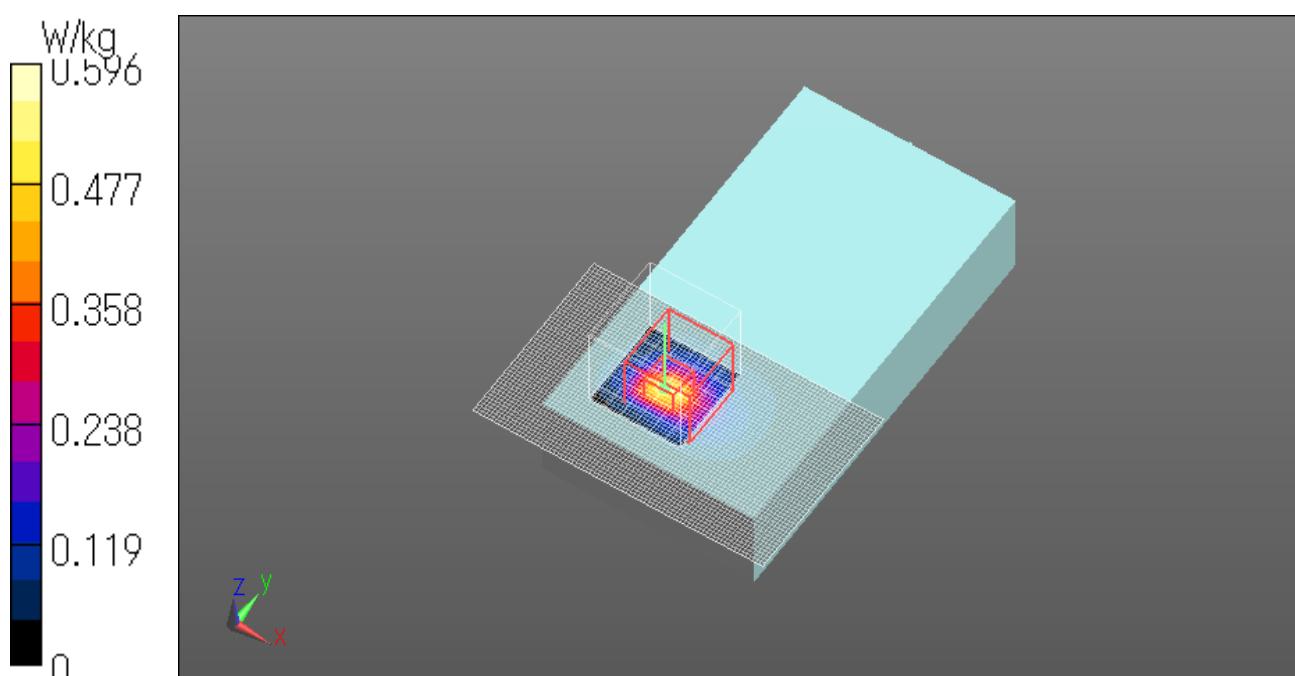
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.532 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.02 V/m; Power Drift = -0.20 dB


Peak SAR (extrapolated) = 0.974 W/kg

SAR(1 g) = 0.324 W/kg; SAR(10 g) = 0.115 W/kg

Maximum value of SAR (measured) = 0.596 W/kg

Date: 2017/01/23

Ambient Temp. : 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

APPENDIX2 : System Check

System check result Body 2450MHz

BODY 2450MHz System Check DATA / Dipole 2450MHz / Forward Conducted Power : 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.943$ S/m; $\epsilon_r = 51.599$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.59, 7.59, 7.59); Calibrated: 2016/12/14;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1372; Calibrated: 2016/06/10

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207

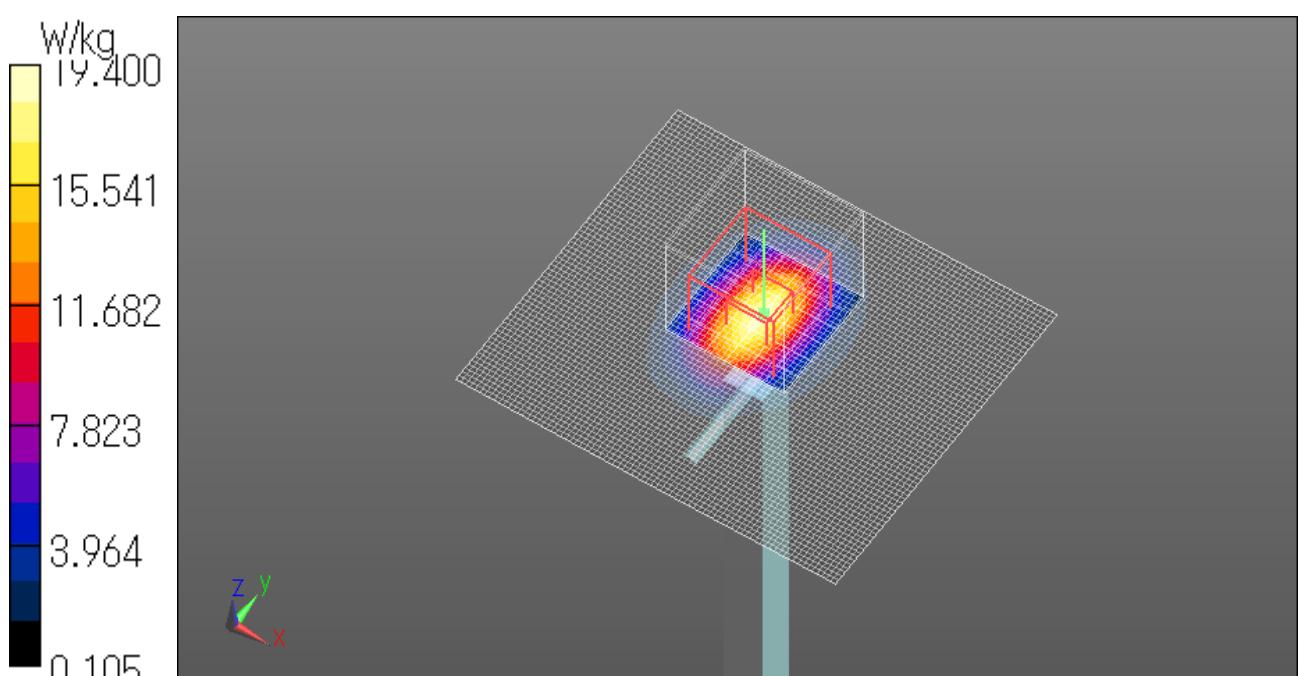
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 19.6 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.0 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.81 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Date: 2017/01/23

Ambient Temp. : 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

BODY 2450MHz System Check DATA / Dipole 2450MHz / Forward Conducted Power : 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.943$ S/m; $\epsilon_r = 51.599$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

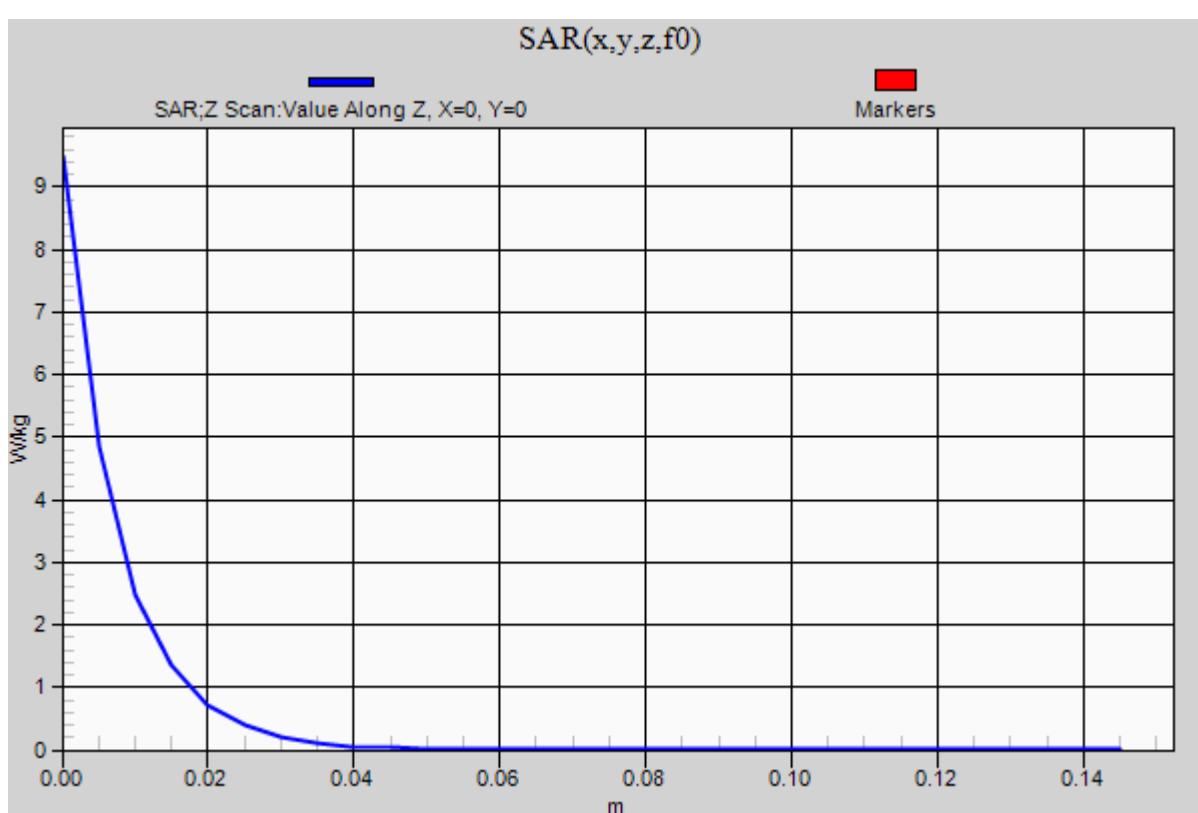
DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.59, 7.59, 7.59); Calibrated: 2016/12/14;

Sensor-Surface: 0mm (Fix Surface)

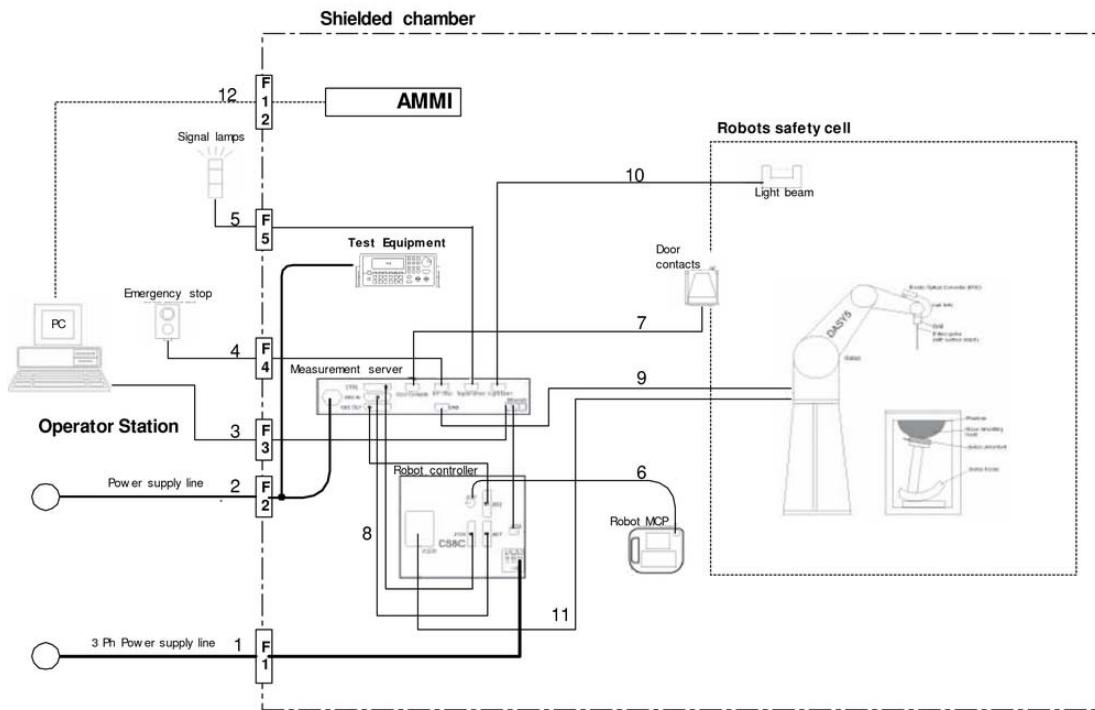
Electronics: DAE4 Sn1372; Calibrated: 2016/06/10

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 9.48 W/kg


Date: 2017/01/23

Ambient Temp. : 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

APPENDIX 3 : System specifications

1. Configuration and peripherals

The DASY5 system for performing compliance tests consist of the following items:

- a) A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
An arm extension for accommodating the data acquisition electronics (DAE).
- b) An isotropic field probe optimized and calibrated for the targeted measurement.
- c) A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- d) The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection.
The EOC is connected to the measurement server.
- e) The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- f) The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- g) A computer running WinXP and the DASY5 software.
- h) Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- i) The phantom, the device holder and other accessories according to the targeted measurement.

2. Specifications

a)Robot TX60L

Number of Axes	:	6
Nominal Load	:	2 kg
Maximum Load	:	5kg
Reach	:	920mm
Repeatability	:	+/-0.03mm
Control Unit	:	CS8c
Programming Language	:	VAL3
Weight	:	52.2kg
Manufacture	:	Stäubli Robotics

b)E-Field Probe

Model	:	EX3DV4
Construction	:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycol ether)
Frequency	:	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	:	+/-0.3 dB in HSL (rotation around probe axis) +/-0.5 dB in tissue material (rotation normal probe axis)
Dynamic Range	:	10uW/g to > 100 mW/g; Linearity +/-0.2 dB(noise: typically < 1uW/g)
Dimensions	:	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	:	Highprecision dosimetric measurement in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6GHz with precision of better 30%.
Manufacture	:	Schmid & Partner Engineering AG

EX3DV4 E-field Probe

c)Data Acquisition Electronic (DAE4)

Features	Signal amplifier, multiplexer, A/D converter and control logic Serial optical link for communication with DASY5 embedded system (fully remote controlled) Two step probe touch detector for mechanical surface detection and emergency robot stop
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)
Input Offset voltage	< 5 μ V (with auto zero)
Input Resistance	200 M Ω
Input Bias Current	< 50 fA
Battery Power	> 10 h of operation (with two 9.6 V NiMH accus)
Dimension	60 x 60 x 68 mm
Manufacture	Schmid & Partner Engineering AG

d)Electro-Optic Converter (EOC)

Version	EOC 61
Description	for TX60 robot arm, including proximity sensor
Manufacture	Schmid & Partner Engineering AG

e)DASY5 Measurement server

Features	Intel ULV Celeron 400MHz 128MB chip disk and 128MB RAM 16 Bit A/D converter for surface detection system Vacuum Fluorescent Display Robot Interface Serial link to DAE (with watchdog supervision) Door contact port (Possibility to connect a light curtain) Emergency stop port (to connect the remote control) Signal lamps port Light beam port Three Ethernet connection ports Two USB 2.0 Ports Two serial links Expansion port for future applications
Dimensions (L x W x H)	440 x 241 x 89 mm
Manufacture	Schmid & Partner Engineering AG

f) Light Beam Switches

Version	LB5
Dimensions (L x H)	110 x 80 mm
Thickness	12 mm
Beam-length	80 mm
Manufacture	Schmid & Partner Engineering AG

g)Software

Item	Dosimetric Assessment System DASY5
Type No.	SD 000 401A, SD 000 402A
Software version No.	DASY52, Version 52.6 (1)
Manufacture / Origin	Schmid & Partner Engineering AG

h)Robot Control Unit

Weight	70 Kg
AC Input Voltage	selectable
Manufacturer	Staubli Robotics

UL Japan, Inc.**Ise EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

i) Phantom and Device Holder**Phantom**

Type	: SAM Twin Phantom V4.0
Description	: The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.
Material	: Vinylester, glass fiber reinforced (VE-GF)
Shell Material	: Fiberglass
Thickness	: 2.0 +/-0.2 mm
Dimensions	: Length: 1000 mm Width: 500 mm Height: adjustable feet
Volume	: Approx. 25 liters
Manufacture	: Schmid & Partner Engineering AG
 Type	 2mm Flat phantom ERI4.0
Description	: Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles.
Material	: Vinylester, glass fiber reinforced (VE-GF)
Shell Thickness	: 2.0 +/- 0.2 mm (sagging: <1%)
Filling Volume	: approx. 30 liters
Dimensions	: Major ellipse axis: 600 mm Minor axis: 400 mm
Manufacture	: Schmid & Partner Engineering AG

Device Holder

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material : POM

Laptop Extensions kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM, ELI4 Phantoms.

Material : POM, Acrylic glass, Foam

Urethane

For this measurement, the urethane foam was used as device holder.

i) Simulated Tissues (Liquid)

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for required for routine SAR evaluation.

Mixture (%)	Frequency (MHz)									
	450		900		1800		1950		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.91	46.21	40.29	50.75	55.24	70.17	55.41	69.79	55.0	68.64
Sugar	56.93	51.17	57.90	48.21	-	-	-	-	-	-
Cellulose	0.25	0.18	0.24	0.00	-	-	-	-	-	-
Salt (NaCl)	3.79	2.34	1.38	0.94	0.31	0.39	0.08	0.2	-	-
Preventol	0.12	0.08	0.18	0.10	-	-	-	-	-	-
DGMBE	-	-	-	-	44.45	29.44	44.51	30.0	45.0	31.37
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Note:DGMBE(Diethylenglycol-monobutyl ether)

The simulated tissue (liquid) of 1800MHz was used for the test frequency of 1700MHz to 1800MHz.

Mixture (%)	Frequency(MHz)	
	650&750	1450
Tissue Type	Head and Body	Head and Body
Water	35-58%	52-75%
Sugar	40-60%	-
Cellulose	<0.3%	-
Salt (NaCl)	0-6%	<1%
Preventol	0.1-0.7%	-
DGMBE	-	25-48%

Mixture (%)	Frequency(MHz)	
	5800	
Tissue Type	Head	Body
Water	64.0	78.0
Mineral Oil	18.0	11.0
Emulsifiers	15.0	9.0
Additives and salt	3.0	2.0

3. System Check Dipole SAR Calibration Certificate -Dipole 2450MHz(D2450V2,S/N:713)

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**Client **UL Japan (Vitec)**Certificate No: **D2450V2-713 Sep16****CALIBRATION CERTIFICATE**

Object	D2450V2 - SN:713					
Calibration procedure(s)	OA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz					
Calibration date:	September 13, 2016					
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.						
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity < 70%.						
Calibration Equipment used (M&TE critical for calibration)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17			
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17			
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17			
Reference 20 dB Attenuator	SN: 5058 (20K)	05-Apr-16 (No. 217-02292)	Apr-17			
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17			
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17			
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16			
Secondary Standards	ID #	Check Date (in house)	Scheduled Check			
Power meter EPM-442A	SN: GB87480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16			
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16			
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16			
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16			
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16			
Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature			
Approved by:	Katja Pokovic	Technical Manager				
Issued: September 13, 2016						
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.						

Certificate No: D2450V2-713_Sep16

Page 1 of 8

UL Japan, Inc.**Ise EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999

Facsimile: +81 596 24 8124

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5 \text{ mm}$	
Frequency	$2450 \text{ MHz} \pm 1 \text{ MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	53.0 Ω + 2.3 $\text{j}\Omega$
Return Loss	- 28.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω + 3.7 $\text{j}\Omega$
Return Loss	- 28.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 05, 2002

DASY5 Validation Report for Head TSL

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:713

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.88$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

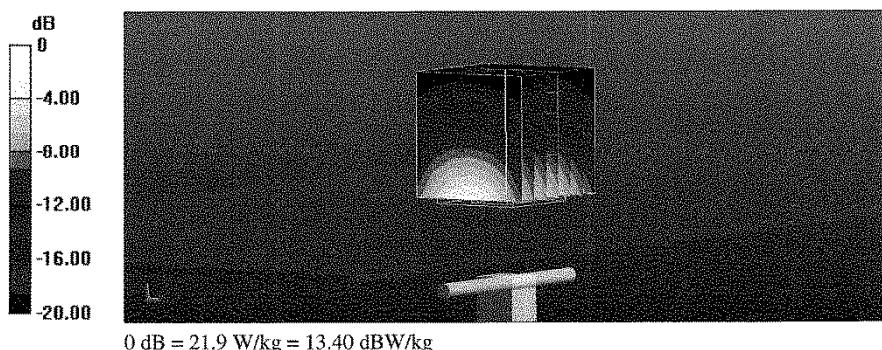
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

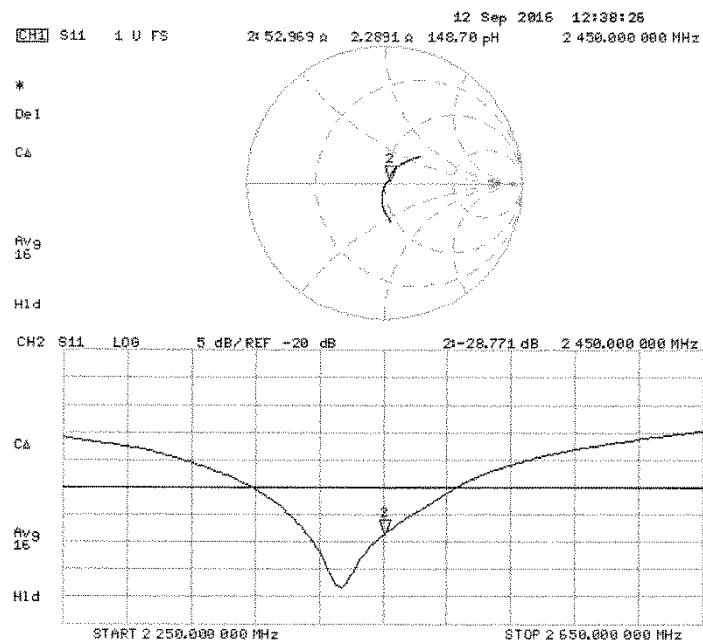
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.5 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.23 W/kg

Maximum value of SAR (measured) = 21.9 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:713

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³

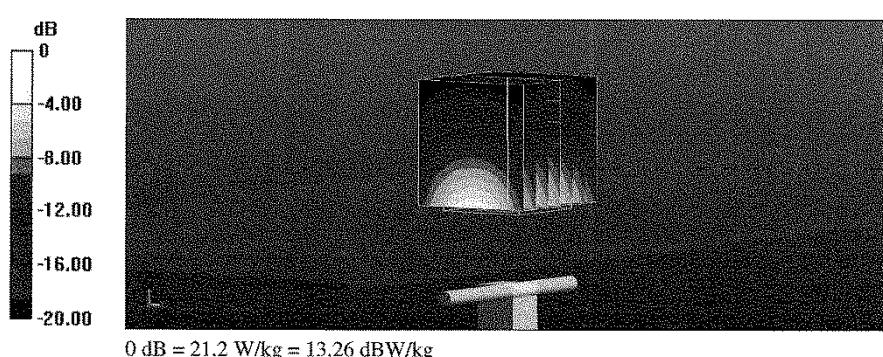
Phantom section: Flat Section

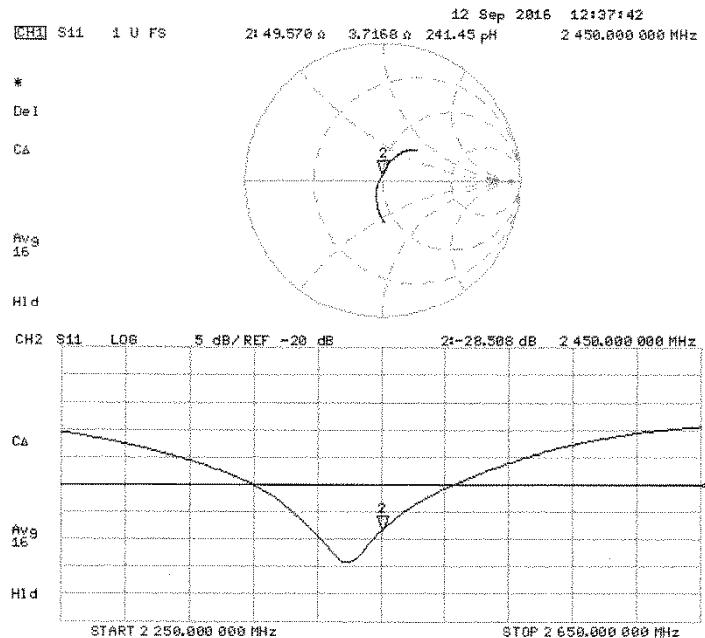
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 106.4 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 25.5 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 21.2 W/kg

Impedance Measurement Plot for Body TSL

4. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3922)

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
SCS Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**Client **UL Japan (Vitec)**Certificate No: **EX3-3922_Dec16****CALIBRATION CERTIFICATE**

Object	EX3DV4 - SN:3922
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	December 14, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17

Secondary Standards	ID	Check Date (In house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by:	Name Leif Klynsner	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: December 14, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}:** Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)_{x,y,z} = NORM_{x,y,z} * frequency_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z:** DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR:** PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}; VR_{x,y,z}:** A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters:** Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy):** in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:** The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle:** The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 – SN:3922

December 14, 2016

Probe EX3DV4

SN:3922

Manufactured: March 8, 2013
Repaired: December 9, 2016
Calibrated: December 14, 2016

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3922

December 14, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})$) ^A	0.64	0.56	0.59	$\pm 10.1\%$
DCP (mV) ^B	100.7	101.4	97.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μV	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	141.1	$\pm 2.7\%$
		Y	0.0	0.0	1.0		150.8	
		Z	0.0	0.0	1.0		139.0	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 ff	C2 ff	α V^{-1}	T1 ms.V^{-2}	T2 ms.V^{-1}	T3 ms	T4 V^{-2}	T5 V^{-1}	T6
X	62.67	473	36.3	24.32	1.855	5.029	0.722	0.564	1.007
Y	41.55	310.1	35.63	15.94	1.105	5.035	1.03	0.251	1.006
Z	56.64	426.7	36.1	23.02	1.603	5.034	0.673	0.557	1.007

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6).^B Numerical linearization parameter: uncertainty not required.^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3922

December 14, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^g (mm)	Unc (k=2)
2300	39.5	1.67	7.91	7.91	7.91	0.29	0.80	± 12.0 %
2450	39.2	1.80	7.48	7.48	7.48	0.35	0.80	± 12.0 %
5200	36.0	4.66	5.74	5.74	5.74	0.30	1.80	± 13.1 %
5250	35.9	4.71	5.71	5.71	5.71	0.30	1.80	± 13.1 %
5300	35.9	4.76	5.65	5.65	5.65	0.30	1.80	± 13.1 %
5500	35.6	4.96	5.13	5.13	5.13	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.92	4.92	4.92	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.05	5.05	5.05	0.40	1.80	± 13.1 %
5800	35.3	5.27	5.06	5.06	5.06	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3922

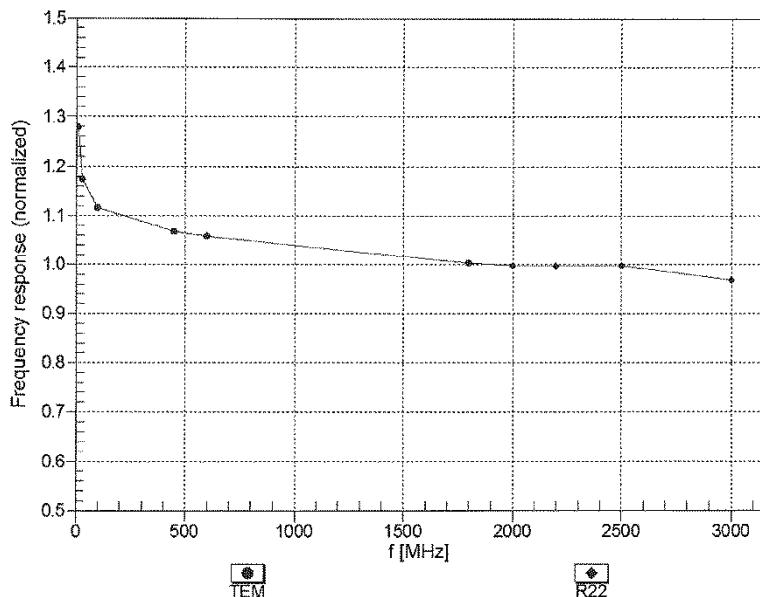
December 14, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^g (mm)	Unc (k=2)
835	55.2	0.97	9.92	9.92	9.92	0.39	0.93	± 12.0 %
1900	53.3	1.52	7.98	7.98	7.98	0.34	0.89	± 12.0 %
2300	52.9	1.81	7.80	7.80	7.80	0.39	0.80	± 12.0 %
2450	52.7	1.95	7.59	7.59	7.59	0.32	0.80	± 12.0 %
5250	48.9	5.36	4.98	4.98	4.98	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.16	4.16	4.16	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.32	4.32	4.32	0.50	1.90	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

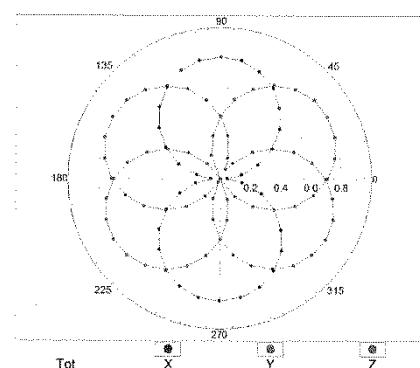

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

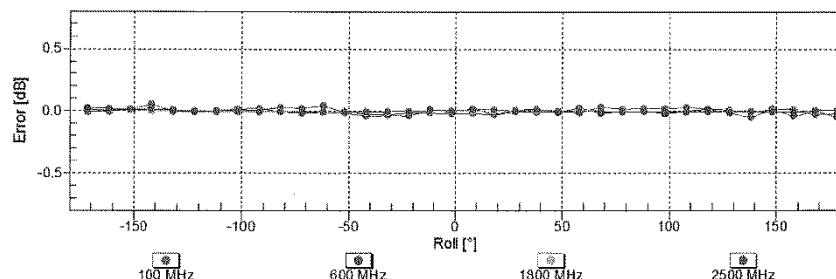
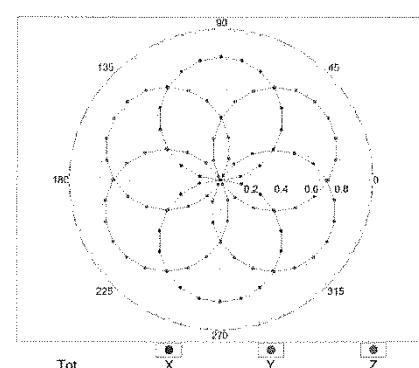
EX3DV4- SN:3922

December 14, 2016

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

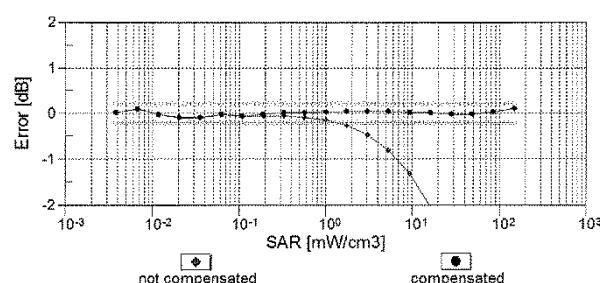
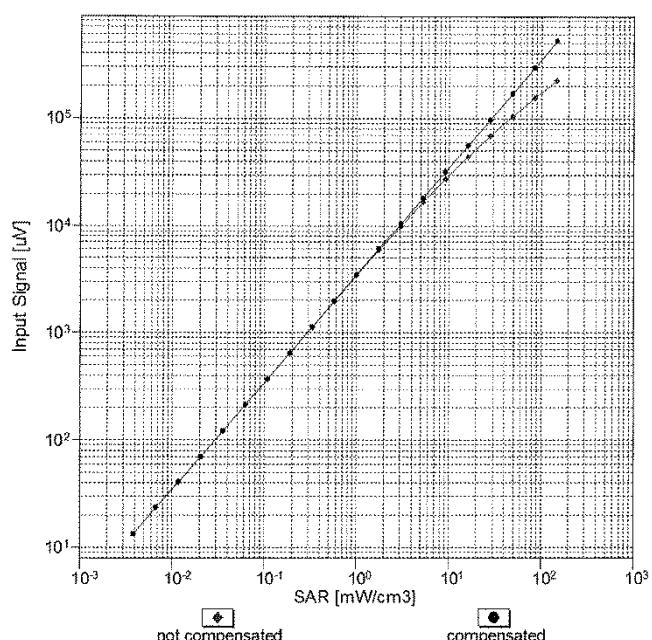

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

EX3DV4- SN:3922



December 14, 2016

Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

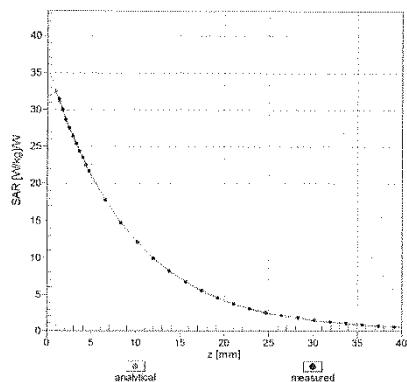
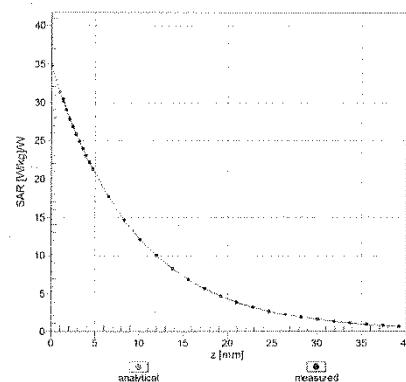


f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

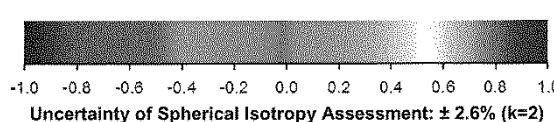
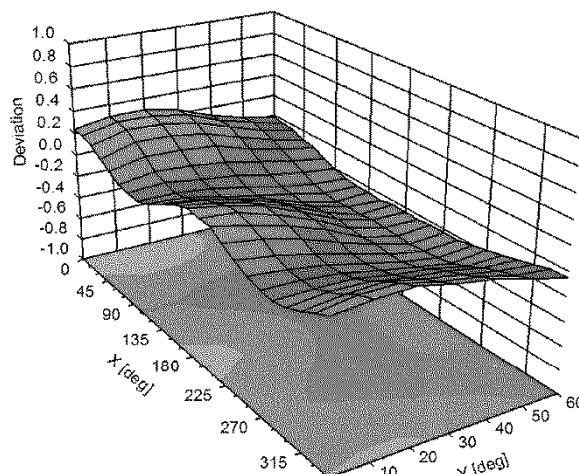
EX3DV4- SN:3922

December 14, 2016

Dynamic Range f(SAR_{head})
(TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)



EX3DV4- SN:3922

December 14, 2016

Conversion Factor Assessment

 $f = 2450 \text{ MHz}, \text{WGLS R22 (H_convF)}$ $f = 2450 \text{ MHz}, \text{WGLS R22 (M_convF)}$

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

EX3DV4- SN:3922

December 14, 2016

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3922**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	108.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

5. System check uncertainty

The uncertainty budget has been determined for the DASY5 measurement system according to the SPEAG documents and is given in the following Table.

Repeatability Budget for System Check

<0.3 – 3GHz range Body>