

# EMC EMISSION - TEST REPORT



Test Report No.

**B835201**

Issue Date

10 September 1998

Model / Serial No.

G3/xxAM / G3/021AM

Product Type

Radio Frequency Identification Reader

Client

Phase IV Engineering

Manufacturer

Phase IV Engineering

License holder

Phase IV Engineering

Address

2820 Wilderness Place, Suite C

Boulder, CO 80301

Test Criteria Applied

FCC Part 15      15.209C

Test Start Date:

31 July 1998

Test End Date:

31 July 1998

Test Result

**PASS**       **FAIL**

Test Report Project No.

**B241835201**

Total Pages including  
Appendices

41

Reviewed By : Felix J. Chavez

Reviewed By : Shawn Singh

*TÜV Product Service Inc is a subcontractor to TÜV Product Service, GmbH according to the principles outlined in ISO/IEC Guide 25 and EN 45001.*

*TÜV Product Service Inc reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. TÜV Product Service Inc shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV Product Service Inc issued reports.*

*This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval of TÜV Product Service. This report shall not be used by the client to claim product endorsement by NVLAP or any agency of the US government.*

*TÜV Product Service Inc and its professional staff hold government and professional organization certifications and are members of AAMI, ACIL, AEA, ANSI, IEEE, NVLAP, and VCCI*

## DIRECTORY - EMISSIONS

| <b>Documentation</b>               | <b>Page(s)</b> |
|------------------------------------|----------------|
| Test report                        | 1 - 3          |
| Directory                          | 2              |
| Test Regulations                   | 3              |
| General Remarks                    | 3              |
| Test-setup Photographs             | 4-5            |
| Test Equipment Used                | 6-8            |
| <br><b>Appendix A</b>              |                |
| Transmitter Data Sheets            | A1 - A2        |
| <br><b>Appendix B</b>              |                |
| Detailed Test Data Sheets          | B1 - B16       |
| <br><b>Appendix C</b>              |                |
| Test Plan/Constructional Data Form | C1 - C12       |
| <br><b>Appendix D</b>              |                |
| Measurement of Protocol            | D1 - D3        |

## EMISSIONS TEST REGULATIONS :

The tests were performed according to following regulations :

|                                                         |             |             |
|---------------------------------------------------------|-------------|-------------|
| ■ - Federal Communication Commission part 15            | ■ - Class A | □ - Class B |
| ■ - Federal Communication Commission part 15, Subpart C | ■ - 15.207  | ■ - 15.209  |

---

All tests performed according to ANSI C63.4

### Emission Test Results:

#### Conducted emissions 150 kHz - 30 MHz

|                |                                            |                                 |                                           |
|----------------|--------------------------------------------|---------------------------------|-------------------------------------------|
| Test Result    | <input checked="" type="checkbox"/> - PASS | <input type="checkbox"/> - FAIL | <input type="checkbox"/> - Not Applicable |
| Passing Margin | 2 dB                                       |                                 | at 0.4 MHz                                |
| Remarks:       | EUT is battery operated.                   |                                 |                                           |

---

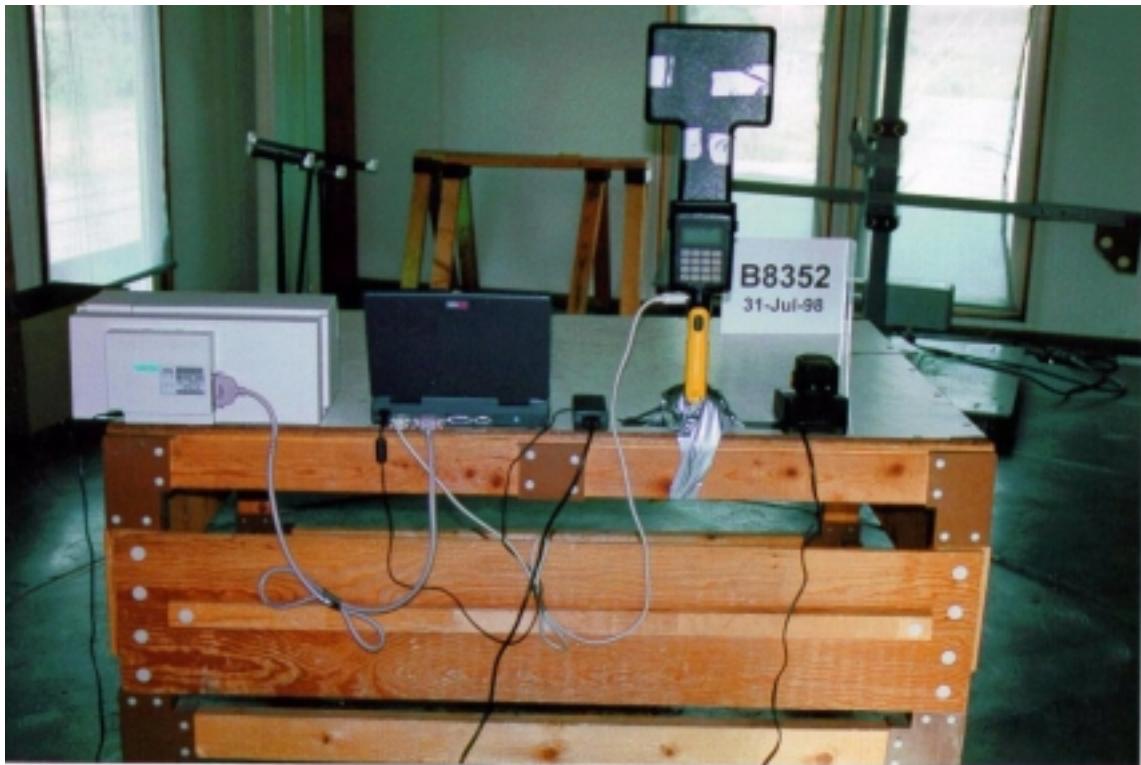
#### Radiated emissions (electric field) 30 MHz - 1000 MHz (Unintentional Radiator)

|                |                                            |                                 |                                           |
|----------------|--------------------------------------------|---------------------------------|-------------------------------------------|
| Test Result    | <input checked="" type="checkbox"/> - PASS | <input type="checkbox"/> - FAIL | <input type="checkbox"/> - Not Applicable |
| Passing Margin | 4.1 dB                                     |                                 | at 66.5 MHz                               |
| Remarks:       |                                            |                                 |                                           |

---

#### Radiated emissions (magnetic field) 0.125 MHz - 1.250 MHz (Intentional Radiator)

|                |                                            |                                 |                                           |
|----------------|--------------------------------------------|---------------------------------|-------------------------------------------|
| Test Result    | <input checked="" type="checkbox"/> - PASS | <input type="checkbox"/> - FAIL | <input type="checkbox"/> - Not Applicable |
| Passing Margin | 19.4 dB                                    |                                 | at 0.625 MHz                              |
| Remarks:       |                                            |                                 |                                           |


---

### GENERAL REMARKS:

Modifications required to pass:

Test Specification Deviations: Additions to or Exclusions from: None

Test-setup photo(s)  
Radiated Emissions



Test-setup photo(s):  
Conducted Emissions



## Test Equipment Used

Colorado Test Equipment

22-July-98

Report: B8352 Date: 31 July 1998 Signature: Shawn Singh

Temp: 20.8 deg. c Rel. Humd.: 66% Atmo. Pressure: 81.0 kPa

| Location   | Manufacturer           | Model Number       | Serial Number     | Cal Date         | Cal Due          |
|------------|------------------------|--------------------|-------------------|------------------|------------------|
| PW         | AH Systems             | SAS-200/510        | 705               | 06-Jul-98        | 06-Jul-99        |
| <b>*PW</b> | <b>AH Systems</b>      | <b>SAS-200/512</b> | <b>104</b>        | <b>13-Jul-98</b> | <b>13-Jul-99</b> |
| PW         | AH Systems             | SAS-200/542        | 256               | 03-Feb-98        | 03-Feb-99        |
| PW         | AvAntek                | AFT97-8434-10      | 1007              | 18-Nov-97        | 18-Nov-98        |
| PW         | Avantek                | AWT-18037          | 1002              | 18-Nov-97        | 18-Nov-98        |
| PW         | bird                   | 4022               | 1825              |                  |                  |
| PW         | bird                   | 4024               | 1863              |                  |                  |
| PW         | bird                   | 4025               | 3702              |                  |                  |
| PW         | Bird                   | 4421-103           | 1254              |                  |                  |
| PW         | California Instr.      | 850T               | 68458             | 08-Mar-98        | 08-Mar-99        |
| PW         | California Instr.      | 9000TCA/3-1        | 50666+            |                  |                  |
| PW         | Compaq                 | 470A               | 23605277          |                  |                  |
| PW         | Compaq                 | 575                | g545HSY20483      |                  |                  |
| PW         | Compliance Des.        | RD-1               |                   | 02-Mar-00        |                  |
| PW         | EMC Test Sys.          | 3142               |                   | 27-Jan-98        | 27-Jan-99        |
| PW         | EMCO                   | 1070-4             | 9206-1681         |                  |                  |
| PW         | EMCO                   | 1080/1081          | 9206-1636         |                  |                  |
| PW         | EMCO                   | 1090               | 1134              |                  |                  |
| <b>*PW</b> | <b>EMCO</b>            | <b>3108</b>        | <b>2149</b>       | <b>19-Jun-99</b> |                  |
| PW         | EMCO                   | 3108               | 7059203-2457      | 06-Jul-99        |                  |
| PW         | EMCO                   | 3115               | 3886              | 20-Feb-98        | 20-Feb-99        |
| PW         | EMCO                   | 3146               | 9203-3376         | 18-Jun-98        | 18-Jun-99        |
| PW         | EMCO                   | 3825/2             | 9202-1945         | 15-Jul-98        | 15-Jul-99        |
| PW         | EMCO                   | 3825/2             | 9202-1946         | 08-Jul-97        | 08-Jul-98        |
| PW         | EMCO                   | 3825/2             | 9202-1946         | 23-Jul-98        | 23-Jul-99        |
| PW         | EMCO                   | 4610               | 9205-1199         |                  |                  |
| PW         | EMCO                   | 4620               | 9110-1015         |                  |                  |
| PW         | EMCO                   | 6502               | 2082              |                  |                  |
| <b>*PW</b> | <b>EMCO</b>            | <b>6502</b>        | <b>9205-2738</b>  | <b>30-Oct-97</b> | <b>29-Oct-00</b> |
| PW         | EMCO                   | 7123               | 9205-1028         |                  |                  |
| PW         | EMCO                   | 7123               | 9205-1029         | 11-Dec-97        | 11-Dec-98        |
| PW         | EMCO                   | 7405               | 9203-2175         |                  |                  |
| PW         | Fischer                | F-201              | 141               | 05-Mar-98        | 05-Mar-99        |
| PW         | Fischer                | F-33-1             | 356               | 04-May-98        | 04-May-99        |
| PW         | Fischer Custom         | F-61               | 274               | 17-Jun-97        | 17-Jun-98        |
| <b>*PW</b> | <b>Gishard</b>         | <b>600-1040 mb</b> | <b>002</b>        |                  |                  |
| PW         | Hewlett Packard        | 11940A             | 2650A04527        |                  |                  |
| PW         | Hewlett Packard        | 11940A             | 2650A04563        |                  |                  |
| PW         | Hewlett Packard        | 11941A             | 2807A02957        |                  |                  |
| <b>*PW</b> | <b>Hewlett Packard</b> | <b>11947A</b>      | <b>2820A00277</b> | <b>18-Nov-97</b> | <b>18-Nov-98</b> |
| PW         | Hewlett Packard        | 11947A             | 3107A01975        | 17-Jun-98        | 17-Jun-99        |
| PW         | Hewlett Packard        | 8444A              | 2325A07899        | 18-Nov-97        | 18-Nov-98        |
| PW         | Hewlett Packard        | 8447D              | 2727A05399        | 18-Nov-97        | 18-Nov-98        |
| PW         | Hewlett Packard        | 8447F              | 3113A04923        | 21-Nov-97        | 21-Nov-98        |
| PW         | Hewlett Packard        | 85650A             | 2043A00256        | 17-Jun-98        | 17-Jun-99        |
| <b>*PW</b> | <b>Hewlett Packard</b> | <b>85650A</b>      | <b>2811A01300</b> | <b>18-Nov-97</b> | <b>18-Nov-98</b> |
| PW         | Hewlett Packard        | 85662A             | 2112A02220        | 11-Mar-98        | 11-Mar-99        |
| PW         | Hewlett Packard        | 85662A             | 2318A04983        | 17-Jun-98        | 17-Jun-99        |
| PW         | Hewlett Packard        | 85662A             | 2403A06707        | 20-Nov-97        | 20-Nov-98        |
| <b>*PW</b> | <b>Hewlett Packard</b> | <b>85662A</b>      | <b>2403A08749</b> | <b>01-Apr-98</b> | <b>30-Sep-98</b> |
| <b>*PW</b> | <b>Hewlett Packard</b> | <b>8566B</b>       | <b>2410A00154</b> | <b>01-Apr-98</b> | <b>30-Sep-98</b> |
| PW         | Hewlett Packard        | 8566B              | 2410A00254        | 20-Nov-97        | 20-Nov-98        |

| Location   | Manufacturer              | Model Number                   | Serial Number     | Cal Date         | Cal Due          |
|------------|---------------------------|--------------------------------|-------------------|------------------|------------------|
| PW         | Hewlett Packard           | 8568B                          | 2304A02508        | 17-Jun-99        |                  |
| PW         | Hewlett Packard           | 8590                           | 2722A02036        |                  |                  |
| PW         | Hewlett Packard           | 8594E                          | 3223A00145        | 21-Nov-97        | 21-Nov-98        |
| PW         | HP                        | 11947A                         | 3107A01984        | 09-Jun-97        | 09-Jun-98        |
| PW         | JFW                       | 50FH-003-100N                  | 9825              | 18-Jun-98        | 18-Jun-99        |
| PW         | JFW                       | 50FHB-003-5                    | 00363             | 18-Nov-97        | 18-Nov-98        |
| <b>*PW</b> | <b>Mini-Circuits</b>      | <b>ZHL-1042J</b>               | <b>D020698-14</b> | <b>13-Feb-98</b> | <b>13-Feb-99</b> |
| PW         | Mini-Circuits             | ZHL-1042J                      | N032698           | 11-May-98        | 11-May-99        |
| PW         | Polarad                   | ESH3-Z2                        | 357.881J.32       |                  |                  |
| <b>*PW</b> | <b>Radio Shack</b>        | <b>63-867</b>                  | <b>005</b>        |                  |                  |
| <b>*PW</b> | <b>Rhode&amp;Schwartz</b> | <b>ESH30</b>                   | <b>842806/001</b> | <b>07-Oct-97</b> | <b>07-Oct-98</b> |
| PW         | Rhode&Schwarz             | ESH2-Z5                        | 830364/002        | 23-Feb-99        |                  |
| PW         | Rhode & Schwarz           | ESH3                           | 872318/036        | 06-Aug-98        |                  |
| PW         | Rhode & Schwarz           | HFH2-Z2                        | 880665/042        | 08-Feb-98        | 08-Feb-99        |
| PW         | Schwarzbeck               | NNLK 8129                      | 8129126 LISN      | 20-Oct-97        | 20-Oct-98        |
| PW         | Schwarzbeck               | TK 9416                        | TUV-600           | 04-Apr-99        |                  |
| PW         | Shaffner                  | NSG 431                        | 1426              |                  |                  |
| <b>*PW</b> | <b>Solar</b>              | <b>8028-50-TS-24-B 8305121</b> | <b>23-Feb-98</b>  | <b>23-Feb-99</b> |                  |
| <b>*PW</b> | <b>Solar</b>              | <b>8028-50-TS-24-B 8305122</b> | <b>23-Feb-98</b>  | <b>23-Feb-99</b> |                  |
| PW         | Tensor                    | 4105                           | 2020              | 11-Jun-98        | 11-Jun-99        |
| PW         | Transjonic                | T-100                          | 147               |                  |                  |
| PW         | TUV PS                    | LPS-1                          | 1                 |                  |                  |
| PW         | WaveTek                   | DM5XL                          | 60206553          |                  |                  |
| PW         | Weinschel                 | 2-3dB                          | BC5530            | 18-Nov-97        | 18-Nov-98        |
| PW         | Weinschel                 | 2-3dB                          | BC5539            | 18-Nov-97        | 18-Nov-98        |
| PW         | Weinschel                 | 2-6B                           | BC6492            | 18-Nov-97        | 18-Nov-98        |
| PW         | Weinschel                 | 2-6dB                          | BC6487            | 18-Nov-97        | 18-Nov-98        |

## **Appendix A**

Transmitter Data Sheets

## TUV PRODUCT SERVICE

## RADIATED EMISSIONS SUMMARY

Report #: 8352 Operator: Shawn Singh  
Date of test: 31 Jul 98 Engineer: Shawn Singh  
Model No.: G3/xxAM  
Equipment tested: Radio Frequency Identification Reader  
Requester: Phase IV Engineering  
Representative: Rich Pollack

## TEST EQUIPMENT

EMCO 6502 Loop Antenna  
Rohde&Schwarz ESHS30 Receiver  
Hewlett Packard 8566B Spectrum Analyzer

## TEST DETAILS:

|                              |                              |
|------------------------------|------------------------------|
| FCC Rules Section:           | 15.209                       |
| Fundamental Frequency:       | 0.125 MHz                    |
| Antenna description:         | Internal Small Diameter Loop |
| Modulation Method:           | None, continuous carrier     |
| FCC Limit Distance:          | 300 meters                   |
| FCC Limit                    | 19.2 $\mu$ V/m   25.7 dBuV/m |
| FCC Default Falloff          | 40 dB/decade                 |
| Alternate Calculated Falloff | 60 dB/decade                 |
| Falloff Used                 | 60 dB/decade                 |

## MEASURED DATA:

| Harmonic # | Freq. MHz | Readings dBuV/m |                    |          |                                                                       |                    |          |
|------------|-----------|-----------------|--------------------|----------|-----------------------------------------------------------------------|--------------------|----------|
|            |           | 3 meters        | Extrapolated Limit | Delta dB | 30 meters                                                             | Extrapolated Limit | Delta dB |
| 1          | 0.125     | 125.2           | 145.6              | 20.4     | 65.3                                                                  | 85.6               | 20.3     |
| 2          | 0.250     | 73              | 139.6              | 66.6     | 49.8                                                                  | 79.6               | 29.8     |
| 3          | 0.375     | 81.4            | 136                | 54.6     | 46.8                                                                  | 76                 | 29.2     |
| 4          | 0.500     | 72.8            | 93.6               | 20.8     | No emissions were found above the receiver's noise floor to 1.25 MHz. |                    |          |
| 5          | 0.625     | 72.3            | 91.7               | 19.4     |                                                                       |                    |          |
| 6          | 0.750     | 62.8            | 90.1               | 27.3     |                                                                       |                    |          |
| 7          | 0.875     | 66.3            | 88.7               | 22.4     |                                                                       |                    |          |
| 8          | 1.000     | 61.4            | 87.6               | 26.2     |                                                                       |                    |          |
| 9          | 1.125     | 60.4            | 86.5               | 26.1     |                                                                       |                    |          |
| 10         | 1.250     | 41.4            | 85.7               | 44.3     |                                                                       |                    |          |

**CONCLUSION:** The device under test passed emissions requirements under Section 15.209 with a passing margin of 19.4 dB at test distance of 3 meters using alternate calculated falloff distance extrapolation of 60 dB per decade. No emissions were detected above the receiver's noise floor at 100 meters.

## **Appendix B**

**Detailed Test Data Sheets**

TÜV Product Service  
RADIATED EMISSIONS DATA SHEET

SHEET 1 OF 3

TEST DISTANCE 3 Meters  
Test Area TT1-1  
Test Standards FCC Pt 15 15.209C

TEST REPORT # B8352  
DATE: 31-Jul-98  
TESTED BY: Shawn Singh  
REVIEWED BY: FJC

Manufacturer Phase IV Engineering  
EUT Description Radio Frequency Identification Reader  
EUT Model # G3/xxAM  
EUT Serial # G3/021AM

Representative Rich Pollack

Test Specification Deviations: Additions to or Exclusions from:

| FREQ.<br>(MHz) | Reading<br>(dBuV) | Condition      |                 |                 |                  |              | Remarks: Rotated loop<br>antenna for maximum<br>emissions |
|----------------|-------------------|----------------|-----------------|-----------------|------------------|--------------|-----------------------------------------------------------|
|                |                   | Factor<br>(dB) | [1]<br>(dBuV/m) | [2]<br>(dBuV/m) | Azimuth<br>(deg) | Polarization |                                                           |
| 0.125          | 115.4             | 9.8            | 125.2           |                 |                  |              |                                                           |
| 0.25           | 63.2              | 9.8            | 73              |                 |                  |              |                                                           |
| 0.375          | 71.6              | 9.8            | 81.4            |                 |                  |              |                                                           |
| 0.5            | 63                | 9.8            | 72.8            |                 |                  |              |                                                           |
| 0.625          | 62.5              | 9.8            | 72.3            |                 |                  |              |                                                           |
| 0.75           | 53                | 9.8            | 62.8            |                 |                  |              |                                                           |
| 0.875          | 56.5              | 9.8            | 66.3            |                 |                  |              |                                                           |
| 1              | 51                | 10.4           | 61.4            |                 |                  |              |                                                           |
| 1.125          | 50                | 10.4           | 60.4            |                 |                  |              |                                                           |
| 1.25           | 31                | 10.4           | 41.4            |                 |                  |              |                                                           |

Condition 1: Peak readings

Condition 2:

Modifications to EUT at time of test:

TÜV Product Service  
RADIATED EMISSIONS DATA SHEET

SHEET 2 OF 3

TEST DISTANCE 30 Meters  
Test Area TT1-1  
Test Standards FCC Pt 15 15.209C

TEST REPORT # B8352  
DATE: 31-Jul-98  
TESTED BY: Shawn Singh  
REVIEWED BY: FJC

Manufacturer Phase IV Engineering  
EUT Description Radio Frequency Identification Reader  
EUT Model # G3/xxAM  
EUT Serial # G3/021AM

Representative Rich Pollack

Test Specification Deviations: Additions to or Exclusions from:

| FREQ.<br>(MHz) | Reading<br>(dBuV) | Condition      |                 |                 | Azimuth<br>(deg) | Polarization | Remarks: Rotated loop<br>antenna for maximum<br>emissions                      |
|----------------|-------------------|----------------|-----------------|-----------------|------------------|--------------|--------------------------------------------------------------------------------|
|                |                   | Factor<br>(dB) | [1]<br>(dBuV/m) | [2]<br>(dBuV/m) |                  |              |                                                                                |
| 0.125          | 55.5              | 9.8            | 65.3            |                 |                  |              |                                                                                |
| 0.25           | 40                | 9.8            | 49.8            |                 |                  |              | Noise floor reading                                                            |
| 0.375          | 37                | 9.8            | 46.8            |                 |                  |              | Noise floor reading                                                            |
| "              |                   |                |                 |                 |                  |              |                                                                                |
| 1.25           |                   |                |                 |                 |                  |              | No emissions were<br>found above the<br>receiver's noise floor to<br>1.25 MHz. |

Condition 1: Peak readings

Condition 2:

Modifications to EUT at time of test:

TÜV Product Service  
RADIATED EMISSIONS DATA SHEET

SHEET 3 OF 3

TEST DISTANCE 100 Meters  
Test Area TT1-1  
Test Standards FCC Pt 15 15.209C

TEST REPORT #B8352  
DATE: 31-Jul-98  
TESTED BY: Shawn Singh  
REVIEWED BY:FJC

Manufacturer Phase IV Engineering  
EUT Description Radio Frequency Identification Reader  
EUT Model # G3/xxAM  
EUT Serial # G3/021AM

Representative Rich Pollack

Test Specification Deviations: Additions to or Exclusions from:

| FREQ.<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Condition       |                 | Azimuth<br>(deg) | Polarization | Remarks: Rotated loop<br>for maximum emissions                                 |
|----------------|-------------------|----------------|-----------------|-----------------|------------------|--------------|--------------------------------------------------------------------------------|
|                |                   |                | [1]<br>(dBuV/m) | [2]<br>(dBuV/m) |                  |              |                                                                                |
| 0.125          | 39.3              | 9.8            | 49.1            |                 |                  |              | - Noise floor reading                                                          |
| "              |                   |                |                 |                 |                  |              |                                                                                |
| 1.25           |                   |                |                 |                 |                  |              | No emissions were<br>found above the<br>receiver's noise floor<br>to 1.25 MHz. |

Condition 1: Peak readings

Condition 2:

Modifications to EUT at time of test:

TUV PRODUCT SERVICE

Figure

NARROWBAND CONDUCTED EMISSIONS  
PHASE IV ENGINEERING, M/N: G3/XXAM, S/N:G3/021AM  
RF IDENTIFICATION READER, PC CONN. TO LISN, 120 VAC/60HZ

Report: B8352 Run A  
Date: 31-AUG-98 Page 1  
Engineer: Shawn Singh  
Reviewed: FJC

| Measurement Summary |                     |                         |
|---------------------|---------------------|-------------------------|
| Frequency<br>(MHz)  | Amplitude<br>(dBuV) | DELTA<br>FCC<br>CLASS B |
| 1.979               | 37.7                | -10.3                   |
| 3.00                | 43.5                | -4.5                    |
| 5.93                | 33.9                | -14.1                   |
| 6.08                | 42.8                | -5.2                    |
| 9.74                | 37.0                | -11.0                   |
| 14.93               | 42.7                | -5.3                    |

Minimum Passing Margin for FCC CLASS B is 4 dB at 3 MHz

File B8352 Run A

TUV PRODUCT SERVICE

Figure

NARROWBAND CONDUCTED EMISSIONS  
PHASE IV ENGINEERING, M/N: DW9106, S/N: 1324567  
DEWALT CHARGER, 120 VAC/60 HZ

Report: B8352  
Date: 31-AUG-98  
Engineer: Shawn Singh  
Reviewed: FJC

Run B  
Page 1

Measurement Summary

| Frequency<br>(MHz) | Amplitude<br>(dBuV) | DELTA<br>FCC<br>CLASS A |
|--------------------|---------------------|-------------------------|
| 0.450              | 57.6                | -2.4                    |
| 0.670              | 52.2                | -7.8                    |
| 1.000              | 45.2                | -14.8                   |
| 1.360              | 39.0                | -21.0                   |
| 2.650              | 21.8                | -47.7                   |
| 4.11               | 11.0                | -58.5                   |

Minimum Passing Margin for FCC CLASS A is 2 dB at .4499 MHz

File B8352 Run B

**T U V P R O D U C T S E R V I C E**  
**RADIATED EMISSIONS**

PW1 Test Site  
 10 Meter Antenna Distance  
 Equipment Under Test:  
 Phase IV Engineering  
 M/N: G3/XXAM, SIN: G3/021AM

Report B8352 Run 1  
 Date 07/31/98 Page 1  
 Engineer: FJC  
 Tech: S S  
 Requester:

Notes: Radio Frequency Identification Reader, Fresh 12 VDC battery

| Frequency | Level | Factor | Cable | Final  | Az Polar\\<br>deg Height | Delta<br>FCC A | Delta<br>CISPR B |
|-----------|-------|--------|-------|--------|--------------------------|----------------|------------------|
| MHz       | dBuV  | dB     | dB    | dBuV/m |                          |                |                  |
| 33.744    | 7.45  | 14.1   | .9    | 22.5   | v                        | -16.6          | -7.5             |
| 35.002    | 10.55 | 14     | 1     | 25.5   | v                        | -13.6          | -4.5             |
| 35.927    | 13.2  | 13.9   | 1     | 28     | v                        | -11.1          | -2               |
| 38.682    | 19.05 | 13.4   | 1     | 33.5   | v                        | -5.6           | 3.5 *            |
| 39.557    | 13.85 | 13.3   | 1     | 28.2   | v                        | -10.9          | -1.8             |
| 42.484    | 15.9  | 12.9   | 1     | 29.8   | v                        | -9.3           | -2               |
| 59.523    | 8.45  | 11.1   | 1.2   | 20.7   | v                        | -18.4          | -9.3             |
| 66.507    | 19.9  | 10     | 1.3   | 31.2   | v                        | -7.9           | 1.2 *            |
| 67.772    | 18.85 | 9.8    | 1.3   | 30     | v                        | -9.1           | 0 *              |
| 69.255    | 18.35 | 9.6    | 1.3   | 29.3   | v                        | -9.8           | -7               |
| 74.157    | 13.8  | 9.1    | 1.3   | 24.2   | v                        | -14.9          | -5.8             |
| 84.93     | 12.25 | 8.5    | 1.4   | 22.2   | v                        | -16.9          | -7.8             |
| 85.974    | 14.2  | 8.5    | 1.5   | 24.2   | v                        | -14.9          | -5.8             |
| 88.069    | 14.45 | 8.5    | 1.5   | 24.4   | v                        | -19.1          | -5.6             |
| 99.195    | 11.85 | 9.8    | 1.6   | 23.3   | v                        | -20.2          | -6.7             |
| 103.03    | 11.6  | 10.3   | 1.6   | 23.5   | v                        | -20            | -6.5             |
| 104.05    | 14    | 10.4   | 1.6   | 26     | v                        | -17.5          | -4               |
| 105.43    | 13.7  | 10.5   | 1.6   | 25.9   | v                        | -17.6          | -4.1             |
| 106.15    | 15.65 | 10.6   | 1.6   | 27.9   | v                        | -15.6          | -2.1             |
| 109.26    | 19.4  | 10.9   | 1.7   | 32     | v                        | -11.5          | 2 *              |
| 110.18    | 17.3  | 11     | 1.7   | 30     | v                        | -13.5          | 0 *              |
| 111.79    | 15.75 | 11.2   | 1.7   | 28.6   | v                        | -14.9          | -1.4             |
| 112.37    | 15.8  | 11.2   | 1.7   | 28.7   | v                        | -14.8          | -1.3             |
| 115.24    | 17.2  | 11.5   | 1.7   | 30.4   | v                        | -13.1          | .4 *             |
| 117.99    | 17.3  | 11.6   | 1.7   | 30.7   | v                        | -12.8          | .7 *             |
| 119.04    | 15.8  | 11.7   | 1.7   | 29.2   | v                        | -14.3          | -.8              |
| 120.06    | 22    | 11.8   | 1.8   | 35.5   | v                        | -8             | 5.5 *            |
| 120.43    | 15.7  | 11.8   | 1.8   | 29.2   | v                        | -14.3          | -.8              |
| 121.82    | 14.8  | 11.8   | 1.8   | 28.4   | v                        | -15.1          | -1.6             |
| 123.56    | 11.45 | 11.9   | 1.8   | 25.2   | v                        | -18.3          | -4.8             |
| 125.31    | 13.15 | 12     | 1.8   | 27     | v                        | -16.5          | -3               |
| 127.06    | 11.35 | 12.1   | 1.8   | 25.3   | v                        | -18.2          | -4.7             |
| 128.09    | 16.6  | 12.2   | 1.8   | 30.6   | v                        | -12.9          | .6 *             |
| 132.96    | 11.35 | 12.4   | 1.8   | 25.6   | v                        | -17.9          | -4.4             |

## T U V P R O D U C T S E R V I C E

## RADIATED EMISSIONS

PW1 Test Site  
 10 Meter Antenna Distance  
 Equipment Under Test:  
 Phase IV Engineering  
 M/N: G3/XXAM, S/N: G3/021AM

Report B8352 Run 1  
 Date 07/31/98 Page 2  
 Engineer: FJC  
 Tech: S S  
 Requester:

Notes: Radio Frequency Identification Reader, Fresh 12 VDC battery

| Frequency<br>MHz   | Level<br>dBuV | Factor<br>dB | Cable<br>dB | Final<br>dBuV/m | Az Polar\\<br>deg Height | Delta<br>FCC A | Delta<br>CISPR B |
|--------------------|---------------|--------------|-------------|-----------------|--------------------------|----------------|------------------|
| 136.1              | 13.35         | 12.6         | 1.9         | 27.8            | v                        | -15.7          | -2.2             |
| 144.12             | 11.5          | 13           | 1.9         | 26.4            | v                        | -17.1          | -3.6             |
| 155.21             | 7.45          | 13           | 2           | 22.5            | v                        | -21            | -7.5             |
| 160.10             | 14            | 13           | 2.1         | 29.1            | v                        | -14.4          | -.9              |
| 161.71             | 12.45         | 13           | 2.1         | 27.5            | v                        | -16            | -2.5             |
| 163.24             | 8.7           | 13           | 2.1         | 23.8            | v                        | -19.7          | -6.2             |
| 168.12             | 10.45         | 13           | 2.1         | 25.6            | v                        | -17.9          | -4.4             |
| 171.25             | 8.3           | 13           | 2.1         | 23.4            | v                        | -20.1          | -6.6             |
| 178.5              | 7.95          | 13.2         | 2.2         | 23.3            | v                        | -20.2          | -6.7             |
| 179.25             | 8.95          | 13.3         | 2.2         | 24.4            | v                        | -19.1          | -5.6             |
| 186.21             | 7.05          | 13.7         | 2.2         | 23              | v                        | -20.5          | -7               |
| 190.74             | 7.25          | 13.9         | 2.3         | 23.5            | v                        | -20            | -6.5             |
| 193.17             | 10.75         | 14.1         | 2.3         | 27.1            | v                        | -16.4          | -2.9             |
| 194.21             | 10.65         | 14.2         | 2.3         | 27.1            | v                        | -16.4          | -2.9             |
| 195.26             | 11.1          | 14.2         | 2.3         | 27.6            | v                        | -15.9          | -2.4             |
| 198.74             | 5.55          | 14.4         | 2.3         | 22.3            | v                        | -21.2          | -7.7             |
| 90 degrees azimuth |               |              |             |                 |                          |                |                  |
| 59.517             | 16.25         | 11.1         | 1.2         | 28.5            | v                        | -10.6          | -1.5             |
| 66.447             | 20.85         | 10           | 1.3         | 32.1            | v                        | -7             | 2.1              |
| 67.718             | 20.1          | 9.8          | 1.3         | 31.2            | v                        | -7.9           | 1.2              |
| 69.327             | 18.95         | 9.6          | 1.3         | 29.8            | v                        | -9.3           | -.2              |
| 84.93              | 13.1          | 8.5          | 1.4         | 23              | v                        | -16.1          | -7               |
| 88.069             | 16.95         | 8.5          | 1.5         | 26.9            | v                        | -16.6          | -3.1             |
| 104.05             | 19.6          | 10.4         | 1.6         | 31.6            | v                        | -11.9          | 1.6              |
| 111.72             | 18.45         | 11.2         | 1.7         | 31.3            | v                        | -12.2          | 1.3              |
| 112.44             | 18            | 11.2         | 1.7         | 30.9            | v                        | -12.6          | .9               |
| 119.04             | 19            | 11.7         | 1.7         | 32.4            | v                        | -11.1          | 2.4              |
| 120.06             | 22.95         | 11.8         | 1.8         | 36.5            | v                        | -7             | 6.5              |
| 120.43             | 16.4          | 11.8         | 1.8         | 29.9            | v                        | -13.6          | -.1              |
| 121.82             | 15.7          | 11.8         | 1.8         | 29.3            | v                        | -14.2          | -.7              |
| 123.56             | 13.6          | 11.9         | 1.8         | 27.3            | v                        | -16.2          | -2.7             |
| 125.31             | 15.65         | 12           | 1.8         | 29.5            | v                        | -14            | -.5              |
| 128.09             | 22.05         | 12.2         | 1.8         | 36              | v                        | -7.5           | 6                |
| 132.96             | 15.35         | 12.4         | 1.8         | 29.6            | v                        | -13.9          | -.4              |
| 144.12             | 14.2          | 13           | 1.9         | 29.1            | v                        | -14.4          | -.9              |
| 155.21             | 15.55         | 13           | 2           | 30.6            | v                        | -12.9          | .6               |
| 160.10             | 15.05         | 13           | 2.1         | 30.1            | v                        | -13.4          | .1               |
| 163.24             | 14.3          | 13           | 2.1         | 29.4            | v                        | -14.1          | -.6              |

## T U V P R O D U C T S E R V I C E

## RADIATED EMISSIONS

PW1 Test Site  
 10 Meter Antenna Distance  
 Equipment Under Test:  
 Phase IV Engineering  
 M/N: G3/XXAM, SIN: G3/021AM

Report B8352 Run 1  
 Date 07/31/98 Page 3  
 Engineer: FJC  
 Tech: S S  
 Requester:

Notes: Radio Frequency Identification Reader, Fresh 12 VDC battery

| Frequency           | Level | Factor | Cable | Final  | Az Polar\  | Delta | Delta   |
|---------------------|-------|--------|-------|--------|------------|-------|---------|
| MHz                 | dBuV  | dB     | dB    | dBuV/m | deg Height | FCC A | CISPR B |
| 168.12              | 15.1  | 13     | 2.1   | 30.2   | v          | -13.3 | .2 *    |
| 171.25              | 16.6  | 13     | 2.1   | 31.7   | v          | -11.8 | 1.7 *   |
| 178.5               | 10.4  | 13.2   | 2.2   | 25.8   | v          | -17.7 | -4.2    |
| 179.25              | 14.5  | 13.3   | 2.2   | 29.9   | v          | -13.6 | .1      |
| 186.21              | 11.75 | 13.7   | 2.2   | 27.7   | v          | -15.8 | -2.3    |
| 190.74              | 8.05  | 13.9   | 2.3   | 24.3   | v          | -19.2 | -5.7    |
| 180 degrees azimuth |       |        |       |        |            |       |         |
| 66.447              | 23.1  | 10     | 1.3   | 34.4   | v          | -4.7  | 4.4 *   |
| 67.718              | 22.5  | 9.8    | 1.3   | 33.6   | v          | -5.5  | 3.6 *   |
| 69.327              | 21.45 | 9.6    | 1.3   | 32.3   | v          | -6.8  | 2.3 *   |
| 74.085              | 17.15 | 9.1    | 1.3   | 27.6   | v          | -11.5 | -2.4    |
| 84.93               | 15.1  | 8.5    | 1.4   | 25     | v          | -14.1 | -5      |
| 127.06              | 13.95 | 12.1   | 1.8   | 27.9   | v          | -15.6 | -2.1    |
| 128.09              | 23.05 | 12.2   | 1.8   | 37     | v          | -6.5  | 7 *     |
| 132.96              | 18    | 12.4   | 1.8   | 32.2   | v          | -11.3 | 2.2 *   |
| 160.10              | 19    | 13     | 2.1   | 34.1   | v          | -9.4  | 4.1 *   |
| 163.24              | 18.6  | 13     | 2.1   | 33.7   | v          | -9.8  | 3.7 *   |
| 168.12              | 18.35 | 13     | 2.1   | 33.5   | v          | -10   | 3.5 *   |
| 171.25              | 19.35 | 13     | 2.1   | 34.5   | v          | -9    | 4.5 *   |
| 178.5               | 12.4  | 13.2   | 2.2   | 27.8   | v          | -15.7 | -2.2    |
| 179.25              | 18.55 | 13.3   | 2.2   | 34     | v          | -9.5  | 4 *     |
| 186.21              | 17.35 | 13.7   | 2.2   | 33.3   | v          | -10.2 | 3.3 *   |
| 190.74              | 12.85 | 13.9   | 2.3   | 29.1   | v          | -14.4 | .9      |
| 193.17              | 14.5  | 14.1   | 2.3   | 30.9   | v          | -12.6 | .9 *    |
| 194.21              | 13.5  | 14.2   | 2.3   | 30     | v          | -13.5 | 0 *     |
| 195.26              | 12.6  | 14.2   | 2.3   | 29.1   | v          | -14.4 | .9      |
| 198.74              | 7     | 14.4   | 2.3   | 23.8   | v          | -19.7 | -6.2    |
| 124.96              | 20.1  | 12     | 1.8   | 33.9   | v          | -9.6  | 3.9 *   |
| 126.73              | 17.65 | 12.1   | 1.8   | 31.5   | v          | -12   | 1.5 *   |
| 140.96              | 15.55 | 12.8   | 1.9   | 30.3   | v          | -13.2 | .3 *    |
| 148.74              | 19.3  | 13     | 2     | 34.3   | v          | -9.2  | 4.3 *   |
| 156.97              | 17.45 | 13     | 2     | 32.5   | v          | -11   | 2.5 *   |
| 172.30              | 18    | 13     | 2.1   | 33.1   | v          | -10.4 | 3.1 *   |
| 172.98              | 19.5  | 13     | 2.1   | 34.6   | v          | -8.9  | 4.6 *   |
| 184.13              | 20.4  | 13.5   | 2.2   | 36.2   | v          | -7.3  | 6.2 *   |
| 185.16              | 16.55 | 13.6   | 2.2   | 32.4   | v          | -11.1 | 2.4 *   |
| 186.22              | 17.8  | 13.7   | 2.2   | 33.7   | v          | -9.8  | 3.7 *   |
| 186.90              | 17.85 | 13.7   | 2.3   | 33.8   | v          | -9.7  | 3.8 *   |

## T U V P R O D U C T S E R V I C E

## RADIATED EMISSIONS

PW1 Test Site  
 10 Meter Antenna Distance  
 Equipment Under Test:  
 Phase IV Engineering  
 M/N: G3/XXAM, SIN: G3/021AM

Report B8352 Run 1  
 Date 07/31/98 Page 4  
 Engineer: FJC  
 Tech: S S  
 Requester

Notes: Radio Frequency Identification Reader, Fresh 12 VDC battery

| Frequency<br>MHz | Level<br>dBuV | Factor<br>dB | Cable<br>dB | Final<br>dBuV/m | Az Polar\\<br>deg Height | Delta<br>FCC A | Delta<br>CISPR B |
|------------------|---------------|--------------|-------------|-----------------|--------------------------|----------------|------------------|
| 188.29           | 16.8          | 13.8         | 2.3         | 32.9            | v                        | -10.6          | 2.9 *            |

270 degrees azimuth

|        |       |      |     |      |   |       |      |
|--------|-------|------|-----|------|---|-------|------|
| 33.828 | 11.7  | 14.1 | .9  | 26.8 | v | -12.3 | -3.2 |
| 34.918 | 13.75 | 14   | .9  | 28.7 | v | -10.4 | -1.3 |
| 42.388 | 16.95 | 12.9 | 1   | 30.9 | v | -8.2  | .9 * |
| 136.1  | 15.55 | 12.6 | 1.9 | 30   | v | -13.5 | 0 *  |

maximized emissions 30 - 200MHz.

0 degrees azimuth, antenna height 1 meter.

|        |      |      |   |      |   |    |       |
|--------|------|------|---|------|---|----|-------|
| 38.706 | 19.7 | 13.4 | 1 | 34.1 | v | -5 | 4.1 * |
|--------|------|------|---|------|---|----|-------|

163 degrees azimuth, antenna height 1 meter.

|        |      |     |     |      |   |      |       |
|--------|------|-----|-----|------|---|------|-------|
| 66.507 | 23.7 | 10  | 1.3 | 35   | v | -4.1 | 5 *   |
| 67.784 | 23.3 | 9.8 | 1.3 | 34.4 | v | -4.7 | 4.4 * |

Bicon antenna, horizontal polarization.

0 degrees azimuth, initial antenna height 2.5 meters.

No higher emissions were found.

90 degrees azimuth

|        |     |      |     |      |   |       |      |
|--------|-----|------|-----|------|---|-------|------|
| 193.36 | 4.4 | 14.1 | 2.3 | 20.8 | H | -22.7 | -9.2 |
|--------|-----|------|-----|------|---|-------|------|

90 degrees azimuth

Disregard above note.

180 degrees azimuth

## T U V P R O D U C T S E R V I C E

## RADIATED EMISSIONS

PW1 Test Site  
 10 Meter Antenna Distance  
 Equipment Under Test:  
 Phase IV Engineering  
 M/N: G3/XxAM, SIN: G3/021AM

Report B8352 Run 1  
 Date 07/31/98 Page 5  
 Engineer: FJC  
 Tech: S S  
 Requester

Notes: Radio Frequency Identification Reader, Fresh 12 VDC battery

| Frequency<br>MHz | Level<br>dBuV | Factor<br>dB | Cable<br>dB | Final<br>dBuV/m | Az Polar\\<br>deg Height | Delta<br>FCC A | Delta<br>CISPR B |
|------------------|---------------|--------------|-------------|-----------------|--------------------------|----------------|------------------|
|------------------|---------------|--------------|-------------|-----------------|--------------------------|----------------|------------------|

No higher emissions were found.

270 degrees azimuth

|        |      |      |     |      |   |       |      |
|--------|------|------|-----|------|---|-------|------|
| 193.36 | 10.9 | 14.1 | 2.3 | 27.3 | H | -16.2 | -2.7 |
|--------|------|------|-----|------|---|-------|------|

Log periodic antenna, horizontal polarization.

0 degrees azimuth, initial antenna height 2.5 meters.

|        |       |      |     |      |   |       |       |
|--------|-------|------|-----|------|---|-------|-------|
| 200.13 | 8.4   | 11.9 | 2.4 | 22.7 | H | -20.8 | -7.3  |
| 202.22 | 4.8   | 11.9 | 2.4 | 19.1 | H | -24.4 | -10.9 |
| 208.17 | 11.3  | 12.1 | 2.4 | 25.8 | H | -17.7 | -4.2  |
| 216.14 | 8.15  | 13   | 2.5 | 23.6 | H | -22.8 | -6.4  |
| 232.16 | 4.85  | 14.4 | 2.6 | 21.8 | H | -24.6 | -15.2 |
| 237.99 | 5.7   | 14.5 | 2.6 | 22.9 | H | -23.5 | -14.1 |
| 267.73 | 11.7  | 13.9 | 2.9 | 28.4 | H | -18   | -8.6  |
| 297.47 | 10.85 | 13.5 | 3.1 | 27.4 | H | -19   | -9.6  |
| 327.23 | 8.6   | 14.4 | 3.2 | 26.2 | H | -20.2 | -10.8 |
| 356.95 | 10.95 | 14.6 | 3.3 | 28.9 | H | -17.5 | -8.1  |
| 386.71 | 12.45 | 15.1 | 3.4 | 31   | H | -15.4 | -6    |
| 416.46 | 10.9  | 16.2 | 3.6 | 30.7 | H | -15.7 | -6.3  |
| 425.38 | 5.5   | 16.2 | 3.6 | 25.3 | H | -21.1 | -11.7 |
| 446.19 | 6.65  | 15.8 | 3.7 | 26.2 | H | -20.2 | -10.8 |
| 505.69 | 3.95  | 17.3 | 3.9 | 25.1 | H | -21.3 | -11.9 |
| 594.96 | 1.9   | 19.4 | 4.3 | 25.5 | H | -20.9 | -11.5 |

90 degrees azimuth

|        |       |      |     |      |   |       |      |
|--------|-------|------|-----|------|---|-------|------|
| 200.13 | 8.7   | 11.9 | 2.4 | 23   | H | -20.5 | -7   |
| 208.21 | 17.2  | 12.1 | 2.4 | 31.7 | H | -11.8 | 1.7  |
| 297.47 | 12.7  | 13.5 | 3.1 | 29.3 | H | -17.1 | -7.7 |
| 356.95 | 11.05 | 14.6 | 3.3 | 29   | H | -17.4 | -8   |
| 446.19 | 10.55 | 15.8 | 3.7 | 30.1 | H | -16.3 | -6.9 |

180 degrees azimuth

|        |      |      |     |      |   |       |      |
|--------|------|------|-----|------|---|-------|------|
| 297.47 | 14.5 | 13.5 | 3.1 | 31.1 | H | -15.3 | -5.9 |
|--------|------|------|-----|------|---|-------|------|

## T U V P R O D U C T S E R V I C E

## RADIATED EMISSIONS

PW1 Test Site  
 10 Meter Antenna Distance  
 Equipment Under Test:  
 Phase IV Engineering  
 M/N: G3/xxAM, SIN: G3/021AM

Report B8352 Run 1  
 Date 07/31/98 Page 6  
 Engineer: FJC  
 Tech: S S  
 Requester

Notes: Radio Frequency Identification Reader, Fresh 12 VDC battery

| Frequency | Level | Factor | Cable | Final  | Az Polar\deg Height | Delta FCC A | Delta CISPR B |
|-----------|-------|--------|-------|--------|---------------------|-------------|---------------|
| MHz       | dBuV  | dB     | dB    | dBuV/m |                     |             |               |

270 degrees azimuth

|        |       |      |     |      |   |       |       |   |
|--------|-------|------|-----|------|---|-------|-------|---|
| 208.21 | 18.75 | 12.1 | 2.4 | 33.2 | H | -10.3 | 3.2   | * |
| 237.99 | 9.4   | 14.5 | 2.6 | 26.6 | H | -19.8 | -10.4 |   |

maximized emissions 200 - 1000 MHz.

266 degrees azimuth, antenna height 2.6 meters.

|        |      |      |     |      |   |      |     |   |
|--------|------|------|-----|------|---|------|-----|---|
| 208.17 | 19.1 | 12.1 | 2.4 | 33.6 | H | -9.9 | 3.6 | * |
|--------|------|------|-----|------|---|------|-----|---|

Log periodic antenna, vertical polarization.

0 degrees azimuth, initial antenna height 1 meter.

Initial antenna height 1.2 meters.

No higher emissions were found.

90 degrees azimuth

No higher emissions were found.

180 degrees azimuth

No higher emissions were found.

270 degrees azimuth

Remeasured vertical polarization due to antenna not pointing toward EUT.

0 degrees azimuth

|        |      |      |     |      |   |       |      |
|--------|------|------|-----|------|---|-------|------|
| 200.13 | 15.5 | 11.9 | 2.4 | 29.8 | V | -13.7 | .2   |
| 202.22 | 10.9 | 11.9 | 2.4 | 25.2 | V | -18.3 | -4.8 |

## T U V P R O D U C T S E R V I C E

## RADIATED EMISSIONS

PW1 Test Site  
 10 Meter Antenna Distance  
 Equipment Under Test:  
 Phase IV Engineering  
 M/N: G3/xxAM, SIN: G3/021AM

Report B8352 Run 1  
 Date 07/31/98 Page 7  
 Engineer: FJC  
 Tech: S S  
 Requester

Notes: Radio Frequency Identification Reader, Fresh 12 VDC battery

| Frequency<br>MHz                             | Level<br>dBuV | Factor<br>dB | Cable<br>dB | Final<br>dBuV/m | Az Polar\<br>deg Height | Delta<br>FCC A | Delta<br>CISPR B |
|----------------------------------------------|---------------|--------------|-------------|-----------------|-------------------------|----------------|------------------|
| 208.17                                       | 18.25         | 12.1         | 2.4         | 32.7            | v                       | -10.8          | 2.7 *            |
| 216.14                                       | 11.75         | 13           | 2.5         | 27.2            | v                       | -19.2          | -2.8             |
| 232.16                                       | 9.15          | 14.4         | 2.6         | 26.1            | v                       | -20.3          | -10.9            |
| 237.99                                       | 9.7           | 14.5         | 2.6         | 26.9            | v                       | -19.5          | -10.1            |
| 90 degrees azimuth                           |               |              |             |                 |                         |                |                  |
| 208.17                                       | 19.4          | 12.1         | 2.4         | 33.9            | v                       | -9.6           | 3.9 *            |
| 216.14                                       | 13.4          | 13           | 2.5         | 28.9            | v                       | -17.5          | -1.1             |
| 232.16                                       | 9.85          | 14.4         | 2.6         | 26.8            | v                       | -19.6          | -10.2            |
| 237.99                                       | 10.35         | 14.5         | 2.6         | 27.5            | v                       | -18.9          | -9.5             |
| 180 degrees azimuth                          |               |              |             |                 |                         |                |                  |
| 200.13                                       | 15.8          | 11.9         | 2.4         | 30.1            | v                       | -13.4          | .1 *             |
| 208.17                                       | 20.8          | 12.1         | 2.4         | 35.3            | v                       | -8.2           | 5.3 *            |
| 270.7                                        | 18.3          | 13.8         | 2.9         | 25              | v                       | -21.4          | -12              |
| 309.38                                       | 9.4           | 13.9         | 3.1         | 26.4            | v                       | -20            | -10.6            |
| 270 degrees azimuth                          |               |              |             |                 |                         |                |                  |
| No higher emissions were found.              |               |              |             |                 |                         |                |                  |
| Maximized emissions 200 - 1000 MHz.          |               |              |             |                 |                         |                |                  |
| 180 degrees azimuth, antenna height 1 meter. |               |              |             |                 |                         |                |                  |
| 208.17                                       | 21.75         | 12.1         | 2.4         | 36.2            | v                       | -7.3           | 6.2 *            |

**T U V P R O D U C T S E R V I C E**  
**RADIATED EMISSIONS**

PW1 Test Site  
 10 Meter Antenna Distance  
 Equipment Under Test:  
 Phase IV Engineering  
 M/N: G3/xxAM, SIN: G3/021AM

Report B8352 Run 1  
 Date 07/31/98 Page 8  
 Engineer: FJC  
 Tech: S S  
 Requester

Notes: Radio Frequency Identification Reader, Fresh 12 VDC battery

**Measurement Summary**

| Frequency<br>MHz | -----<br>dBuV/m | Final  | UV/M | Azimuth<br>deg | Polar\<br>Height | Delta<br>FCC A | Delta<br>CISPR B |
|------------------|-----------------|--------|------|----------------|------------------|----------------|------------------|
| 33.828           | 26.8            | 21.877 |      | v              |                  | -12.3          | -3.2             |
| 34.918           | 28.7            | 27.227 |      | v              |                  | -10.4          | -1.3             |
| 35.927           | 28              | 25.118 |      | v              |                  | -11.1          | -2               |
| 38.706           | 34.1            | 50.699 |      | v              |                  | -5             | 4.1 *            |
| 39.557           | 28.2            | 25.703 |      | v              |                  | -10.9          | -1.8             |
| 42.388           | 30.9            | 35.075 |      | v              |                  | -8.2           | .9 *             |
| 59.517           | 28.5            | 26.607 |      | v              |                  | -10.6          | -1.5             |
| 66.507           | 35              | 56.234 |      | v              |                  | -4.1           | 5 *              |
| 67.784           | 34.4            | 52.480 |      | v              |                  | -4.7           | 4.4 *            |
| 69.327           | 32.3            | 41.209 |      | v              |                  | -6.8           | 2.3 *            |
| 74.085           | 27.6            | 23.988 |      | v              |                  | -11.5          | -2.4             |
| 84.93            | 25              | 17.782 |      | v              |                  | -14.1          | -5               |
| 85.974           | 24.2            | 16.218 |      | v              |                  | -14.9          | -5.8             |
| 88.069           | 26.9            | 22.130 |      | v              |                  | -16.6          | -3.1             |
| 99.195           | 23.3            | 14.621 |      | v              |                  | -20.2          | -6.7             |
| 103.03           | 23.5            | 14.962 |      | v              |                  | -20            | -6.5             |
| 104.05           | 31.6            | 38.018 |      | v              |                  | -11.9          | 1.6 *            |
| 105.43           | 25.9            | 19.724 |      | v              |                  | -17.6          | -4.1             |
| 106.15           | 27.9            | 24.831 |      | v              |                  | -15.6          | -2.1             |
| 109.26           | 32              | 39.810 |      | v              |                  | -11.5          | 2 *              |
| 110.18           | 30              | 31.622 |      | v              |                  | -13.5          | 0 *              |
| 111.72           | 31.3            | 36.728 |      | v              |                  | -12.2          | 1.3 *            |
| 112.44           | 30.9            | 35.075 |      | v              |                  | -12.6          | .9 *             |
| 115.24           | 30.4            | 33.113 |      | v              |                  | -13.1          | .4 *             |
| 117.99           | 30.7            | 34.276 |      | v              |                  | -12.8          | .7 *             |
| 119.04           | 32.4            | 41.686 |      | v              |                  | -11.1          | 2.4 *            |
| 120.06           | 36.5            | 66.834 |      | v              |                  | -7             | 6.5 *            |
| 120.43           | 29.9            | 31.260 |      | v              |                  | -13.6          | -.1              |
| 121.82           | 29.3            | 29.174 |      | v              |                  | -14.2          | -.7              |
| 123.56           | 27.3            | 23.173 |      | v              |                  | -16.2          | -2.7             |
| 124.96           | 33.9            | 49.545 |      | v              |                  | -9.6           | 3.9 *            |
| 125.31           | 29.5            | 29.853 |      | v              |                  | -14            | -.5              |
| 126.73           | 31.5            | 37.583 |      | v              |                  | -12            | 1.5              |
| 127.06           | 27.9            | 24.831 |      | v              |                  | -15.6          | -2.1             |
| 128.09           | 37              | 70.794 |      | v              |                  | -6.5           | 7 *              |
| 132.96           | 32.2            | 40.738 |      | v              |                  | -11.3          | 2.2 *            |
| 136.1            | 30              | 31.622 |      | v              |                  | -13.5          | 0 *              |
| 140.96           | 30.3            | 32.734 |      | v              |                  | -13.2          | .3 *             |

## T U V P R O D U C T S E R V I C E

## RADIATED EMISSIONS

PW1 Test Site

10 Meter Antenna Distance

Equipment Under Test:

Phase IV Engineering

M/N: G3/xxAM, SIN: G3/021AM

Report B8352 Run 1  
 Date 07/31/98 Page 9  
 Engineer : FJC  
 Tech: S S  
 Requester

Notes: Radio Frequency Identification Reader, Fresh 12 VDC battery

## Measurement Summary (Cont'd)

| Frequency<br>MHz | -----<br>dBuV/m | Final<br>UV/M | Azimuth<br>deg | Polar\\<br>Height | Delta<br>FCC A | Delta<br>CISPR B |
|------------------|-----------------|---------------|----------------|-------------------|----------------|------------------|
| 144.12           | 29.1            | 28.510        |                | v                 | -14.4          | -.9              |
| 148.74           | 34.3            | 51.88         |                | v                 | -9.2           | 4.3 *            |
| 155.21           | 30.6            | 33.884        |                | v                 | -12.9          | .6 *             |
| 156.97           | 32.5            | 42.169        |                | v                 | -11            | 2.5 *            |
| 160.10           | 34.1            | 50.699        |                | v                 | -9.4           | 4.1 *            |
| 161.71           | 27.5            | 23.713        |                | v                 | -16            | -2.5             |
| 163.24           | 33.7            | 48.417        |                | v                 | -9.8           | 3.7 *            |
| 168.12           | 33.5            | 47.315        |                | v                 | -10            | 3.5 *            |
| 171.25           | 34.5            | 53.088        |                | v                 | -9             | 4.5 *            |
| 172.30           | 33.1            | 45.185        |                | v                 | -10.4          | 3.1 *            |
| 172.98           | 34.6            | 53.703        |                | v                 | -8.9           | 4.6 *            |
| 178.5            | 27.8            | 24.547        |                | v                 | -15.7          | -2.2             |
| 179.25           | 34              | 50.118        |                | v                 | -9.5           | 4 *              |
| 184.13           | 36.2            | 64.565        |                | v                 | -7.3           | 6.2 *            |
| 185.16           | 32.4            | 41.686        |                | v                 | -11.1          | 2.4 *            |
| 186.22           | 33.7            | 48.417        |                | v                 | -9.8           | 3.7 *            |
| 186.90           | 33.8            | 48.977        |                | v                 | -9.7           | 3.8 *            |
| 188.29           | 32.9            | 44.157        |                | v                 | -10.6          | 2.9 *            |
| 190.74           | 29.1            | 28.510        |                | v                 | -14.4          | -.9              |
| 193.17           | 30.9            | 35.075        |                | v                 | -12.6          | .9 *             |
| 193.36           | 27.3            | 23.173        |                | v                 | -16.2          | -2.7             |
| 194.21           | 30              | 31.622        |                | v                 | -13.5          | 0 *              |
| 195.26           | 29.1            | 28.510        |                | v                 | -14.4          | -.9              |
| 198.74           | 23.8            | 15.488        |                | v                 | -19.7          | -6.2             |
| 200.13           | 30.1            | 31.988        |                | v                 | -13.4          | .1 *             |
| 202.22           | 25.2            | 18.197        |                | v                 | -18.3          | -4.8             |
| 208.17           | 36.2            | 64.565        |                | v                 | -7.3           | 6.2 *            |
| 216.14           | 28.9            | 27.861        |                | v                 | -17.5          | -1.1             |
| 232.16           | 26.8            | 21.877        |                | v                 | -19.6          | -10.2            |
| 237.99           | 27.5            | 23.713        |                | v                 | -18.9          | -9.5             |
| 267.73           | 28.4            | 26.302        |                | v                 | -18            | -8.6             |
| 270.71           | 25              | 17.782        |                | v                 | -21.4          | -12              |
| 297.47           | 31.1            | 35.892        |                | v                 | -15.3          | -5.9             |
| 309.38           | 26.4            | 20.892        |                | v                 | -20            | -10.6            |
| 327.23           | 26.2            | 20.417        |                | v                 | -20.2          | -10.8            |
| 356.95           | 29              | 28.183        |                | v                 | -17.4          | -8               |
| 386.71           | 31              | 35.481        |                | v                 | -15.4          | -6               |
| 416.46           | 30.7            | 34.276        |                | v                 | -15.7          | -6.3             |

## T U V P R O D U C T S E R V I C E

## RADIATED EMISSIONS

PW1 Test Site  
 10 Meter Antenna Distance  
 Equipment Under Test:  
 Phase IV Engineering  
 M/N: G3/xxAM, SIN: G3/021AM

Report B8352 Run 1  
 Date 07/31/98 Page 10  
 Engineer : FJC  
 Tech: S S  
 Requester

Notes: Radio Frequency Identification Reader, Fresh 12 VDC battery

## Measurement Summary (Cont'd)

| Frequency<br>MHz       | Final<br>dBuV/m | Azimuth<br>UV/M  | Polar\<br>deg | Delta<br>Height | Delta<br>FCC A | CISPR B |
|------------------------|-----------------|------------------|---------------|-----------------|----------------|---------|
| 425.38                 | 25.3            | 18.407           |               | H               | -21.1          | -11.7   |
| 446.19                 | 30.1            | 31.988           |               | H               | -16.3          | -6.9    |
| 505.69                 | 25.1            | 17.988           |               | H               | -21.3          | -11.9   |
| 594.96                 | 25.5            | 18.836           |               | H               | -20.9          | -11.5   |
| minimum Passing Margin |                 | for FCC A is 4.1 |               | dB at           | 66.507 MHz     |         |
| Maximum Failure Margin |                 | for CISPR B is 7 |               | dB at           | 128.09 MHz     |         |

'File B8352 Run 1

## **Appendix C**

Test Plan

and

Constructional Data Form

# Test Plan

## for Electromagnetic Compatibility Testing



**General Information** (if you need assistance completing this form contact your TÜV Product Service representative.)

Company: Phase IV Engineering Quote Number: 1980728bd01  
Contact: Joe Letkomiller Phone: (business hrs) 303 443-6611  
E-mail Address: [email@phaseivengr.com](mailto:email@phaseivengr.com) Phone: (after hrs) 303 443-6611

## Product Description

Radio Frequency Identification Reader

## Test Objective

|                                                                   |                                                                                               |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <input type="checkbox"/> EMC Directive 89/336/EEC (EMC)           | <input type="checkbox"/> Vehicle Directive 72/245/EEC (EMC)                                   |
| <input type="checkbox"/> Machinery Directive 89/392/EEC (EMC)     | <input type="checkbox"/> FDA Reviewers Guidance for Premarket                                 |
| <input type="checkbox"/> Medical Device Directive 93/42/EEC (EMC) | Notification Submissions (EMC)                                                                |
| <b>x</b> FCC <b>x</b> Part <b>15</b> (list)                       | <b>x</b> Other: Supply report on emissions vs. U.K. & EEC regulations for this type of device |

## Attendance

Test will be:  Attended by the customer  Unattended by the customer

## Failure

If a failure occurs, TUV Product Service should:

- Call contact listed above, if not available then stop testing.
- Continue testing to complete test series.
- Continue testing to define corrective action.
- Stop testing.

## Authorization

Customer authorization to perform tests according to this test plan.

July 30, 1998  
Date

Joe Letkomiller and Rich Pollack  
Test Plan Prepared By (please print)

July 30, 1998  
Date

Reviewed by TÜV Product Service Associate

---

Date

# Test Plan

## for Electromagnetic Compatibility Testing



### Equipment Under Test Transportation

Transportation between sites by customer.  
 Other (consult your TÜV Product Service representative)

### Dimensions and Weight

Length 27 Inches Width 8.5 Inches  
Height 3.5 Inches Weight 4 pounds

### Facilities

#### Power Requirements

230 VAC 50 Hz Single Phase \_\_\_\_\_ Amps  
 400 VAC 50 Hz Three Phase \_\_\_\_\_ Amps per phase  
 120 VAC 60 Hz Single Phase \_\_\_\_\_ Amps  
 208 VAC 60 Hz Three Phase \_\_\_\_\_ Amps per phase  
 VDC \_\_\_\_\_ Amps  
 Battery 12 VDC Expected life 12 hours  
 Other \_\_\_\_\_

*Regulations require testing to be performed at typical power ratings in the countries of intended use. (i.e., European power is typically 230 VAC 50 Hz or 400 VAC 50 Hz, single and three phase, respectively)*

#### Other

Air \_\_\_\_\_ cfm \_\_\_\_\_ psi       Water \_\_\_\_\_ gpm \_\_\_\_\_ psi  
 Other \_\_\_\_\_

### Test Plan Attachments

**Constructional Data Form (CDF)**  
Applicable (attached)

\* The CDF is required for all test plans.

#### **Immunity Test Plan Details**

Applicable (attached)       N/A

#### **Emissions Test Plan Details**

Applicable (attached)       N/A

#### **On Site Test Plan Details**

Applicable (attached)       N/A

# Constructional Data Form for Electromagnetic Compatibility Testing



A completed form helps ensure that product testing will go smoothly. Add attachments as necessary for additional documentation. For additional help, please contact your TÜV Product Service Representative.

**Applicant** -- Enter company information pertaining to the location where the product is manufactured and for the manufacturer's contact soliciting the testing.

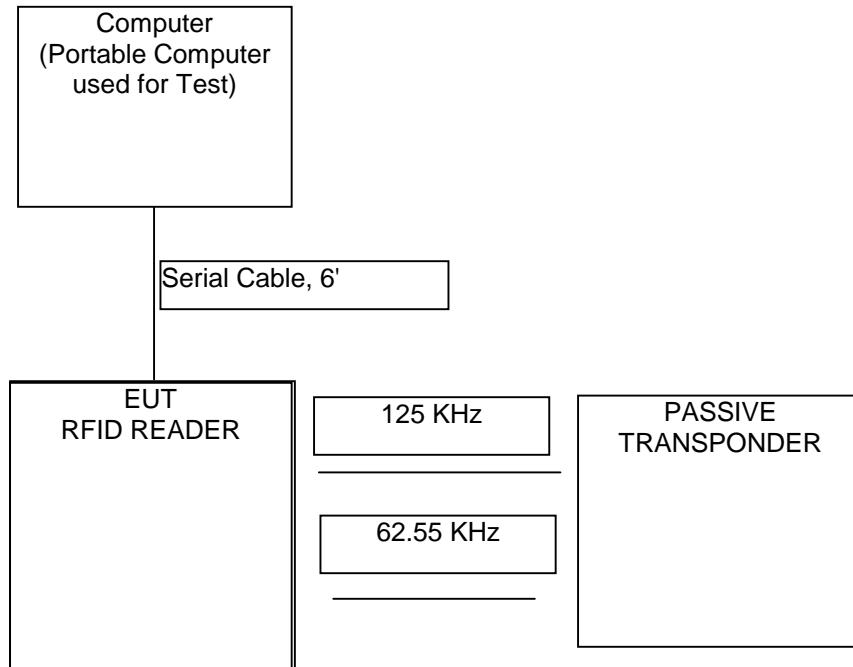
Company: Phase IV Engineering  
Address: 2820 Wilderness Pl., Suite C, Boulder, CO 80301  
  
Phone: 303 443-6611 Fax: 303 443-8379  
Contact: Joe Letkomiller Position: Senior Electronics Technician

**General Equipment Description** -- Indicate which attachments you are providing with this document. It is recommended that you provide those listed.

Type of Equipment: RFID Reader Model No.: G3/xxAM  
Serial No.: G3/021AM, G3/011AM FCC ID No.:   
General description: Radio Frequency Reader for Interrogating and Reading Passive Transponders that contain an ID number and that transmit pressure and temperature data.  
The Reader emits a 125 kilohertz wave of about 250 milliseconds whenever manually actuated.  
The device is intended to be used in truck fleet terminals for reading tires on the lot or in the preventative maintenance area. The reader stores data in RAM which is later transferred to the truck-fleet computer. The reader turns on when actuated and off after 2 minutes of non-use.  
Product Variant/Options: The unit with serial number G3/011AM has internal conductive coating intended to reduce radio emissions at higher frequencies.

Attachments: (only required for certification)

External Photographs  Product Literature  High Level Bill of Materials


Date and sign each page of the CDF. Original signatures must be present on each page.

**Date:** \_\_\_\_\_ **Signature of Applicant:** \_\_\_\_\_

# Constructional Data Form for Electromagnetic Compatibility Testing



**System Configuration Block Diagram** -- Provide a line drawing identifying the EUT, simulators, support equipment, I/O cables, power cables, and any other pertinent components to be used during testing. Use a dashed line to separate the equipment in the testing field versus equipment outside testing field.



Date and sign each page of the CDF. Original signatures must be present on each page.

Date:

Signature of Applicant:

# Constructional Data Form for Electromagnetic Compatibility Testing



**Installation and Environmental Conditions (describe)** -- Describe the intended installation. Include details such as power connection and system grounding approaches. Describe the intended operating environment, include details such as humidity, cooling, heating and hazardous environments. Attaching a copy of an Installation manual is recommended for proper documentation of your system. Please indicate.

This is a portable, battery powered device designed for indoor and outdoor use. The device will be used to read transponders installed in commercial truck tires at fleet terminals, either outdoors on the lot or in the preventative maintenance bays. There are some solvents and cleaners present in the preventative maintenance areas, but it is not a hazardous use area.

The battery used is a commercially available Dewalt 12 volt battery pack. The battery pack clips into the reader and is removed for recharging. The recharger is also a commercially available Dewalt product.

The reader can store the transponder information in RAM. Periodically the contents of the RAM can be transferred to a computer by attaching the reader to a computer and initiating a data transfer procedure from the computer.

The reader is specified to operate over a temperature range of -20 C. to +50 C. and over a humidity range of 0 to 95% RH.

Installation manual/instructions (attached, only required for certification)

**Power Requirements** -- Indicate your system power requirements for the equipment to be tested.

Rated Voltage 12 Volts      Rated Input Power 4.2 Watts

**Protection Class** -- Indicate your product's protection class. Contact your TÜV Product Service representative and is only required for certification.

Type: \_\_\_\_\_ Class: \_\_\_\_\_

Date and sign each page of the CDF. Original signatures must be present on each page.

|              |                                |
|--------------|--------------------------------|
| <b>Date:</b> | <b>Signature of Applicant:</b> |
|--------------|--------------------------------|

# Constructional Data Form

## for Electromagnetic Compatibility Testing



### I/O Ports and Cables

Indicate all interface cables which can be attached to the equipment even if they are not sold as part of your system. Describe the port (e.g., Parallel, Serial, SCSI), list its type (e.g., AC, DC, Signal, Control) and number of ports/cables of type. Indicate if the I/O port is to be exercised during testing. List the type of transmission and if the cable is an EUT assembly-to-assembly interconnection cable (PC to printer, to modem). Indicate whether the cable is shielded or not, type of shield (e.g. Braid, Foil) and how terminated (e.g. 360 degree to conductive shell, pigtail) at both ends of the cable. If a cable can have a typical length of  $\geq 3.0$  meters, then it is required to test with a cable of at least 3.0 meters.

### I/O Ports and Cables

|                                  |                                                                   |                                             |  |
|----------------------------------|-------------------------------------------------------------------|---------------------------------------------|--|
| Description:                     | The reader contains one serial port with a DB-9 female connector. |                                             |  |
| Type of Port:                    | RS-232                                                            | # of ports/cables of type 1                 |  |
| Exercised during testing?        | <input checked="" type="checkbox"/> Yes                           | <input type="checkbox"/> No                 |  |
| Assembly ↔ Assembly Interconnect | <input checked="" type="checkbox"/> Yes                           | <input type="checkbox"/> No                 |  |
| Cable shielded:                  | <input checked="" type="checkbox"/> Yes                           | <input type="checkbox"/> No                 |  |
| Shield Type (describe)           | Foil Braid                                                        |                                             |  |
| Termination: (describe)          |                                                                   |                                             |  |
| Transmission Type:               | <input type="checkbox"/> Analog                                   | <input checked="" type="checkbox"/> Digital |  |
| Length of cable: 6'              | Maximum: 6'                                                       | Tested: 6'                                  |  |

### I/O Ports and Cables

|                                  |                                 |                                  |  |
|----------------------------------|---------------------------------|----------------------------------|--|
| Description:                     | N/A                             |                                  |  |
| Type of Port:                    | # of ports/cables of type       |                                  |  |
| Exercised during testing?        | <input type="checkbox"/> Yes    | <input type="checkbox"/> No      |  |
| Assembly ↔ Assembly Interconnect | <input type="checkbox"/> Yes    | <input type="checkbox"/> No      |  |
| Cable shielded:                  | <input type="checkbox"/> Yes    | <input type="checkbox"/> No      |  |
| Shield Type (describe)           |                                 |                                  |  |
| Termination: (describe)          |                                 |                                  |  |
| Transmission Type:               | <input type="checkbox"/> Analog | <input type="checkbox"/> Digital |  |
| Length of cable:                 | Maximum:                        | Tested:                          |  |

### I/O Ports and Cables

|                                  |                                 |                                  |  |
|----------------------------------|---------------------------------|----------------------------------|--|
| Description:                     | N/A                             |                                  |  |
| Type of Port:                    | # of ports/cables of type       |                                  |  |
| Exercised during testing?        | <input type="checkbox"/> Yes    | <input type="checkbox"/> No      |  |
| Assembly ↔ Assembly Interconnect | <input type="checkbox"/> Yes    | <input type="checkbox"/> No      |  |
| Cable shielded:                  | <input type="checkbox"/> Yes    | <input type="checkbox"/> No      |  |
| Shield Type (describe)           |                                 |                                  |  |
| Termination: (describe)          |                                 |                                  |  |
| Transmission Type:               | <input type="checkbox"/> Analog | <input type="checkbox"/> Digital |  |
| Length of cable:                 | Maximum:                        | Tested:                          |  |

Date and sign each page of the CDF. Original signatures must be present on each page.

Date:

Signature of Applicant:

# Constructional Data Form for Electromagnetic Compatibility Testing



**EUT configurations --** Provide a technical description of all possible EUT configurations. Specify if more than one configuration is to be tested.

- 1) Plastic Housing not coated with RFI shielding paint.
- 2) Plastic Housing coated on the inside with RFI shielding paint.

**EUT Software and Operation Modes to be Tested --** list the operating modes to be used during test. It is recommended the equipment be tested while operating in a typical operation mode. Consult with your TÜV Product Service Representative when typical operating modes are not practical. FCC testing of personal computers and/or peripherals requires that a simple program generate a complete line of upper case H's. This pattern must be sent to the parallel port device, serial port device, and must be write/read/verified to each storage device. Monitors must display the H pattern, typically in white letters on a black background. Provide a general description of all software, firmware, and PLD algorithms used in the equipment. List all code modules as described above, with the revision level used during testing.

General Description:  
(describe) The reader has three separate modes of operation:

- 1) an on-mode where the microprocessor is on, data is displayed and the device is ready to interrogate when actuated;
- 2) the read push button is actuated at which time the reader emits a 125 kHz sine wave for approximately 250 millisecond;
- 3) the reader is attached to a computer and is transferring data.

Software Revision Level:  
(list and describe) D0.91  
Normal Operating Software that controls interrogation pulse, receives, decodes, stores and displays data from the transponder.  
This software also supports data entry via the attached membrane keypad and data transfer to attached computer.

Operating modes to be tested:  
(list and describe) 1) On mode while not interrogating a transponder  
2) Interrogation mode with a transponder placed 1.5" from the reader antenna.  
3) Data upload mode attached to a laptop computer with a 6' serial cable.

Operation manual/instructions (attached)

Date and sign each page of the CDF. Original signatures must be present on each page.

Date:

Signature of Applicant:

# Constructional Data Form for Electromagnetic Compatibility Testing



**System, Subsystem, Major Subassemblies or Internal Peripherals** -- List and describe all system, subsystem, major subassemblies and all internal peripherals. This should include such things as an external monitor, parallel interface peripheral, serial interface peripheral, internal disk drives or internal circuit boards. It is recommended that circuit diagrams, assembly and subassembly drawings be attached. Please indicate.

| Description               | Model #        | Serial # | FCC ID # |
|---------------------------|----------------|----------|----------|
| Motherboard               | Gen. 3, Rev. B | 2EO3000  |          |
| Receiver Circuit Board    | Gen. 3, Rev. B |          |          |
| Antenna Assembly, Aircore | O/U Mobius     |          |          |
| Display                   |                |          |          |
| Enclosure                 | Gen. 3, ABS    |          |          |

Technical Drawings attached

**Interfacing Equipment and/or Simulators (which are not part of the EUT)** -- List and Describe all equipment or peripherals that will be connected to the EUT. For FCC testing a minimum configuration is required. If you have questions about this minimum configuration contact your TÜV Product Service representative.

| Description                | Model #   | Serial #     | FCC ID #    |
|----------------------------|-----------|--------------|-------------|
| Laptop Computer, 120 MHz   | Green 753 | GND963400807 | DK4GREEN753 |
| Serial Interface Cable, 6' |           |              |             |
|                            |           |              |             |
|                            |           |              |             |
|                            |           |              |             |
|                            |           |              |             |
|                            |           |              |             |

Date and sign each page of the CDF. Original signatures must be present on each page.

|       |                         |
|-------|-------------------------|
| Date: | Signature of Applicant: |
|-------|-------------------------|

# Constructional Data Form for Electromagnetic Compatibility Testing



**EMC System Details --** List all frequencies and sub-harmonics which are 10kHz or above for such things as oscillators, horizontal line rate of monitors, and clock rates of incorporated OEM assemblies. List all power supplies. Indicate switching frequencies. List power line filters and indicate the manufacturer, model and location on EUT. Indicate all components used for high frequency noise reduction. (e.g., ceramic capacitor, 0.01µF, 1 ea. at C12 - C20).

## Oscillator Frequencies

| Frequency  | Sub-harmonics             | EUT Location                     | Description of Use      |
|------------|---------------------------|----------------------------------|-------------------------|
| 16 MHz     |                           | Motherboard, Y2                  | Microprocessor Clock    |
| 166 KHz    |                           | Motherboard, U2                  | DC-DC Converter         |
| 125 KHz    | 62.5 KHz from Transponder | Motherboard and Antenna Assembly | Transponder Interrogate |
| 125 KHz    | 62.5 KHz                  | Receiver Board                   | Lock-in Amplifier, PLL  |
| 32.768 KHz |                           | Motherboard, U4                  | Real-time Clock         |

## Power Supply

| Frequency | Manufacturer | Model # | Serial # | Type (list frequency) |
|-----------|--------------|---------|----------|-----------------------|
| 166 KHz   | Maxim        | MAX744  |          | DC-DC Converter       |
|           |              |         |          |                       |
|           |              |         |          |                       |

## Power Line Filters

| Manufacturer | Model # | Qty | Location on EUT |
|--------------|---------|-----|-----------------|
|              |         |     |                 |
|              |         |     |                 |
|              |         |     |                 |

## Critical EMI Components (Capacitors, ferrites, etc.)

| Description | Manufacturer | Part # or Value | Qty | Location on EUT |
|-------------|--------------|-----------------|-----|-----------------|
|             |              |                 |     |                 |
|             |              |                 |     |                 |
|             |              |                 |     |                 |
|             |              |                 |     |                 |

Date and sign each page of the CDF. Original signatures must be present on each page.

Date:

Signature of Applicant:

# Constructional Data Form for Electromagnetic Compatibility Testing



**Other EMI Critical Construction Detail --** Indicate any other measures taken to reduce high frequency noise, (e.g., grounding the circuit board on the right rear corner with 0.25" braid, 3 inches long to the chassis).

G3/011AM: Plastic Housing coated on the inside with RFI shielding paint. The case paint is grounded to a .125" braid 3" long to the negative battery input on the motherboard.

**Description of Enclosure --** Describe the principle materials of the enclosure (e.g., plastic, plastic with shielding material, metal, metal with specific shielding contact points, metal with paint on all surfaces).

The enclosure is an ABS vacuum formed case that parts in the horizontal centerline. One version of the enclosure for testing is shielded on the inside with a RFI shielding paint. The unshielded version will be the type certified if it meets the FCC emissions requirements.

Date and sign each page of the CDF. Original signatures must be present on each page.

**Date:**

**Signature of Applicant:**

# FCC Emissions Test Plan Details (ATTACHMENT)



## Standards to be Applied

|                                             |                                  |                                             |
|---------------------------------------------|----------------------------------|---------------------------------------------|
| <input type="checkbox"/> CISPR 22           | <input type="checkbox"/> Class A | <input checked="" type="checkbox"/> Class B |
| <input type="checkbox"/> FCC Part <u>15</u> | (list)                           | Class <u>A</u> (list)                       |
| <input type="checkbox"/> Other              | (list)                           |                                             |

| Description                    | Basic Document | Requirement                                     |
|--------------------------------|----------------|-------------------------------------------------|
| Radiated & Conducted Emissions | ANSI 63.4      | Reference Basic Document or Applicable Standard |

## Engineering Justifications / Test Deviations

## **Appendix D**

### **Measurement of Protocol**

# MEASUREMENT PROTOCOL FOR FCC

## GENERAL INFORMATION

### Measurement Uncertainty

The test system for conducted emissions is defined as the LISN, tuned receiver or spectrum analyzer, and coaxial cable. The test system for radiated emissions is defined as the antenna, the pre-amplifier, the spectrum analyzer and the coaxial cable. These test systems have a measurement uncertainty of  $\pm 4.5$  dB. The equipment comprising the test systems are calibrated on an annual basis.

### Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into its characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

## CONDUCTED EMISSIONS

The final level, expressed in dB $\mu$ V, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the FCC limit.

To convert between dB $\mu$ V and  $\mu$ V, the following conversions apply:

$$\text{dB}\mu\text{V} = 20(\log \mu\text{V})$$

$$\mu\text{V} = \text{Inverse log}(\text{dB}\mu\text{V}/20)$$

## RADIATED EMISSIONS

The final level, expressed in dB $\mu$ V/m, is arrived at by taking the reading from the spectrum analyzer (Level dB $\mu$ V) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has the FCC limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets in Attachment B. The amplifier gain is automatically accounted for by using an analyzer offset.

Example:

| Frequency<br>(MHz) | Level<br>(dB $\mu$ V) | + | Factor &<br>Cable (dB) | = | Final<br>(dB $\mu$ V/m) | - | FCC B<br>(dB $\mu$ V/m) | = | Delta<br>FCC B<br>(dB) |
|--------------------|-----------------------|---|------------------------|---|-------------------------|---|-------------------------|---|------------------------|
| 32.21              | 13.9                  | + | 16.3                   | = | 30.2                    | - | 40.0                    | = | -9.8                   |

## DETAILS OF TEST PROCEDURES

### General Standard Information

The test methods used comply with **ANSI C63.4-1992 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."**

### Conducted Emissions

Conducted emissions on the 60 Hz power interface of the EUT are measured in the frequency range of 450 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with  $50\ \Omega/50\ \mu\text{H}$  (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor **and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room.** In some cases, a pre-scan using a spectrum analyzer is initially performed on the units comprising the system under test to locate the highest emissions. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver or spectrum analyzer with quasi-peak and average detection and recorded on the data sheets.

### Radiated Emissions

Radiated emissions from the EUT are measured in the frequency range of 30 to **1000** MHz using a spectrum analyzer and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection and measurements above 1000 MHz are made with a 1 MHz/6 dB bandwidth and peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimeters above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna is positioned 3 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are rotated 360 degrees. Intentional radiators are rotated through three orthogonal axes to determine the attitude that maximizes the emissions.