

September 28, 2001

***GPE International Ltd.
6/F., Gold Peak Building,
30-34 Kwai Wing Road,
Kwai Chung, New Territories,
Hong Kong.***

Dear Mr. Ho Siu Chung:

Enclosed you will find your file copy of a Part 15 report (FCC ID: N48PSW3000).

***For your reference, TCB will normally take another 15-20 days for reviewing the report.
Approval will then be granted when no query is sorted.***

Please contact me if you have any questions regarding the enclosed material.

Sincerely,

***Alfred Lo
Senior Technical Supervisor***

Enclosure

FCC ID: N48PSW3000

GPE International Ltd.

Application
For
Certification
(FCC ID: N48PSW3000)

Transmitter

WO# 0110867

AL/sc

September 28, 2001

FCC ID: N48PSW3000

- The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have been obtained.
- This report shall not be reproduced except in full without prior authorization from Intertek Testing Services Hong Kong Limited
- For Terms And Conditions of the services, it can be provided upon request.

LIST OF EXHIBITS

INTRODUCTION

<i>EXHIBIT 1:</i>	General Description
<i>EXHIBIT 2:</i>	System Test Configuration
<i>EXHIBIT 3:</i>	Emission Results
<i>EXHIBIT 4:</i>	Equipment Photographs
<i>EXHIBIT 5:</i>	Product Labelling
<i>EXHIBIT 6:</i>	Technical Specifications
<i>EXHIBIT 7:</i>	Instruction Manual
<i>EXHIBIT 8:</i>	Miscellaneous Information

INTERTEK TESTING SERVICES

MEASUREMENT/TECHNICAL REPORT

GPE International Ltd. - MODEL: KEF PSW3000
FCC ID: N48PSW3000

This report concerns (check one): Original Grant Class II Change

Equipment Type: Low Power Transmitter (example: computer, printer, modem, etc.)

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes No

If yes, defer until: _____
date

Company Name agrees to notify the Commission by: _____
date

of the intended date of announcement of the product so that the grant can be issued on that date.

Transition Rules Request per 15.37? Yes No

If no, assumed Part 15, Subpart C for intentional radiator - the new 47 CFR [10-1-00 Edition] provision.

Report prepared by:

Alfred Lo
Intertek Testing Services
Hong Kong Ltd.
2/F., Garment Centre,
576, Castle Peak Road,
Kowloon, Hong Kong
Phone: 852-2173-8542
Fax: 852-2371-0914

Table of Contents

1.0 <u>General Description</u>	3
1.1 Product Description.....	3
1.2 Related Submittal(s) Grants.....	3
1.3 Test Methodology.....	4
1.4 Test Facility	4
2.0 <u>System Test Configuration</u>	6
2.1 Justification.....	6
2.2 EUT Exercising Software	6
2.3 Special Accessories	6
2.4 Equipment Modification.....	7
2.5 Support Equipment List and Description	7
3.0 <u>Emission Results</u>	9
3.1 Field Strength Calculation	10
3.1 Field Strength Calculation (cont'd)	11
3.2 Radiated Emission Configuration Photograph	12
3.3 Radiated Emission Data	13
4.0 <u>Equipment Photographs</u>	16
5.0 <u>Product Labelling</u>	18
6.0 <u>Technical Specifications</u>	20
7.0 <u>Instruction Manual</u>	22
8.0 <u>Miscellaneous Information</u>	24
8.1 Measured Bandwidth.....	25
8.2 Discussion of Pulse Desensitization	26
8.3 Calculation of Average Factor	27
8.4 Emissions Test Procedures	28
8.4 Emissions Test Procedures (cont'd).....	29

INTERTEK TESTING SERVICES

List of attached file

Exhibit type	File Description	filename
Cover Letter	Letter of Agency	letter.pdf
Test Report	Test Report	report.doc
Operation Description	Technical Description	descri.pdf
Test Setup Photo	Radiated Emission	radiated1.jpg, radiated2.jpg
Test Report	Bandwidth Plot	bw.pdf
External Photo	External Photo	ophoto1.jpg, ophoto2.jpg
Internal Photo	Internal Photo	iphoto1.jpg, iphoto2.jpg, iphoto3.jpg and iphoto4.jpg
Block Diagram	Block Diagram	block.pdf
Miscellaneous information	Average factor calculation information	av.pdf
Circuit diagram	Circuit diagram	circuit.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf

EXHIBIT 1

GENERAL DESCRIPTION

INTERTEK TESTING SERVICES

1.0 **General Description**

1.1 Product Description

The Equipment Under Test (EUT) is a remote control of transmitter operating at 315MHz. The EUT is powered by DC3V "AAA" battery. There are 7 rubber control keys are use to control up and down of volume, up and down of frequency, 0° phase 180° phase and on or stand by mode. During manually operated, it transmits signal to the receiver (the subwoofer) will be operate correspondingly as user intend. It cease transmission in less than 1 second after being released the key. In addition, there is a switch was found inside the sample, it was preset to operate at 315 MHz by manufacturer and cannot be accessed by user.

For electronic filing, the brief circuit description is saved with filename: descri.pdf

1.2 Related Submittal(s) Grants

This is a single application for certification of a transmitter.

INTERTEK TESTING SERVICES

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated Emission measurement was performed in Open Area Test Sites and Conducted Emission was performed in shield room. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been placed on file with the FCC.

EXHIBIT 2

SYSTEM TEST CONFIGURATION

2.0 **System Test Configuration**

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (1992).

The EUT was powered from two AAA size battery.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. The step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes. The worst case bit sequence was applied during test.

For simplicity of testing, the unit was operated to transmit continuously.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the rubber key is push down, it transmits the typical signal periodically.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

INTERTEK TESTING SERVICES

2.4 Equipment Modification

Any modifications installed previous to testing by GPE International Ltd. will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services.

2.5 Support Equipment List and Description

N/A

All the items listed under section 2.0 of this report are:

Confirmed by:

*Alfred Lo
Senior Technical Supervisor - Home Entertainment Electronics
Intertek Testing Services Hong Kong Ltd.
Agent for GPE International Ltd.*

Signature

September 28, 2001 _____ Date

EXHIBIT 3

EMISSION RESULTS

3.0 **Emission Results**

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

INTERTEK TESTING SERVICES

3.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

where FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

3.1 Field Strength Calculation (cont'd)

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 62.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$PD = 0 \text{ dB}$$

$$AV = -10 \text{ dB}$$

$$FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 \text{ dB}\mu\text{V/m}$$

$$\text{Level in mV/m} = \text{Common Antilogarithm} \left[(32 \text{ dB}\mu\text{V/m})/20 \right] = 39.8 \text{ } \mu\text{V/m}$$

INTERTEK TESTING SERVICES

3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission
at
314.920 MHz

For electronic filing, the front view and back view of the test configuration photographs are saved with filename: radiated1.jpg and radiated2.jpg respectively.

INTERTEK TESTING SERVICES

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 13.9 dB margin

TEST PERSONNEL:

Signature

Lawrence H. C. Chow, Compliance Engineer
Typed/Printed Name

September 28, 2001
Date

INTERTEK TESTING SERVICES

Company: GPE International Ltd.

Date of Test: September 14, 2001

Model: KEF PSW3000

Worst Case Operating Mode: Transmitting Mode (Ch.1)

Table 1

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Average Factor (-dB)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
H	314.920	63.4	2.5	14.3	16	59.2	75.6	-16.4
H	629.851	35.1	2.5	19.2	16	35.8	55.6	-19.8
H	944.739	27.1	2.5	22.8	16	31.4	55.6	-24.2
V	1259.668	45.4	2.5	25.5	34	34.4	55.6	-21.2
V	*1574.597	43.2	2.5	26.5	34	33.2	54.0	-20.8
V	1889.526	44.4	2.5	26.5	34	34.4	55.6	-21.2
V	*2204.455	43.2	2.5	29.1	34	35.8	54.0	-18.2
V	2519.384	40.0	2.5	29.1	34	32.6	55.6	-23.0

NOTES: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative sign in the column shows value below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Lawrence H. C. Chow

EXHIBIT 4

EQUIPMENT PHOTOGRAPHS

4.0 **Equipment Photographs**

For electronic filing, photographs of the tested EUT are saved with filename: ophoto1.jpg, ophoto2.jpg for external photo, and iphoto1.jpg, iphoto3.jpg and iphoto4.jpg for internal photo.

EXHIBIT 5

PRODUCT LABELLING

5.0 **Product Labelling**

For electronics filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

EXHIBIT 6

TECHNICAL SPECIFICATIONS

6.0 **Technical Specifications**

For electronic filing, the block diagram and schematic of the tested EUT are saved with filename: block.pdf, circuit.pdf respectively.

EXHIBIT 7

INSTRUCTION MANUAL

INTERTEK TESTING SERVICES

7.0 **Instruction Manual**

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

EXHIBIT 8

MISCELLANEOUS INFORMATION

8.0 **Miscellaneous Information**

This miscellaneous information includes details of the measured bandwidth, the test procedure and calculation of factors such as pulse desensitization and averaging factor.

INTERTEK TESTING SERVICES

8.1 Measured Bandwidth

For electronic filing, the plot shows the fundamental emission when modulated is saved with filename: bw.pdf. From the plot, the bandwidth is observed to be 60 kHz, at 20 dBc where the bandwidth limit is 787.5 kHz.

8.2 Discussion of Pulse Desensitization

The determination of pulse desensitivity was made in accordance with Hewlett Packard Application Note 150-2, *Spectrum Analysis ... Pulsed RF*.

Pulse desensitivity is not applicable for this device. The effective period (T_{eff}) is approximately 0.66ms for a digital “1” bit which illustrated on technical specification, with a resolution bandwidth (3dB) of 100kHz, so the pulse desensitivity factor is 0dB.

8.3 Calculation of Average Factor

Averaging factor in dB = $20 \log (\text{duty cycle})$

The specification for output field strengths in accordance with the FCC rules specify measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities.

The duty cycle is simply the on-time divided by the period:

The duration of one cycle = 100 ms
Effective period of the cycle = $3 \times 25 \text{ ms}$

$$\text{DC} = 75 \text{ ms} / 100 \text{ ms} = 0.75$$

Therefore, the averaging factor is found by $20 \log_{10} 0.75 = -2.5 \text{ dB}$

8.4 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services Hong Kong Ltd. in the measurements of Low Power Transmitter operating under the Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 1992.

The equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the groundplane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axis to obtain maximum emission levels. The antenna height and polarization are also varied during the testing to search for maximum signal levels. The height of the antenna is varied from one to four meters.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Exhibit 8.3.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 450 kHz to 30 MHz.

8.4 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements were made as described in ANSI C63.4 - 1992.

The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater when frequency is below 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Measurements are normally conducted at a measurement distance of three meters. All measurements are extrapolated to three meters using inverse scaling, unless otherwise reported. Measurements taken at a closer distance are so marked.