

**RADIO TEST REPORT
FOR
ELECTRONIC TEMPERATURE INSTRUMENTS Ltd
ON
RF THERMADATA WTB(Full testing)
RF THERMADATA WTB2C(partial testing)
RF THERMADATA WTB2F(partial testing)
DOCUMENT NO. TRA-009688-W-US-02**

HULL

Unit E, South Orbital Trading Park, Hedon Road, Hull, HU9 1NJ, UK.
T +44 (0)1482 801801 **F** +44 (0)1482 801806 **E** test@tracglobal.com
www.tracglobal.com

TRaC Wireless Test Report : TRA-009688-W-US-02

Applicant : ELECTRONIC TEMPERATURE INSTRUMENTS Ltd

Apparatus : RF THERMADATA WTB
: RF THERMADATA WTB2C
: RF THERMADATA WTB2F

Specification(s) : CFR47 Part 15.249

Purpose of Test : Certification

FCCID : N46297

Authorised by :
: Radio Product Manager

Issue Date : 15th March 2013

Authorised Copy Number : PDF

Contents

Section 1:	Introduction	4
1.1	General	4
1.2	Tests Requested By	5
1.3	Manufacturer	5
1.4	Apparatus Assessed	5
1.5	Test Result Summary	6
1.5	Test Result Summary	6
1.6	Notes Relating To The Assessment	7
1.7	Deviations from Test Standards	7
Section 2:	Measurement Uncertainty	8
2.1	Measurement Uncertainty Values	8
Section 3:	Modifications	9
3.1	Modifications Performed During Assessment	9
Appendix A:	Formal Emission Test Results	10
A1	Transmitter Intentional Emission Radiated	11
A2	Radiated Electric Field Emissions	14
A3	Unintentional Radiated Emissions	25
Appendix B:	Supporting Graphical Data	27
Appendix C:	Additional Test and Sample Details	49
Appendix D:	Additional Information	55
Appendix E:	Calculation of the duty cycle correction factor	56

Section 1:**Introduction****1.1 General**

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on samples submitted to the Laboratory.

Test performed by: TRaC Global []

Unit E
South Orbital Trading Park
Hedon Road
Hull, HU9 1NJ.
United Kingdom.

Telephone: +44 (0) 1482 801801
Fax: +44 (0) 1482 801806

TRaC Global [✓]

Unit 1
Pendle Place
Skelmersdale
West Lancashire, WN8 9PN
United Kingdom

Telephone: +44 (0) 1695 556666
Fax: +44 (0) 1695 577077

Email: test@tracglobal.com
Web site: <http://www.tracglobal.com>

Tests performed by: S HODGKINSON

Report author: S HODGKINSON

This report must not be reproduced except in full without prior written permission from TRaC Global.

1.2 Tests Requested By

This testing in this report was requested by :

Electronic Temperature Instruments Ltd
Easting Close
Worthing
West Sussex
BN14 8HQ

1.3 Manufacturer

Electronic Temperature Instruments Ltd
Easting Close
Worthing
West Sussex
BN14 8HQ

1.4 Apparatus Assessed

The following apparatus was assessed between 22nd October - 6th November 2012

- : RF THERMADATA WTB
- : RF THERMADATA WTB2C
- : RF THERMADATA WTB2F

The system operates in the 902.0MHz – 928.0MHz band.

The RF ThermaData wireless data-logging system consists of a number of RF (wireless) data-
loggers, a RF base station connected to a PC and software which enables the user to upload
data or download programme information to each logger. The RF loggers are housed in a
waterproof, ergonomic case that is designed to meet IP66/67 protection. Each RF logger is a self-
contained, battery powered unit that can receive, log, store and transmit data to the RF receiver.

1.5 Test Result Summary

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

The statements relating to compliance with the standards below apply ONLY as qualified in the notes and deviations stated in sections 1.6 to 1.7 of this test report.

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

Test Type	Regulation	Measurement standard	Result
Spurious Emissions Radiated <1000MHz	Title 47 of the CFR: Part 15 Subpart (c) 15.249	ANSI C63.10:2009	Pass
Spurious Emissions Radiated >1000MHz	Title 47 of the CFR: Part 15 Subpart (c) 15.249	ANSI C63.10:2009	Pass
AC Power conducted emissions	Title 47 of the CFR: Part 15 Subpart (c) 15.207	ANSI C63.10:2009	N/A
Intentional Emission Frequency	Title 47 of the CFR: Part 15 Subpart (c) 15.249	ANSI C63.10:2009	Pass
Intentional Emission Field Strength	Title 47 of the CFR: Part 15 Subpart (c) 15.249	ANSI C63.10:2009	Pass
Intentional Emission Band Occupancy	Title 47 of the CFR: Part 15 Subpart (c) 15.249	ANSI C63.10:2009	Pass
Intentional Emission ERP (mW)	Title 47 of the CFR: Part 15 Subpart (c) 15.	ANSI C63.10:2009	N/A
Unintentional Radiated Spurious Emissions	Title 47 of the CFR: Part 15 Subpart (b) 15.109	ANSI C63.10:2009	Pass
Antenna Arrangements Integral:	Title 47 of the CFR: Part 15 Subpart (c) 15.203	-	Pass
Antenna Arrangements External Connector	Title 47 of the CFR: Part 15 Subpart (c) 15.204	-	N/A
Restricted Bands	Title 47 of the CFR: Part 15 Subpart (c) 15.205	-	N/A
Maximum Frequency of Search	Title 47 of the CFR: Part 15 Subpart (c) 15.33	-	✓
Extrapolation Factor	Title 47 of the CFR: Part 15 Subpart (c) 15.31(f)	-	✓

Abbreviations used in the above table:

ANSI C 63.10:2009 is outside the scope of the laboratories UKAS accreditation.

CFR : Code of Federal Regulations
REFE : Radiated Electric Field Emissions

ANSI : American National Standards Institution
PLCE : Power Line Conducted Emissions

1.6 Notes Relating To The Assessment

With regard to this assessment, the following points should be noted:

The results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 1.7 of this test report (Deviations from Test Standards).

For emissions testing, throughout this test report, "Pass" indicates that the results for the sample as tested were below the specified limit (refer also to Section 2, Measurement Uncertainty).

Where relevant, the apparatus was only assessed using the monitoring methods and susceptibility criteria defined in this report.

All testing with the exception of testing at the Open Area Test Site was performed under the following environmental conditions:

Temperature	: 22 °C
Humidity	: 45 %

All dates used in this report are in the format dd/mm/yy.

This assessment has been performed in accordance with the requirements of ISO/IEC 17025.

1.7 Deviations from Test Standards

There were no deviations from the standards tested to.

Section 2:

Measurement Uncertainty

2.1 Measurement Uncertainty Values

For the test data recorded in accordance with note (iii) of Section 2.1 the following measurement uncertainty was calculated:

Section 3:

Modifications

3.1 Modifications Performed During Assessment

No modifications were performed during the assessment

Appendix A:**Formal Emission Test Results**

Abbreviations used in the tables in this appendix:

Spec	: Specification	ALSR	: Absorber Lined Screened Room
Mod	: Modification	OATS	: Open Area Test Site
		ATS	: Alternative Test Site
EUT	: Equipment Under Test		
SE	: Support Equipment	Ref	: Reference
L	: Live Power Line	Freq	: Frequency
N	: Neutral Power Line	MD	: Measurement Distance
E	: Earth Power Line	SD	: Spec Distance
Pk	: Peak Detector	Pol	: Polarisation
QP	: Quasi-Peak Detector	H	: Horizontal Polarisation
Av	: Average Detector	V	: Vertical Polarisation
CDN	: Coupling & decoupling network		

A1 Transmitter Intentional Emission Radiated

Carrier power was verified with the EUT transmitting Test Details:	
Regulation	Title 47 of the CFR: Part15 Subpart (c) 15.249(a)
Measurement standard	ANSI C63.10:2009
EUT sample number	S05/S15/S18
Modification state	0
SE in test environment	None
SE isolated from EUT	None
EUT set up	Refer to Appendix C
Temperature	22°C
Photographs (Appendix F)	

WTB Unit

FREQ. (MHz)	MEASUREMENT Rx. READING (dB μ V)	CABLE LOSS (dB)	ANT FACTOR (dB/m)	PRE AMP (dB)	FIELD STRENGTH (dB μ V/m)	FIELD STRENGTH (mV/m)
902.5	64.1	2.0	23.9	N/A	90.0	31.62
Limit value @ fc			94dB μ V/m 50mV/m			
Band occupancy @ -20 dBc			f lower		f higher	
			902.413055MHz		902.583055	
170.000000kHz						

WTB Unit

FREQ. (MHz)	MEASUREMENT Rx. READING (dB μ V)	CABLE LOSS (dB)	ANT FACTOR (dB/m)	PRE AMP (dB)	FIELD STRENGTH (dB μ V/m)	FIELD STRENGTH (mV/m)
914.5	60.6	2.1	24.20	N/A	86.9	22.13
Limit value @ fc			94dB μ V/m 50mV/m			
Band occupancy @ -20 dBc			f lower		f higher	
			914.396570MHz		914.567126MHz	
170.555555kHz						

WTB Unit

FREQ. (MHz)	MEASUREMENT Rx. READING (dB μ V)	CABLE LOSS (dB)	ANT FACTOR (dB/m)	PRE AMP (dB)	FIELD STRENGTH (dB μ V/m)	FIELD STRENGTH (mV/m)
926.5	55.5	2.1	24.20	N/A	82.1	12.73
Limit value @ fc			94dB μ V/m 50mV/m			
Band occupancy @ -20 dBc			f lower		f higher	
			926.381720MHz		926.550053MHz	
			168.333333kHz			

Transmitter intentional emission WTB2C Unit

FREQ. (MHz)	MEASUREMENT Rx. READING (dB μ V)	CABLE LOSS (dB)	ANT FACTOR (dB/m)	PRE AMP (dB)	FIELD STRENGTH (dB μ V/m)	FIELD STRENGTH (mV/m)
902.5	59.2	2.0	23.9	N/A	85.1	17.98
914.5	57.2	2.1	24.20	N/A	83.5	14.96
926.5	54.6	2.1	24.20	N/A	81.2	11.48
Limit value @ fc			94dB μ V/m 50mV/m			

Transmitter intentional emission WTB2F Unit

FREQ. (MHz)	MEASUREMENT Rx. READING (dB μ V)	CABLE LOSS (dB)	ANT FACTOR (dB/m)	PRE AMP (dB)	FIELD STRENGTH (dB μ V/m)	FIELD STRENGTH (mV/m)
902.5	60.5	2.0	23.9	N/A	86.4	20.89
914.5	57.0	2.1	24.20	N/A	83.3	14.62
926.5	52.6	2.1	24.20	N/A	79.2	9.12
Limit value @ fc			94dB μ V/m 50mV/m			

Notes:

- 1 Results quoted are extrapolated as indicated
- 2 Receiver detector @ f_c = Quasi Peak 10 / 120kHz bandwidth
- 3 When battery powered the EUT was powered with new batteries

Test Method:

- 1 As per Radio – Noise Emissions, ANSI C63.10
- 2 Measuring distances 3m
- 3 EUT 0.8 metre above ground plane
- 4 Emissions maximised by rotation of EUT, on an automatic turntable.
Raising and lowering the receiver antenna between 1m & 4m.
Horizontal and vertical polarisations, of the receive antenna.
EUT orientation in three orthogonal planes.
Maximum results recorded

A2 Radiated Electric Field Emissions

Preliminary scans were performed using a peak detector with the RBW = 100kHz. The radiated electric field emission test applies to all spurious emissions and harmonics emissions . The maximum permitted field strength is listed in Section 15.209. The EUT was set to transmit as required.

The following test site was used for final measurements as specified by the standard tested to:

3m open area test site :

3m alternative test site :

The effect of the EUT set-up on the measurements is summarised in note (c) below.

Test Details:	
Regulation	Title 47 of the CFR, Part 15 .249(a)(d)
Measurement standard	ANSI C63.10:2009
Frequency range	30MHz – 10GHz
EUT sample number	S05/S15/S18
Modification state	0
SE in test environment	None
SE isolated from EUT	None
EUT set up	Refer to Appendix C
Temperature	22°C
Photographs (Appendix F)	

WTB Unit

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dB μ V/m)	EXTRAP FACT (dB)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	860.500*	8.4	2.0	23.5	N/A	33.90	N/A	49.54	200
2.	872.500#	9.40	2.0	23.3	N/A	34.70	N/A	54.32	200

WTB2F

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dB μ V/m)	EXTRAP FACT (dB)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	860.500*	8.4	2.0	23.5	N/A	32.70	N/A	43.15	200
2.	872.500#	9.40	2.0	23.3	N/A	33.30	N/A	46.23	200

WTB2C

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dB μ V/m)	EXTRAP FACT (dB)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	860.500*	8.4	2.0	23.5	N/A	33.90	N/A	49.54	200
2.	872.500#	9.40	2.0	23.3	N/A	33.0	N/A	44.66	200

Note: * Denotes Middle channel

Denotes Top channel

WTB Unit Bottom channel

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Duty Cycle (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	1805.00	58.82	2.1	27.1	36.0	N/A	52.02pk	399.02	5011
2.	1805.00	See Note 1	2.1	27.1	36.0	-34.99	17.03Av	7.10	500
3.	5414.91	52.23	3.6	33.8	35.8	N/A	53.83pk	491.47	5011
4.	5414.91	See Note 1	3.6	33.8	35.8	-34.99	18.84Av	8.75	500
5.	6317.51	50.23	4.0	34.3	36.0	N/A	52.53pk	423.15	5011
6.	6317.51	See Note 1	4.0	34.3	36.0	-34.99	17.54Av	7.53	500
7.	7219.95	53.60	4.2	36.0	36.2	N/A	57.60pk	758.57	5011
8.	7219.95	See Note 1	4.2	36.0	36.2	-34.99	22.61Av	13.50	500
9.	8122.50	50.53	4.5	36.7	36.5	N/A	55.23pk	577.43	5011
10.	8122.50	See Note 1	4.5	36.7	36.5	-34.99	20.24Av	10.28	500
11.	9024.85	50.45	4.8	37.5	36.5	N/A	56.25pk	649.38	5011
12.	9024.85	See Note 1	4.8	37.5	36.5	-34.99	21.26Av	11.56	500

Note 1: Harmonics of the transmitter As per C63.10 section 7.5 period operation, the average values of the pulsed emissions were calculated by measuring the peak pulse amplitude and subtracting the duty cycle.

$$\text{Duty cycle} = 20\log(1.780 \div 100) = -34.99\text{dB}$$

WTB Unit Middle channel

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Duty Cycle (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	1828.96	54.98	1.9	27.2	35.9	N/A	48.18pk	256.44	5011
2.	1828.96	See Note 1	1.9	27.2	35.9	-34.99	13.19Av	4.56	500
3.	5486.90	54.00	3.7	33.8	35.8	N/A	55.70pk	609.53	5011
4.	5486.90	See Note 1	3.7	33.8	35.8	-34.99	20.71Av	10.85	500
5.	6401.38	49.42	4.1	34.3	36.0	N/A	51.82pk	389.94	5011
6.	6401.38	See Note 1	4.1	34.3	36.0	-34.99	16.83Av	6.94	500
7.	7310.87	52.88	4.2	36.3	36.2	N/A	57.18pk	722.77	5011
8.	7310.87	See Note 1	4.2	36.3	36.2	-34.99	22.19Av	12.86	500
9.	8230.00	53.17	4.4	36.7	36.5	N/A	57.77pk	773.57	5011
10.	8230.00	See Note 1	4.4	36.7	36.5	-34.99	22.78Av	13.77	500
11.	9144.83	51.68	4.9	37.4	36.6	N/A	57.38pk	739.60	5011
12.	9144.83	See Note 1	4.9	37.4	36.6	-34.99	22.39Av	13.16	500

Note 1: Harmonics of the transmitter As per C63.10 section 7.5 period operation, the average values of the pulsed emissions were calculated by measuring the peak pulse amplitude and subtracting the duty cycle.

$$\text{Duty cycle} = 20\log(1.780 \div 100) = -34.99\text{dB}$$

WTB Unit Top channel

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Duty Cycle (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	1852.87	51.29	2.0	27.3	35.9	N/A	44.69pk	171.59	5011
2.	1852.87	See Note 1	2.0	27.3	35.9	-34.99	9.7Av	3.05	500
3.	5559.05	55.91	3.6	33.8	35.8	N/A	57.51pk	750.75	5011
4.	5559.05	See Note 1	3.6	33.8	35.8	-34.99	22.52Av	13.36	500
5.	6485.28	50.04	4.1	34.2	36.0	N/A	52.34pk	414.00	5011
6.	6485.28	See Note 1	4.1	34.2	36.0	-34.99	17.35Av	7.37	500
7.	7411.79	50.63	4.2	36.5	36.3	N/A	55.03pk	564.28	5011
8.	7411.79	See Note 1	4.2	36.5	36.3	-34.99	20.04Av	10.04	500
9.	8333.30	49.48	4.5	37.0	36.5	N/A	54.48pk	529.66	5011
10.	8333.30	See Note 1	4.5	37.0	36.5	-34.99	19.49Av	9.43	500
11.	9264.80	51.46	4.9	37.4	36.6	N/A	57.16pk	721.10	5011
12.	9264.80	See Note 1	4.9	37.4	36.6	-34.99	22.17Av	12.83	500

Note 1: Harmonics of the transmitter As per C63.10 section 7.5 period operation, the average values of the pulsed emissions were calculated by measuring the peak pulse amplitude and subtracting the duty cycle.

$$\text{Duty cycle} = 20\log(1.780 \div 100) = -34.99\text{dB}$$

WTB2C Unit Bottom channel

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Duty Cycle (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	1805.00	54.68	2.1	27.1	36.0	N/A	47.88pk	247.74	5011
2.	1805.00	See Note 1	2.1	27.1	36.0	-34.99	12.89Av	4.41	500
3.	5414.91	51.98	3.6	33.8	35.8	N/A	53.58pk	477.52	5011
4.	5414.91	See Note 1	3.6	33.8	35.8	-34.99	18.59Av	8.50	500
5.	6317.51	48.81	4.0	34.3	36.0	N/A	51.11pk	359.35	5011
6.	6317.51	See Note 1	4.0	34.3	36.0	-34.99	16.12Av	6.39	500
7.	7219.95	57.72	4.2	36.0	36.2	N/A	61.72pk	1218.99	5011
8.	7219.95	See Note 1	4.2	36.0	36.2	-34.99	26.73Av	21.70	500
9.	8122.50	48.97	4.5	36.7	36.5	N/A	53.67pk	482.50	5011
10.	8122.50	See Note 1	4.5	36.7	36.5	-34.99	18.68Av	8.59	500
11.	9024.85	51.52	4.8	37.5	36.5	N/A	57.32pk	734.51	5011
12.	9024.85	See Note 1	4.8	37.5	36.5	-34.99	22.33Av	13.07	500

Note 1: Harmonics of the transmitter As per C63.10 section 7.5 period operation, the average values of the pulsed emissions were calculated by measuring the peak pulse amplitude and subtracting the duty cycle.

$$\text{Duty cycle} = 20\log(1.780 \div 100) = -34.99\text{dB}$$

WTB2F Unit Bottom channel

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Duty Cycle (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	1805.00	54.59	2.1	27.1	36.0	N/A	47.79pk	245.18	5011
2.	1805.00	See Note 1	2.1	27.1	36.0	-34.99	12.80Av	4.36	500
3.	5414.91	49.75	3.6	33.8	35.8	N/A	51.35pk	369.40	5011
4.	5414.91	See Note 1	3.6	33.8	35.8	-34.99	16.36Av	6.57	500
5.	6317.51	53.13	4.0	34.3	36.0	N/A	55.43pk	590.88	5011
6.	6317.51	See Note 1	4.0	34.3	36.0	-34.99	20.44Av	10.52	500
7.	7219.95	55.94	4.2	36.0	36.2	N/A	59.94pk	993.11	5011
8.	7219.95	See Note 1	4.2	36.0	36.2	-34.99	24.95Av	17.68	500
9.	8122.50	48.84	4.5	36.7	36.5	N/A	53.54pk	475.33	5011
10.	8122.50	See Note 1	4.5	36.7	36.5	-34.99	18.55Av	8.46	500
11.	9024.85	50.58	4.8	37.5	36.5	N/A	56.38pk	659.17	5011
12.	9024.85	See Note 1	4.8	37.5	36.5	-34.99	21.39Av	11.73	500

Note 1: Harmonics of the transmitter As per C63.10 section 7.5 period operation, the average values of the pulsed emissions were calculated by measuring the peak pulse amplitude and subtracting the duty cycle.

$$\text{Duty cycle} = 20\log(1.780 \div 100) = -34.99\text{dB}$$

WTB2C Unit Middle channel

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Duty Cycle (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	1828.96	51.81	1.9	27.2	35.9	N/A	45.01pk	178.03	5011
2.	1828.96	See Note 1	1.9	27.2	35.9	-34.99	10.02Av	3.17	500
3.	5486.90	53.55	3.7	33.8	35.8	N/A	55.25pk	578.76	5011
4.	5486.90	See Note 1	3.7	33.8	35.8	-34.99	20.26Av	10.30	500
5.	6401.38	48.81	4.1	34.3	36.0	N/A	51.21pk	363.49	5011
6.	6401.38	See Note 1	4.1	34.3	36.0	-34.99	16.22Av	6.47	500
7.	7310.87	54.94	4.2	36.3	36.2	N/A	59.24pk	916.22	5011
8.	7310.87	See Note 1	4.2	36.3	36.2	-34.99	24.25Av	16.31	500
9.	9144.83	51.65	4.9	37.4	36.6	N/A	57.35pk	737.05	5011
10.	9144.83	See Note 1	4.9	37.4	36.6	-34.99	22.36Av	13.12	500

Note 1: Harmonics of the transmitter As per C63.10 section 7.5 period operation, the average values of the pulsed emissions were calculated by measuring the peak pulse amplitude and subtracting the duty cycle.

$$\text{Duty cycle} = 20\log(1.780 \div 100) = -34.99\text{dB}$$

WTB2F Unit Middle channel

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Duty Cycle (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	1828.96	52.02	1.9	27.2	35.9	N/A	45.22pk	182.39	5011
2.	1828.96	See Note 1	1.9	27.2	35.9	-34.99	10.23Av	3.24	500
3.	5486.90	52.25	3.7	33.8	35.8	N/A	53.95pk	498.31	5011
4.	5486.90	See Note 1	3.7	33.8	35.8	-34.99	18.96Av	8.87	500
5.	6401.38	51.69	4.1	34.3	36.0	N/A	54.09pk	506.40	5011
6.	6401.38	See Note 1	4.1	34.3	36.0	-34.99	19.10Av	9.01	500
7.	7310.87	53.97	4.2	36.3	36.2	N/A	58.27pk	819.40	5011
8.	7310.87	See Note 1	4.2	36.3	36.2	-34.99	23.28Av	14.58	500
9.	8230.00	53.51	4.4	36.7	36.5	N/A	53.51pk	473.69	5011
10.	8230.00	See Note 1	4.4	36.7	36.5	-34.99	18.52Av	8.43	500
11.	9144.83	49.84	4.9	37.4	36.6	N/A	55.54pk	598.41	5011
12.	9144.83	See Note 1	4.9	37.4	36.6	-34.99	20.55Av	10.65	500

Note 1: Harmonics of the transmitter As per C63.10 section 7.5 period operation, the average values of the pulsed emissions were calculated by measuring the peak pulse amplitude and subtracting the duty cycle.

$$\text{Duty cycle} = 20\log(1.780 \div 100) = -34.99\text{dB}$$

WTB2C Unit Top channel

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Duty Cycle (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	5559.05	53.33	3.6	33.8	35.8	N/A	54.93pk	557.82	5011
2.	5559.05	See Note 1	3.6	33.8	35.8	-34.99	19.94Av	9.93	500
3.	6485.28	49.18	4.1	34.2	36.0	N/A	51.48pk	374.97	5011
4.	6485.28	See Note 1	4.1	34.2	36.0	-34.99	16.49Av	6.67	500
5.	7411.79	53.25	4.2	36.5	36.3	N/A	57.65pk	762.95	5011
6.	7411.79	See Note 1	4.2	36.5	36.3	-34.99	22.66Av	13.58	500
7.	9264.80	52.03	4.9	37.4	36.6	N/A	57.73pk	770.01	5011
8.	9264.80	See Note 1	4.9	37.4	36.6	-34.99	22.74Av	13.70	500

Note 1: Harmonics of the transmitter As per C63.10 section 7.5 period operation, the average values of the pulsed emissions were calculated by measuring the peak pulse amplitude and subtracting the duty cycle.

$$\text{Duty cycle} = 20\log(1.780 \div 100) = -34.99\text{dB}$$

WTB2F Unit Top channel

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	Duty Cycle (dB)	FIELD ST'GH (dB μ V/m)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	1852.87	50.62	2.0	27.3	35.9	N/A	44.02pk	158.85	5011
2.	1852.87	See Note 1	2.0	27.3	35.9	-34.99	9.03Av	2.82	500
3.	5559.05	52.56	3.6	33.8	35.8	N/A	54.16pk	510.50	5011
4.	5559.05	See Note 1	3.6	33.8	35.8	-34.99	19.17Av	9.08	500
5.	6485.28	50.90	4.1	34.2	36.0	N/A	53.20pk	457.08	5011
6.	6485.28	See Note 1	4.1	34.2	36.0	-34.99	18.21Av	8.13	500
7.	7411.79	51.56	4.2	36.5	36.3	N/A	55.96pk	628.05	5011
8.	7411.79	See Note 1	4.2	36.5	36.3	-34.99	20.97Av	11.18	500
9.	8333.30	49.86	4.5	37.0	36.5	N/A	54.86pk	553.35	5011
10.	8333.30	See Note 1	4.5	37.0	36.5	-34.99	19.87Av	9.85	500
11.	9264.80	50.65	4.9	37.4	36.6	N/A	56.35pk	656.90	5011
12.	9264.80	See Note 1	4.9	37.4	36.6	-34.99	21.36Av	11.69	500

Note 1: Harmonics of the transmitter As per C63.10 section 7.5 period operation, the average values of the pulsed emissions were calculated by measuring the peak pulse amplitude and subtracting the duty cycle.

$$\text{Duty cycle} = 20\log(1.780 \div 100) = -34.99\text{dB}$$

Notes:

- 1 Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.10: section 4.5, Table 1 For emissions below 30MHz the cable losses are assumed to be negligible.
- 2 In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- 3 Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- 4 For Frequencies below 1 GHz, RBW= 120 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak	RBW=VBW= 1MHz
Average	RBW=VBW= 1MHz

The upper and lower frequency of the measurement range was decided according to 47 CFR Part 15 Clause 15.33(a) and 15.33(a)(1).

Radiated emission limits 47 CFR Part 15: Clause 15.209 for all emissions:

Frequency of emission (MHz)	Field strength μ V/m	Measurement Distance m	Field strength $\text{dB}\mu\text{V/m}$
0.009-0.490	2400/F(kHz)	300	67.6/F (kHz)
0.490-1.705	24000/F(kHz)	30	87.6/F (kHz)
1.705-30	30	30	29.5
30-88	100	3	40.0
88-216	150	3	43.5
216-960	200	3	46.0
Above 960	500	3	54.0

(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

$$\text{Extrapolation (dB)} = 20 \log_{10} \left(\frac{\text{measurement distance}}{\text{specification distance}} \right)$$

(b) The levels may have been rounded for display purposes.

(c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels :

	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels	✓			
Effect of EUT internal configuration on emission levels	✓			
Effect of Position of EUT cables & samples on emission levels	✓			
(i) Parameter defined by standard and / or single possible, refer to Appendix D (ii) Parameter defined by client and / or single possible, refer to Appendix D (iii) Parameter had a negligible effect on emission levels, refer to Appendix D (iv) Worst case determined by initial measurement, refer to Appendix D				

A3 Unintentional Radiated Emissions

Preliminary scans were performed using a peak detector with the RBW = 100kHz. The radiated electric field emission test applies to all spurious emissions on directly related to the transmitter. The maximum permitted field strength is listed in Section 15.109. The EUT was set to operate in a transmit standby / receive mode.

The following test site was used for final measurements as specified by the standard tested to:

3m open area test site :

3m alternative test site :

The effect of the EUT set-up on the measurements is summarised in note (c) below.

Test Details:	
Regulation	Title 47 of the CFR, Part 15 Subpart (b) Clause 15.109
Measurement standard	ANSI C63.10:2009
Frequency range	30MHz – 10GHz
EUT sample number	S05/S15/S18
Modification state	0
SE in test environment	None
SE isolated from EUT	None
EUT set up	Refer to Appendix C
Temperature	22°C
Photographs (Appendix F)	

The worst case radiated emission measurements for spurious emissions are listed below:

Ref No.	FREQ. (MHz)	MEAS Rx (dB μ V)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dB μ V/m)	EXTRAP FACT (dB)	FIELD ST'GH (μ V/m)	LIMIT (μ V/m)
1.	5413.73	50.95	3.6	33.8	35.8	43.01	-9.54	141.41	5011
2.	5413.73	43.56	3.6	33.8	35.8	35.62	-9.54	60.39	500
3.	5485.63	51.75	3.7	33.8	35.8	43.91	-9.54	156.85	5011
4.	5485.63	45.07	3.7	33.8	35.8	37.23	-9.54	72.69	500
5.	5557.56	52.21	3.6	33.8	35.8	44.27	-9.54	163.49	5011
6.	5557.56	45.89	3.6	33.8	35.8	37.95	-9.54	78.97	500

Notes:

- 5 Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.10: section 4.5, Table 1 For emissions below 30MHz the cable losses are assumed to be negligible.
- 6 In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- 7 Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- 8 For Frequencies below 1 GHz, RBW = 120 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak	RBW=VBW= 1MHz
Average	RBW=VBW= 1MHz

The upper and lower frequency of the measurement range was decided according to 47 CFR Part 15:Clause 15.33(a) and 15.33(a)(1).

Radiated emission limits 47 CFR Part 15: Clause 15.109 for all emissions:

Frequency of emission (MHz)	Field strength μ V/m	Measurement Distance m	Field strength $\text{dB}\mu\text{V/m}$
0.009-0.490	2400/F(kHz)	300	67.6/F (kHz)
0.490-1.705	24000/F(kHz)	30	87.6/F (kHz)
1.705-30	30	30	29.5
30-88	100	3	40.0
88-216	150	3	43.5
216-960	200	3	46.0
Above 960	500	3	54.0

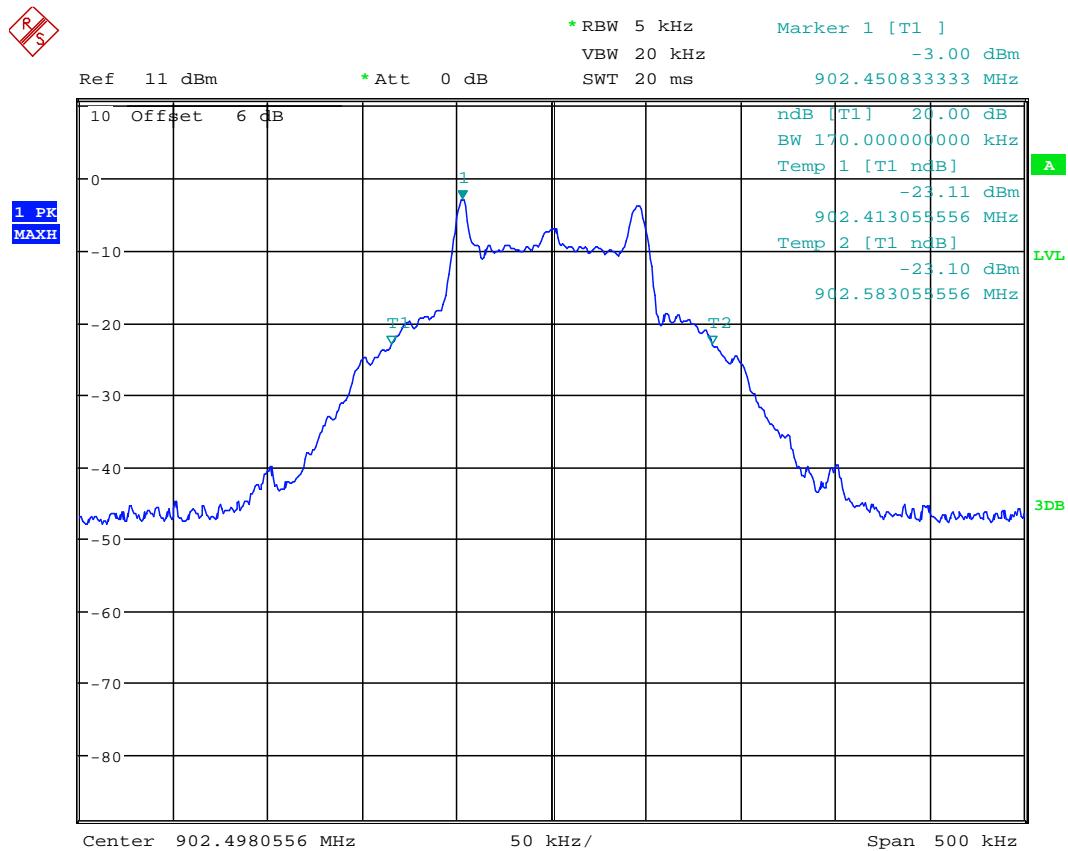
(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

$$\text{Extrapolation (dB)} = 20 \log_{10} \left(\frac{\text{measurement distance}}{\text{specification distance}} \right)$$

(b) The levels may have been rounded for display purposes.

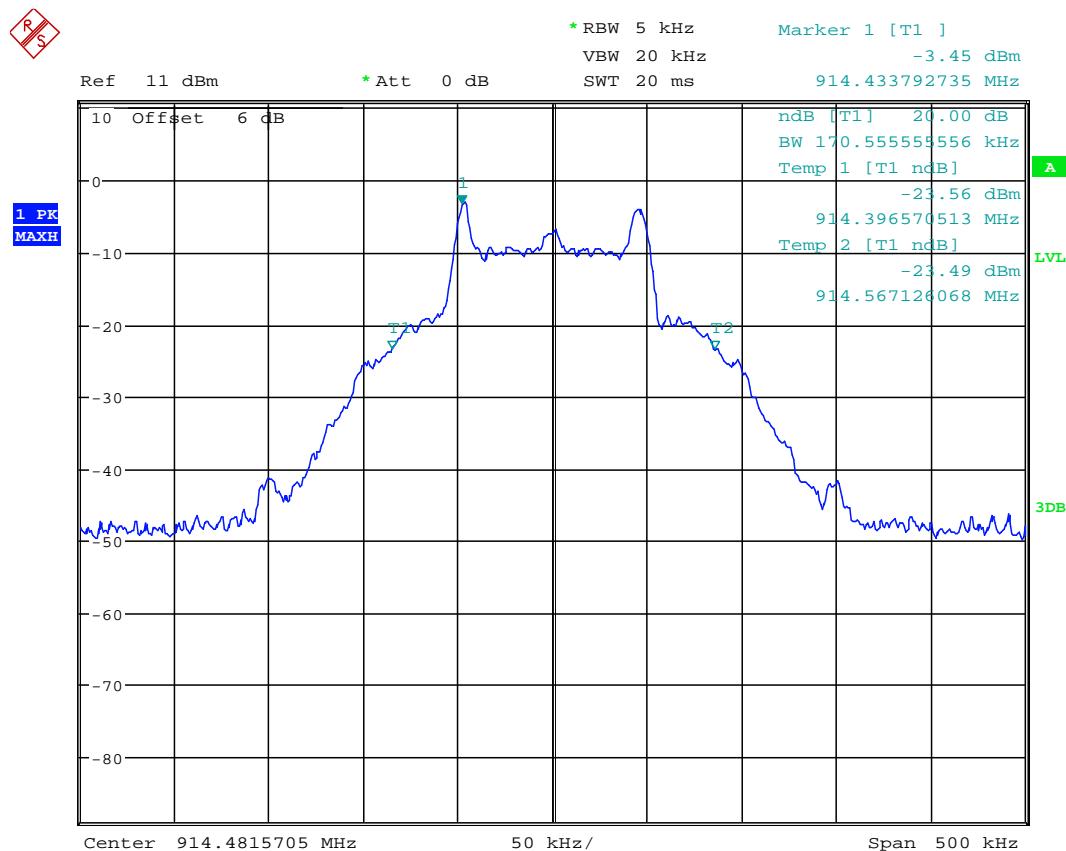
(c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels :

	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels	✓			
Effect of EUT internal configuration on emission levels	✓			
Effect of Position of EUT cables & samples on emission levels	✓			
(i) Parameter defined by standard and / or single possible, refer to Appendix D (ii) Parameter defined by client and / or single possible, refer to Appendix D (iii) Parameter had a negligible effect on emission levels, refer to Appendix D (iv) Worst case determined by initial measurement, refer to Appendix D				

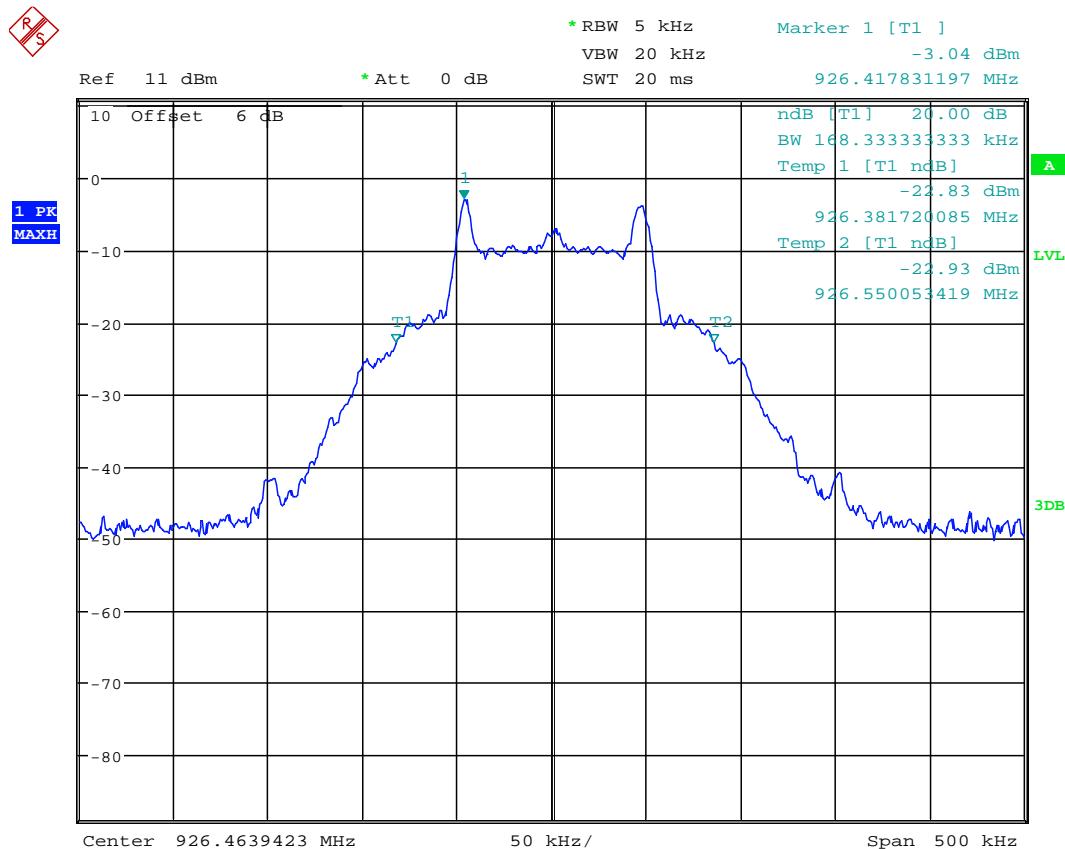

Appendix B: Supporting Graphical Data

This appendix contains graphical data obtained during testing.

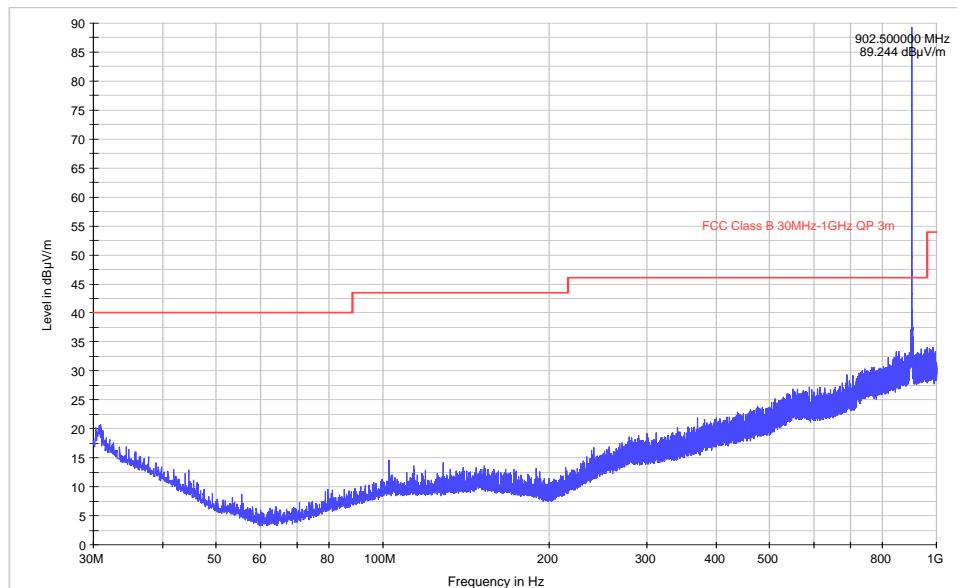
Notes:


- (a) The radiated electric field emissions and conducted emissions graphical data in this appendix is preview data. For details of formal results, refer to Appendix A and Appendix B.
- (b) The time and date on the plots do not necessarily equate to the time of the test.
- (c) Where relevant, on power line conducted emission plots, the limit displayed is the average limit, which is stricter than the quasi peak limit.
- (d) Appendix C details the numbering system used to identify the sample and its modification state.
- (e) The plots presented in this appendix may not be a complete record of the measurements performed, but are a representative sample, relative to the final assessment.

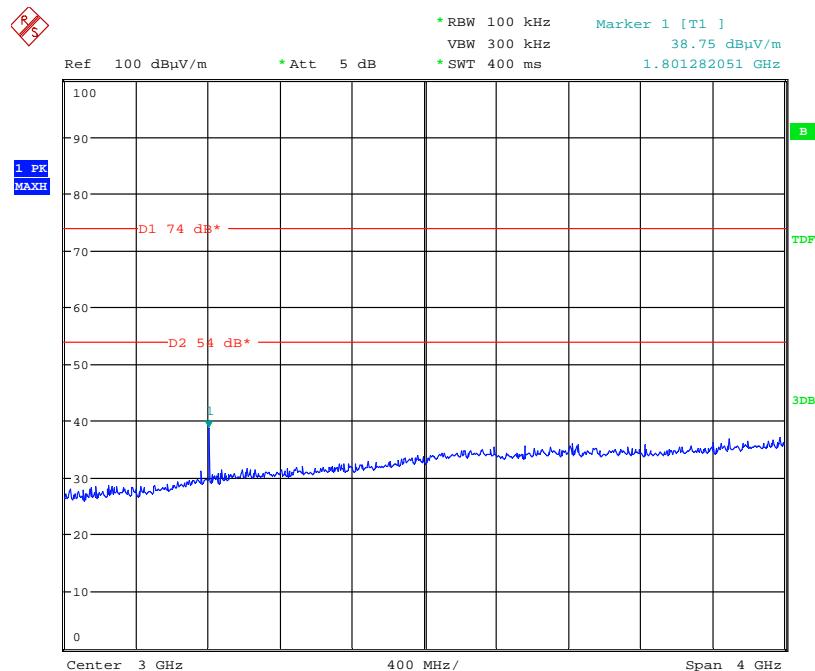
WTB Unit 902.5MHz bottom channel 20dB Bandwidth


Date: 22.OCT.2012 17:13:18

WTB Unit 914.5MHz Middle channel 20dB Bandwidth

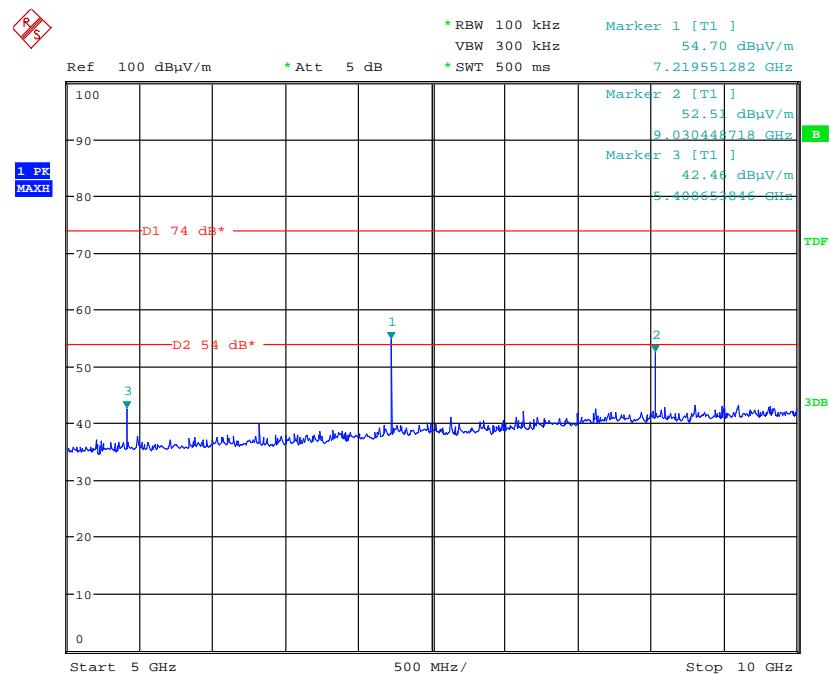

Date: 22.OCT.2012 17:15:22

WTB Unit 914.5MHz Top channel 20dB Bandwidth

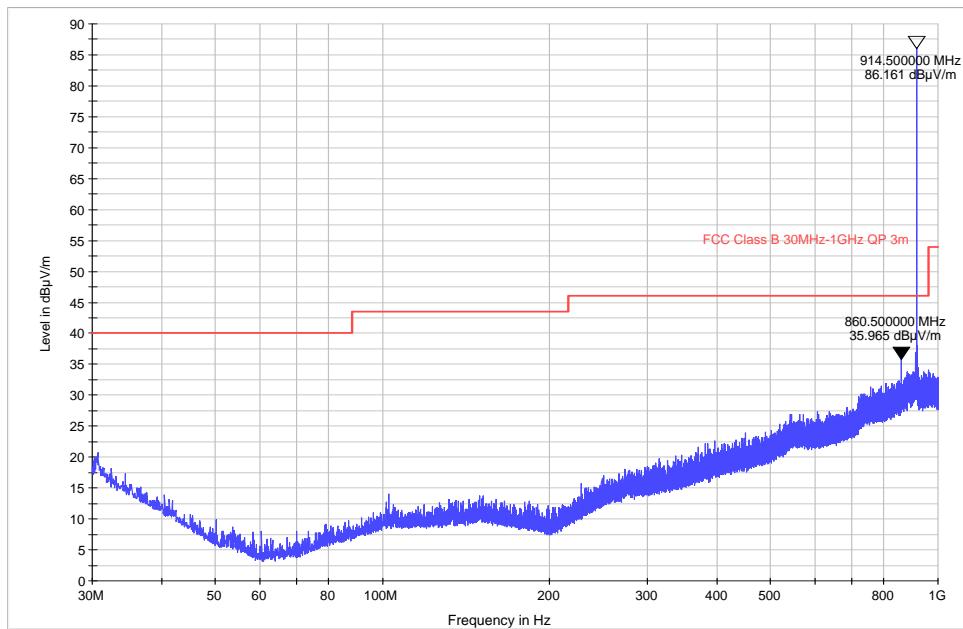


Date: 22.OCT.2012 17:16:52

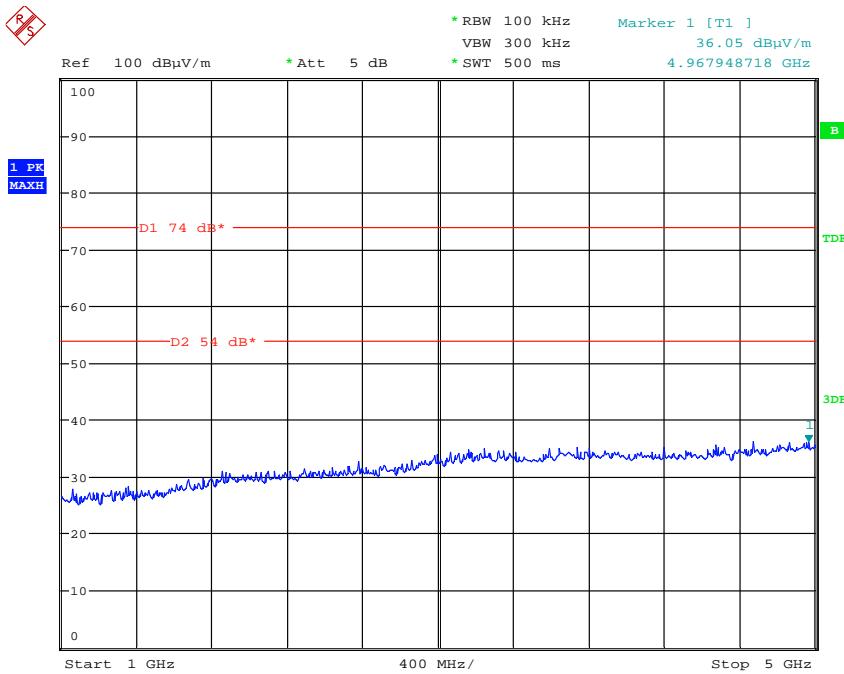
Bottom channel WTB Unit Radiated spurious emissions 30 MHz to 1 GHz



Bottom channel WTB Unit Radiated spurious emissions 1 GHz to 5 GHz

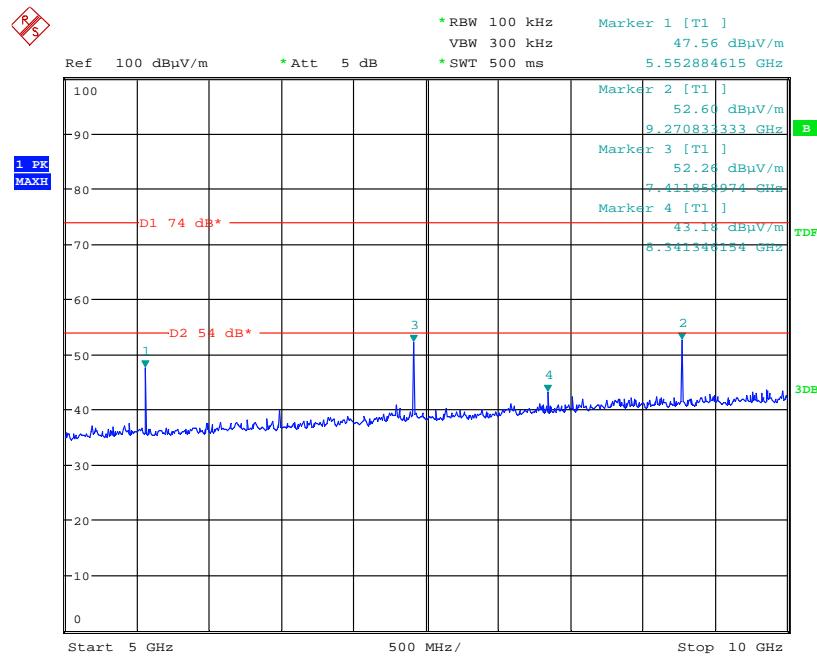

Date: 30.OCT.2012 12:36:49

Bottom channel WTB Unit Radiated spurious emissions 5 GHz to 10 GHz

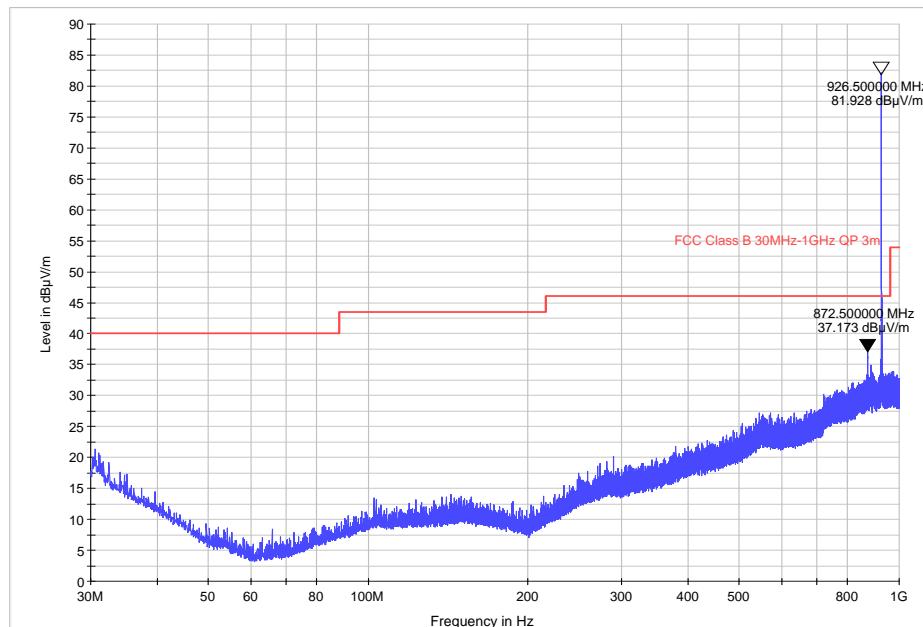


Date: 30.OCT.2012 12:38:33

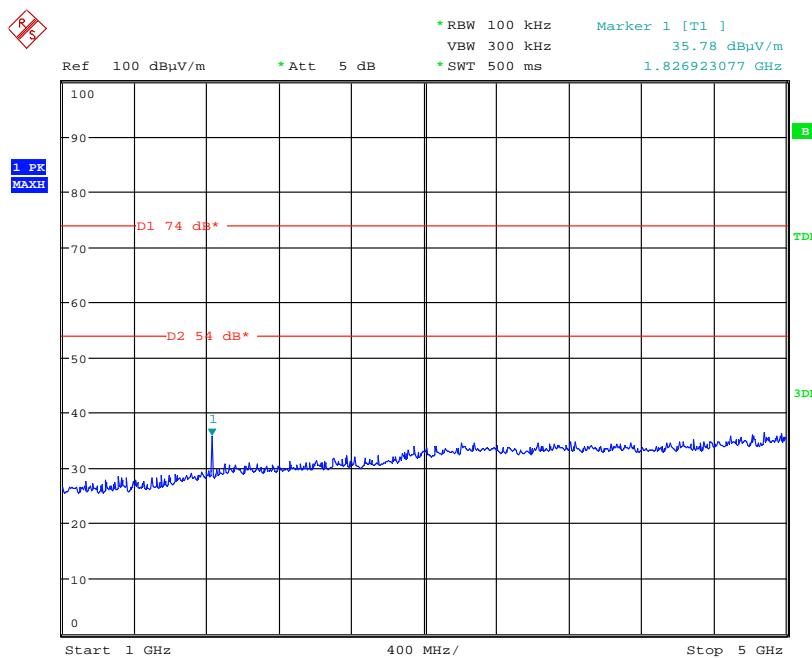
Middle channel WTB Unit Radiated spurious emissions 30 MHz to 1 GHz



Middle channel WTB Unit Radiated spurious emissions 1 GHz to 5 GHz

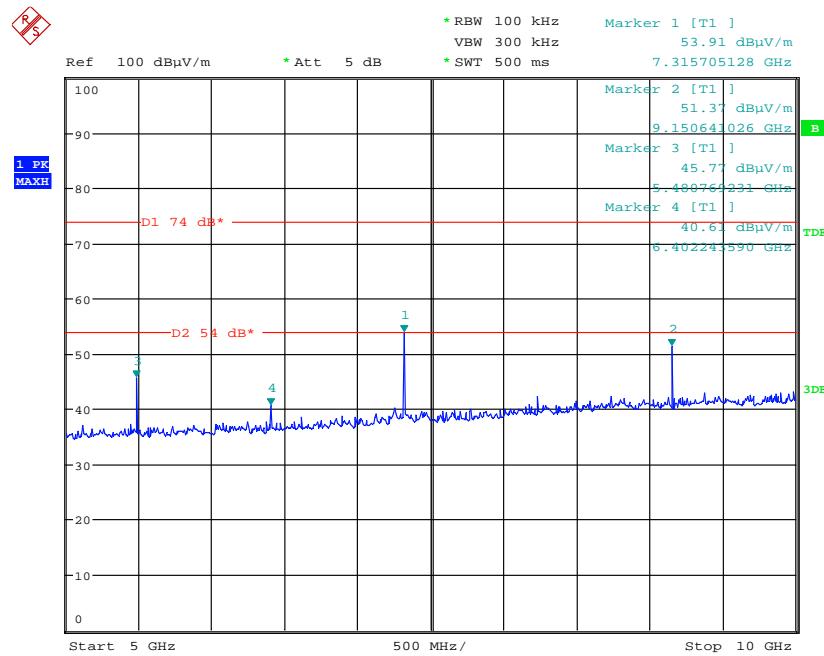

Date: 30.OCT.2012 12:46:39

Middle channel WTB Unit Radiated Spurious emissions 5 GHz to 10 GHz

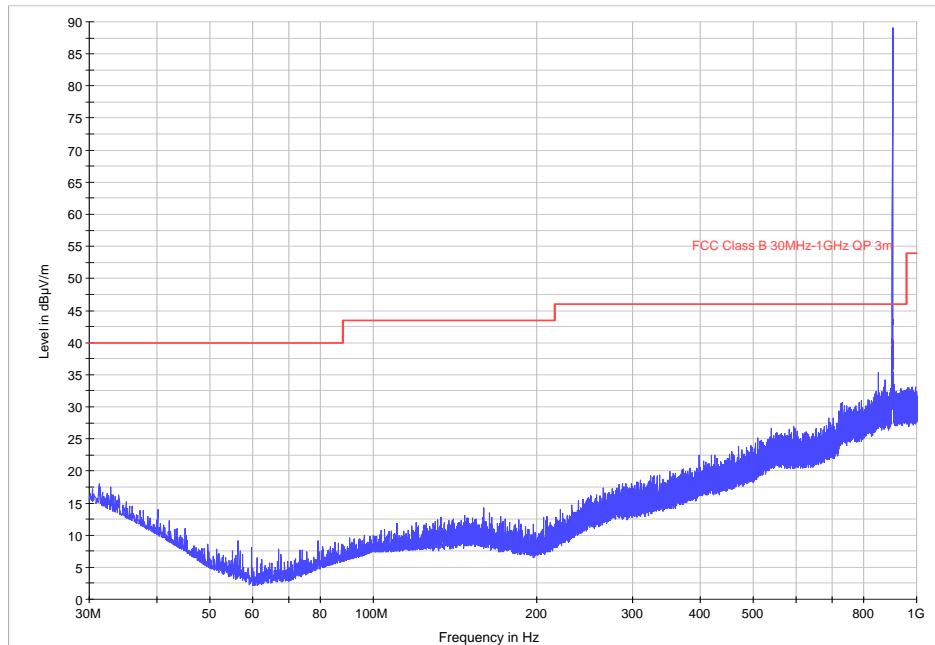


Date: 30.OCT.2012 12:50:41

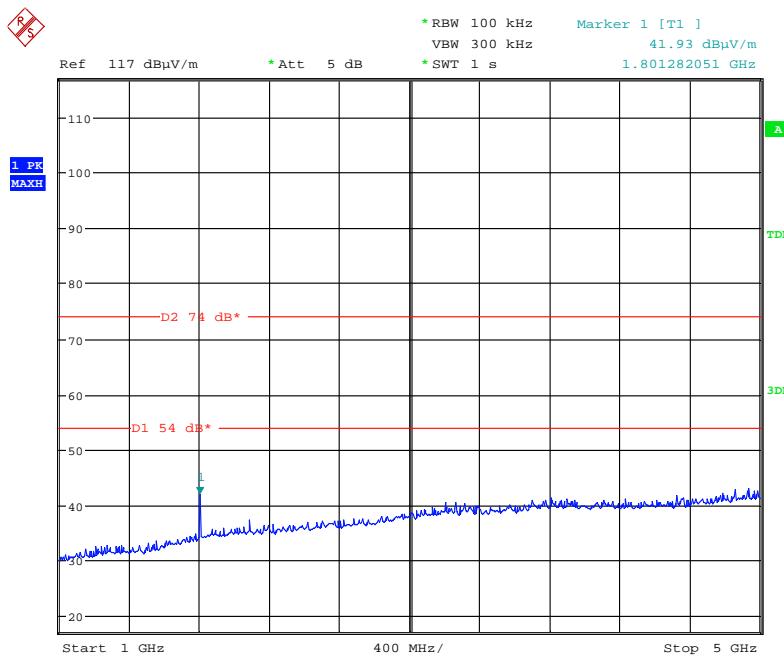
Top channel WTB Unit Radiated spurious emissions 30 MHz to 1 GHz



Top channel WTB Unit Radiated spurious emissions 1 GHz to 5 GHz

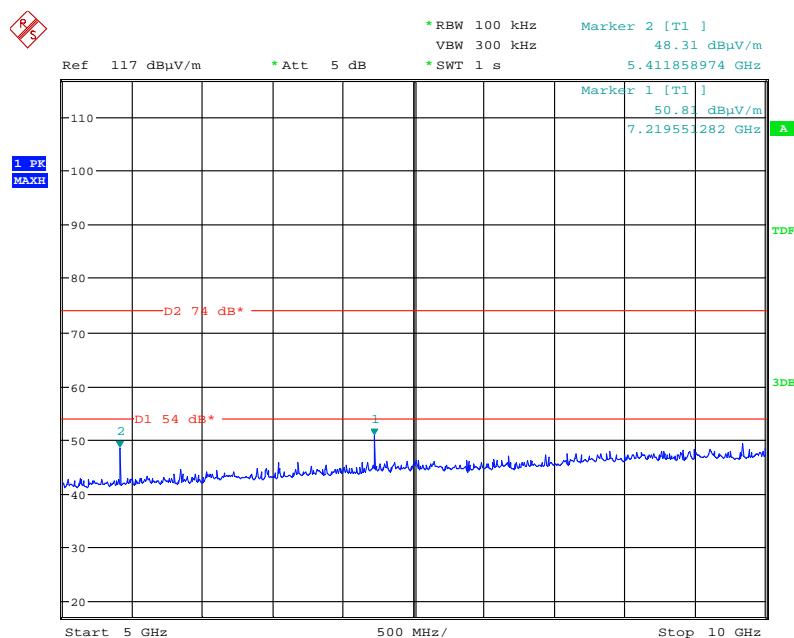

Date: 30.OCT.2012 12:55:51

Top channel WTB Unit Radiated spurious emissions 5 GHz to 10 GHz

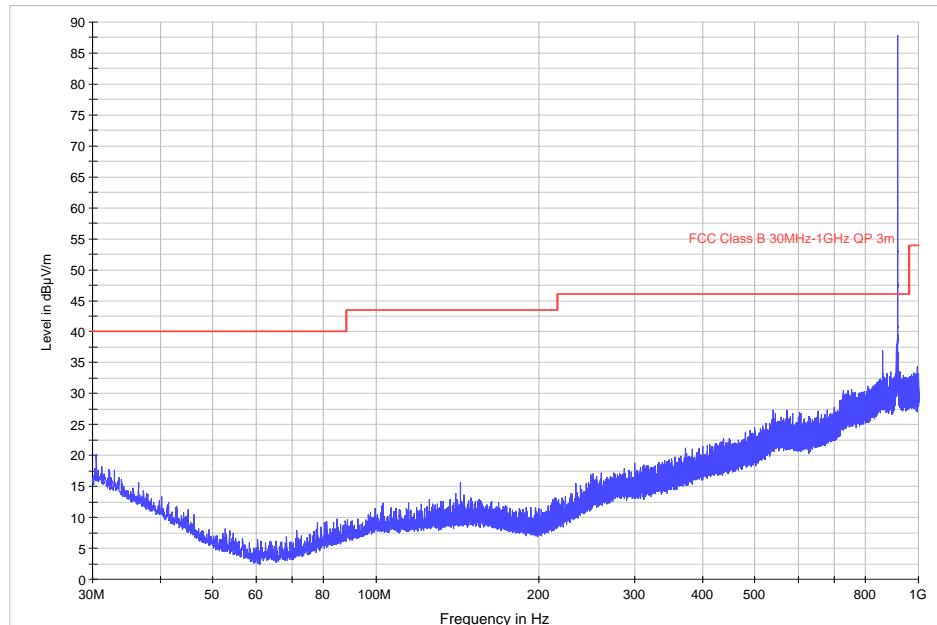


Date: 30.OCT.2012 12:57:27

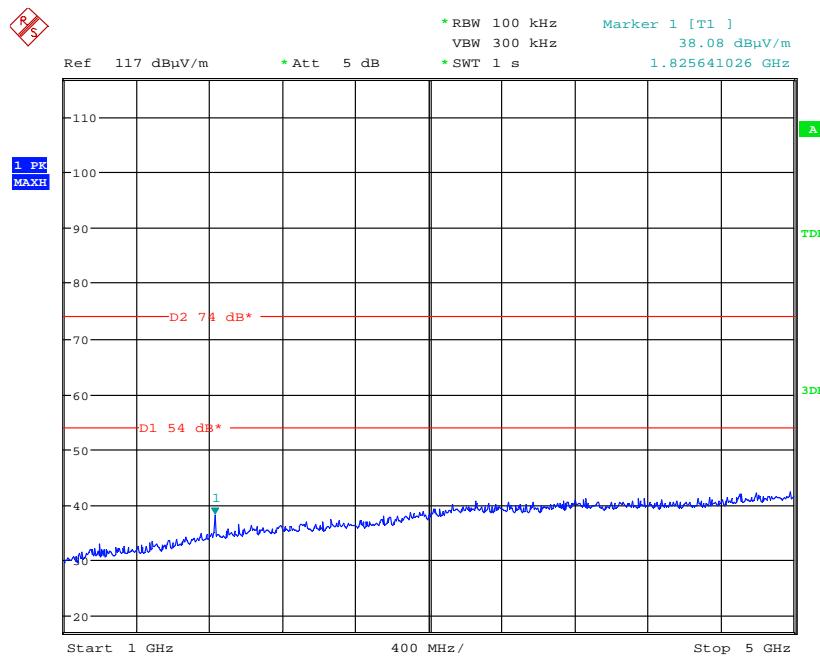
Bottom channel WTB2C Unit Radiated spurious emissions 30MHz to 1GHz



Bottom channel WTB2C Unit Radiated spurious emissions 1GHz -5GHz

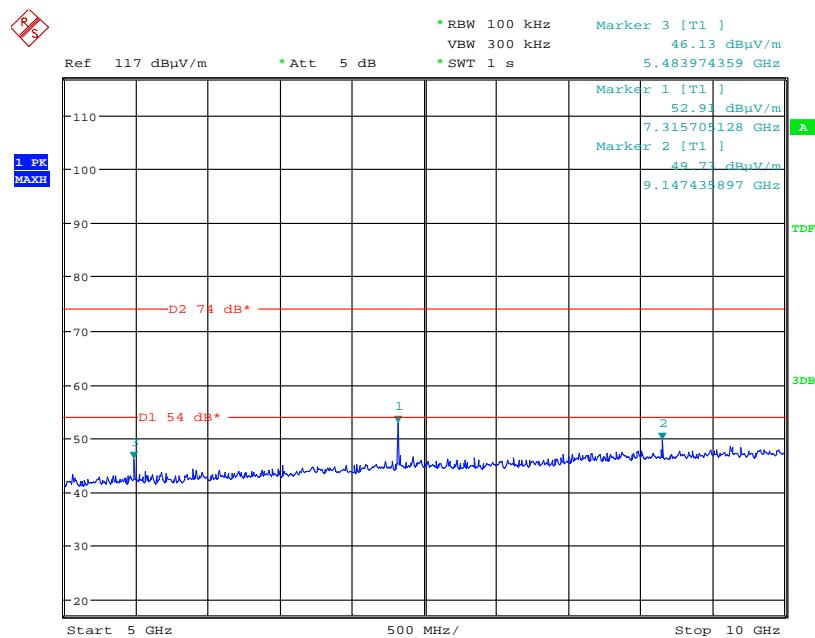

Date: 24.OCT.2012 15:14:45

Bottom channel WTB2C Unit Radiated spurious emissions 5GHz -10GHz

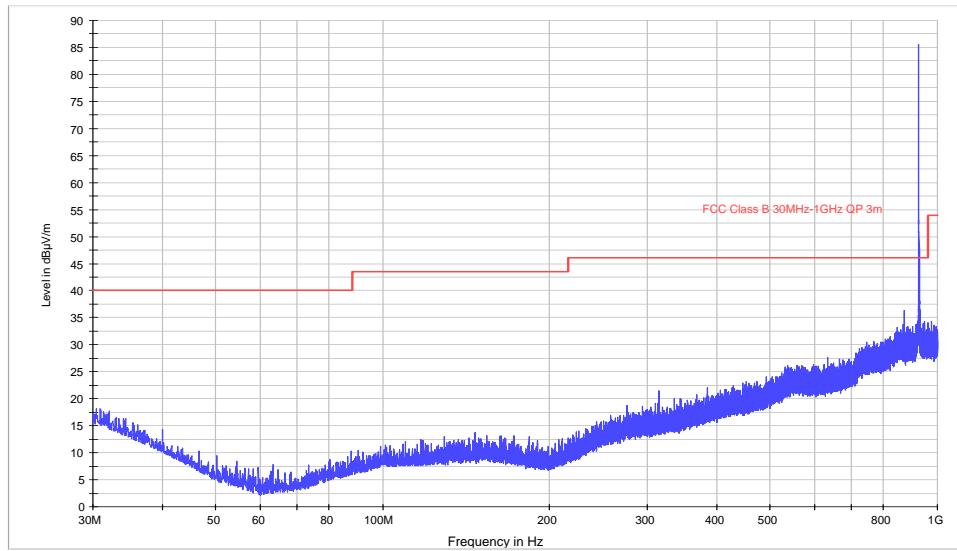


Date: 24.OCT.2012 15:20:55

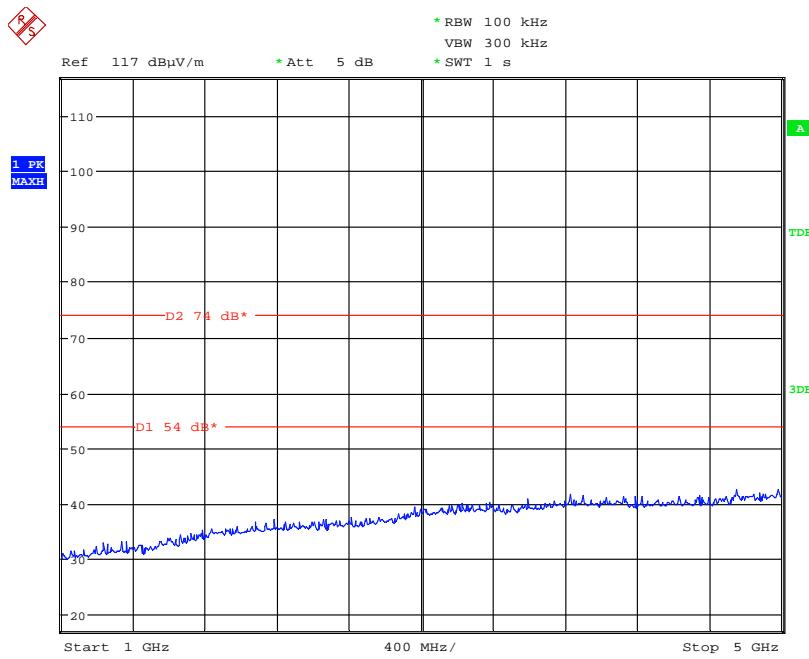
Middle channel WTB2C Unit Radiated spurious emissions 30MHz to 1GHz



Middle channel WTB2C Unit Radiated spurious emissions 1GHz -5GHz

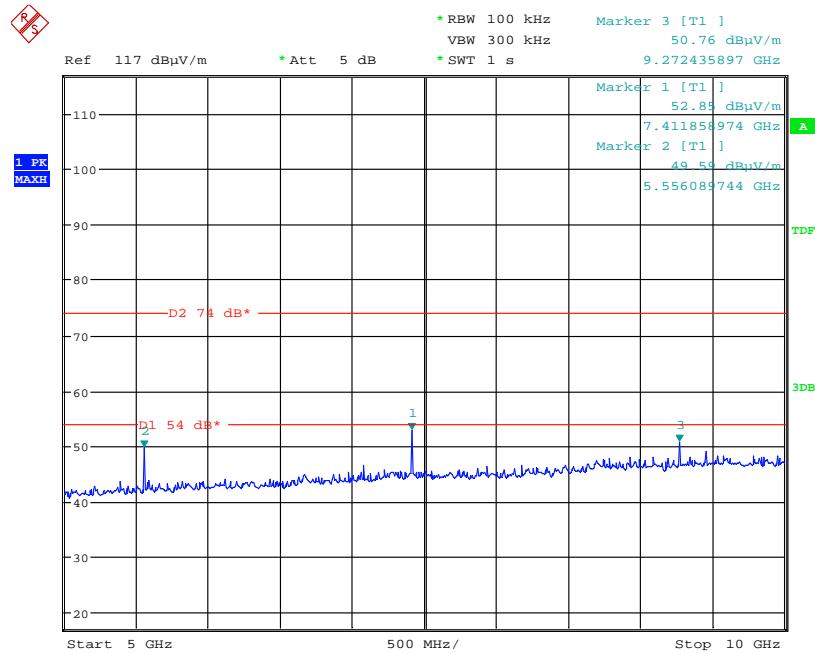

Date: 24.OCT.2012 15:34:03

Middle channel WTB2C Unit Radiated spurious emissions 5GHz -10GHz

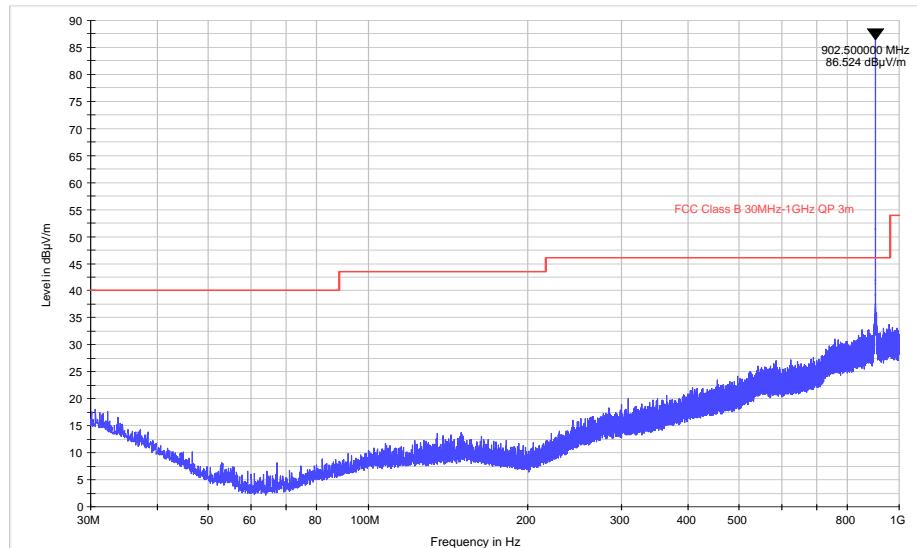


Date: 24.OCT.2012 15:39:01

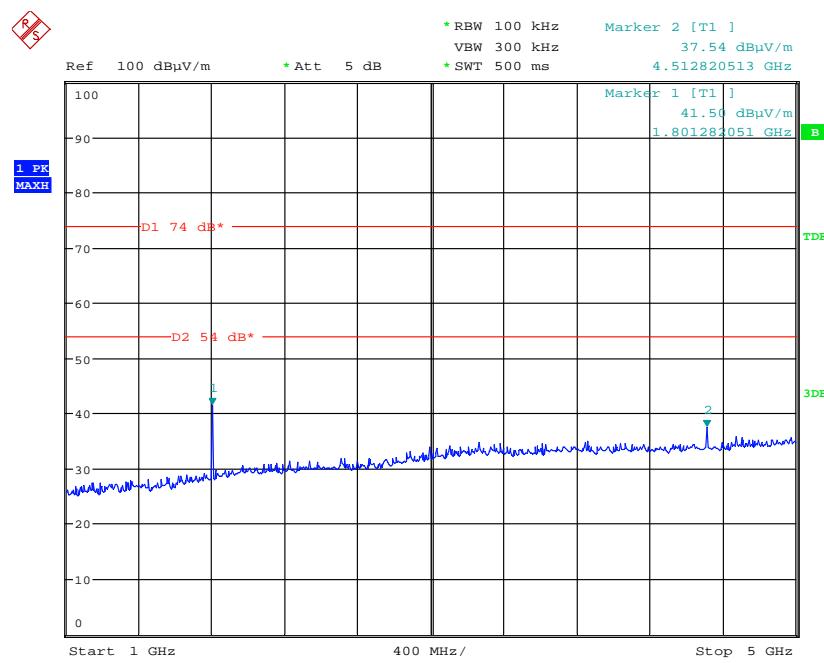
Top channel WTB2C Unit Radiated spurious emissions 30MHz to 1GHz



Top channel WTB2C Unit Radiated spurious emissions 1GHz -5GHz

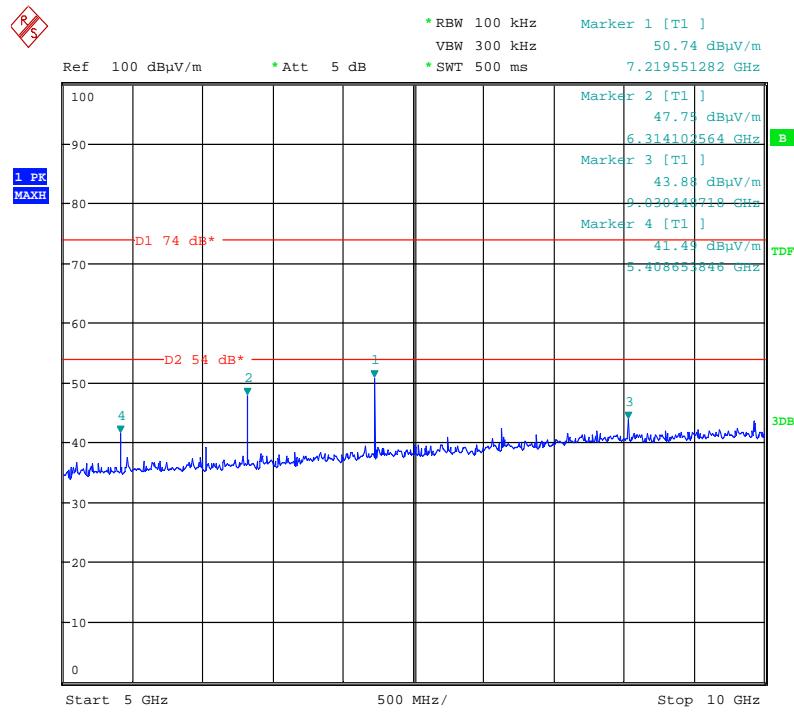

Date: 24.OCT.2012 15:29:45

Top channel WTB2C Unit Radiated spurious emissions 5GHz -10GHz



Date: 24.OCT.2012 15:27:31

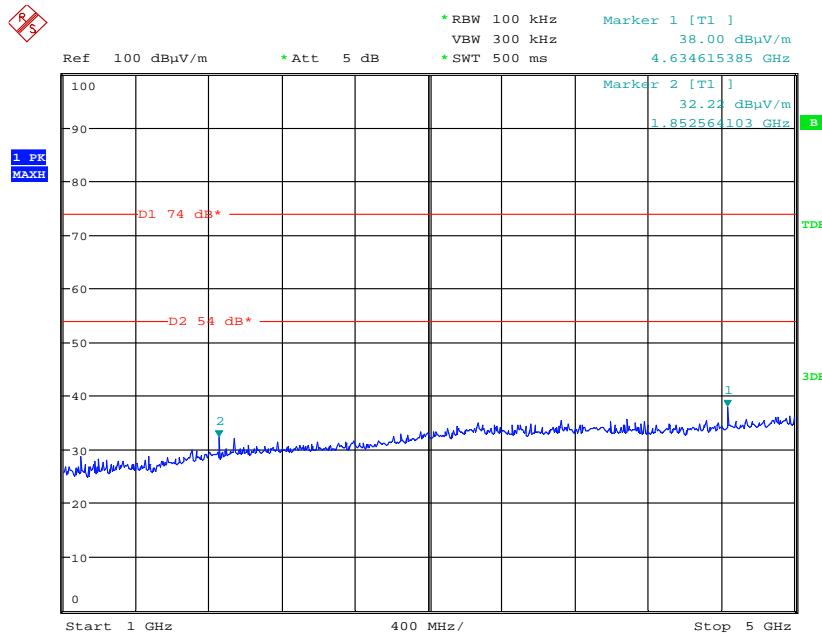
Bottom channel WTB2F Unit Radiated spurious emissions 30MHz to 1GHz



Bottom channel WTB2F Unit Radiated spurious emissions 1GHz -5GHz

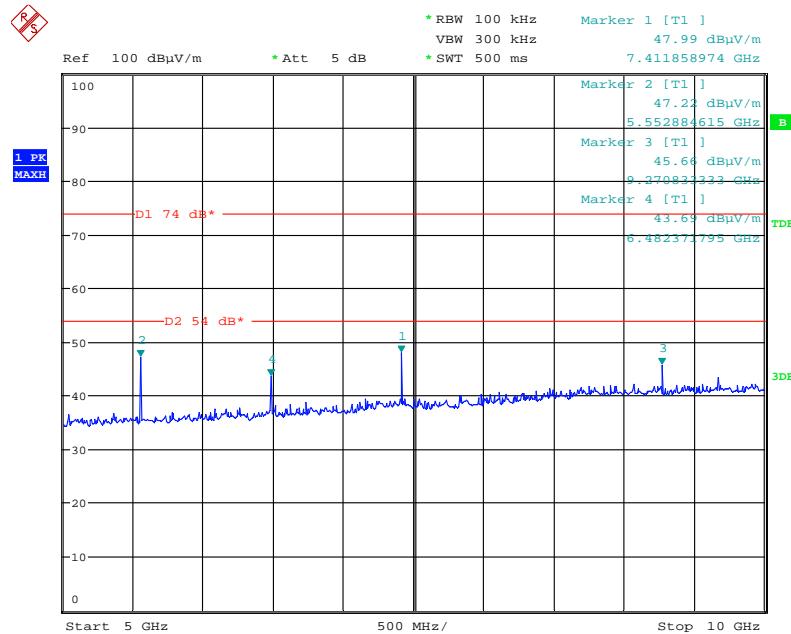
Date: 30.OCT.2012 14:44:23

Bottom channel WTB2F Unit Radiated spurious emissions 5GHz -10GHz

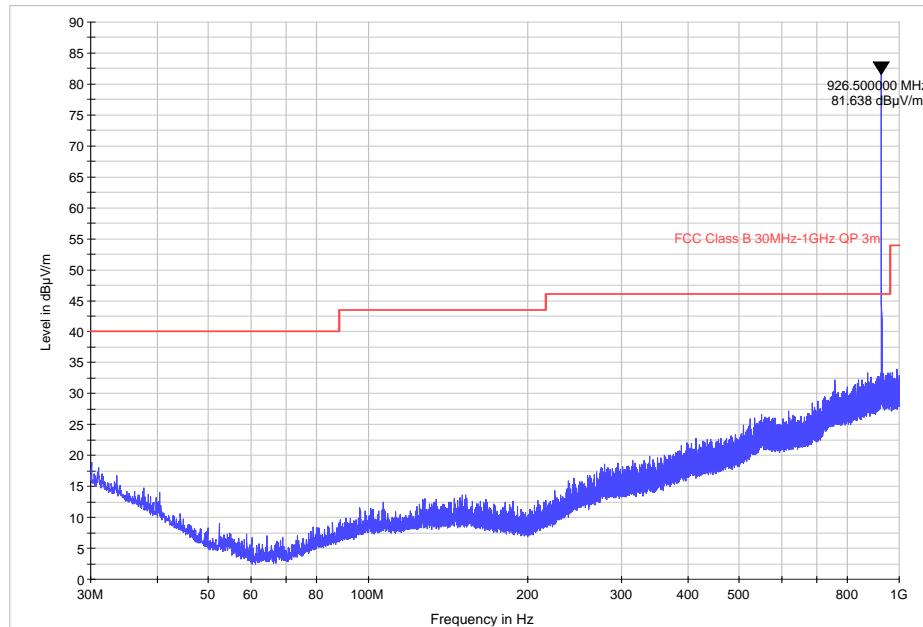


Date: 30.OCT.2012 14:41:30

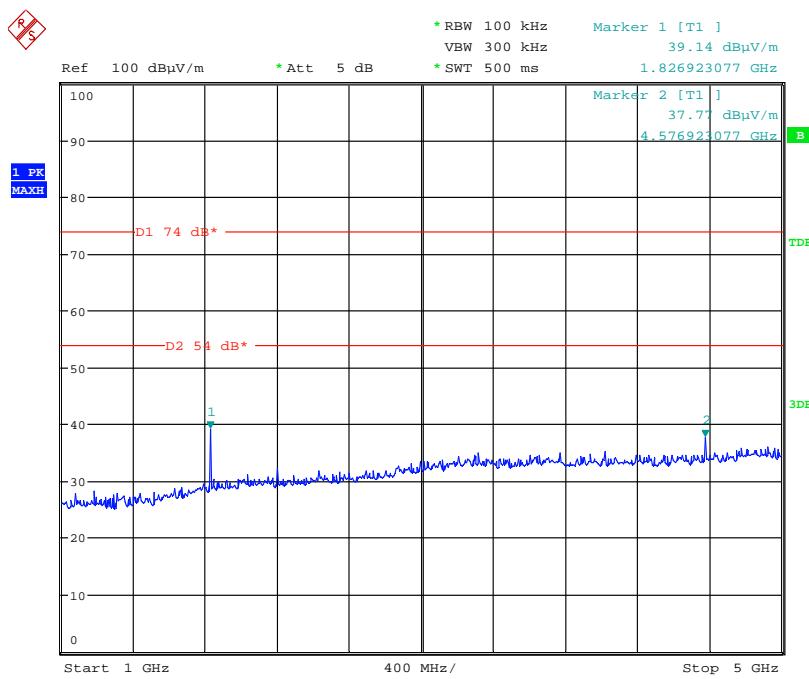
Middle channel WTB2F Unit Radiated spurious emissions 30MHz to 1GHz



Middle channel WTB2F Unit Radiated spurious emissions 1GHz -5GHz

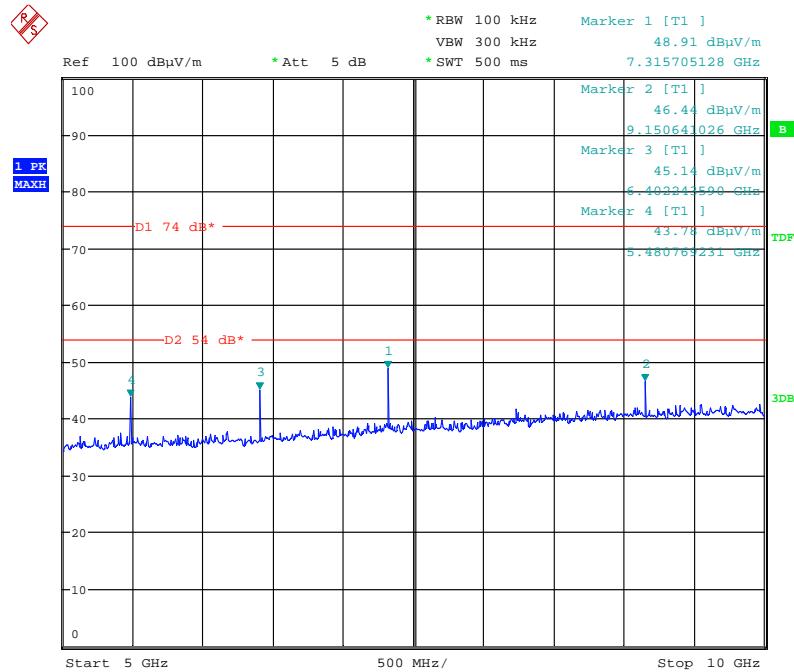

Date: 30.OCT.2012 14:53:28

Middle channel WTB2F Unit Radiated spurious emissions 5GHz -10GHz



Date: 30.OCT.2012 14:51:24

Top channel WTB2F Unit Radiated spurious emissions 30MHz to 1GHz



Top channel WTB2F Unit Radiated spurious emissions 1GHz -5GHz

Date: 30.OCT.2012 15:01:09

Top channel WTB2F Unit Radiated spurious emissions 5GHz -10GHz

Date: 30.OCT.2012 14:57:32

Appendix C: Additional Test and Sample Details

This appendix contains details of:

1. The samples submitted for testing.
2. Details of EUT operating mode(s)
3. Details of EUT configuration(s) (see below).
4. EUT arrangement (see below).

Throughout testing, the following numbering system is used to identify the sample and its modification state:

Sample No: Sxx Mod w

where:

xx	= sample number	eg. S01
w	= modification number	eg. Mod 2

The following terminology is used throughout the test report:

Support Equipment (SE) is any additional equipment required to exercise the EUT in the applicable operating mode. Where relevant SE is divided into two categories:

SE in test environment: The SE is positioned in the test environment and is not isolated from the EUT (e.g. on the table top during REFE testing).

SE isolated from the EUT: The SE is isolated via filtering from the EUT. (e.g. equipment placed externally to the ALSR during REFE testing).

EUT configuration refers to the internal set-up of the EUT. It may include for example:

- Positioning of cards in a chassis.
- Setting of any internal switches.
- Circuit board jumper settings.
- Alternative internal power supplies.

Where no change in EUT configuration is **possible**, the configuration is described as “single possible configuration”.

EUT arrangement refers to the termination of EUT ports / connection of support equipment, and where relevant, the relative positioning of samples (EUT and SE) in the test environment.

For further details of the test procedures and general test set ups used during testing please refer to the related document "EMC Test Methods - An Overview", which can be supplied by TRaC Global upon request.

C1) Test samples

The following samples of the apparatus were submitted by the client for testing :

Sample No.	Description	Identification
S05	WTB	D10410445
S15	WTB2C	D12420919
S18	WTB2F	D12430718

C2) EUT Operating Mode During Testing.

Test	Description of Operating Mode:
Transmitter field strength	Transmitting at full output power
Transmitter 20dB occupied bandwidth	Transmitting on selected channels with modulation enabled(PN9).
Radiated spurious emissions	Transmitting at full output power

Test	Description of Operating Mode:
Receiver conducted and radiated (ERP) spurious emissions	EUT operating in Rx mode.

C3) EUT Configuration Information.

The EUT was submitted for testing in one single possible configuration.

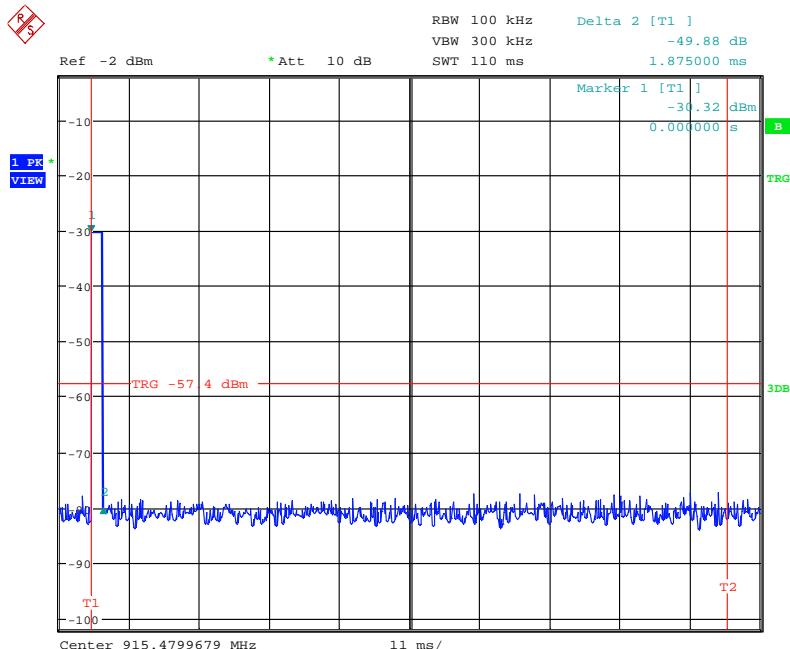
C4) List of EUT Ports

The tables below describe the termination of EUT ports:

Sample: S18

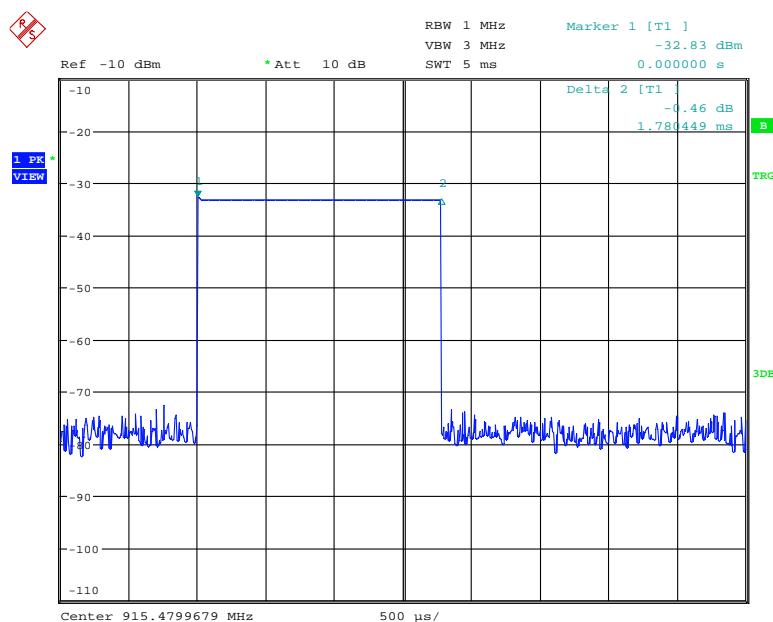
Port	Description of Cable Attached	Cable length	Equipment Connected
1	Two core	102cms	Temperature Probe
2	Two core	102cms	Temperature Probe

Sample: S15


Port	Description of Cable Attached	Cable length	Equipment Connected
1	Two core	118cms	Temperature Probe
2	Two core	118cms	Temperature Probe

C5 Details of Equipment Used

TRAC Ref	Type	Description	Manufacturer	Date Calibrated.
TRLUH281	FSU46	Spectrum Analyser	Rhode & Schwarz	09/02/2012
TRL138	3115	1-18GHz Horn Antenna	EMCO	08/11/2011
TRL572	8499B	1 – 26.5 GHz Pre Amplifier	Agilent	24/11/2010
TRLUH317	ESHS10	Receiver	Rhode & Schwarz	21/12/2011
TRLUH191	CBL611/A	BiLog Periodic Antenna	York	08/11/2010


Appendix D: Additional Information

Timing plots Ton 100ms

Date: 6.NOV.2012 14:24:14

Timing plots Ton 1 x transmission = 1.780ms

Date: 6.NOV.2012 14:27:02

Appendix E: Calculation of the duty cycle correction factor

Using a spectrum analyser in zero span mode, centred on the fundamental carrier frequency with a RBW of 1MHz and a video Bandwidth of 1MHz the sweep time was set accordingly to capture the pulse train. The transmit pulsedwidths and period was measured. A plots of the pulse train is contained in Appendix B of this test report.

If the pulse train was less than 100 ms, including blanking intervals, the duty cycle was calculated by averaging the sum of the pulsedwidths over one complete pulse train. However if the pulse train exceeds 100ms then the duty cycle was calculated by averaging the sum of the pulsedwidths over the 100ms width with the highest average value. (The duty cycle is the value of the sum of the pulse widths in one period (or 100ms), divided by the length of the period (or 100ms). The duty cycle correction factor was then expressed in dB and the peak emissions adjusted accordingly to give an average value of the emission.

Correction factor dB = $20 \times (\log_{10} \text{Calculated Duty Cycle})$

Therefore the calculated duty cycle was determined:

The pulse train period was greater than >100ms and in as shown from the plots in contained in appendix B of this test report.

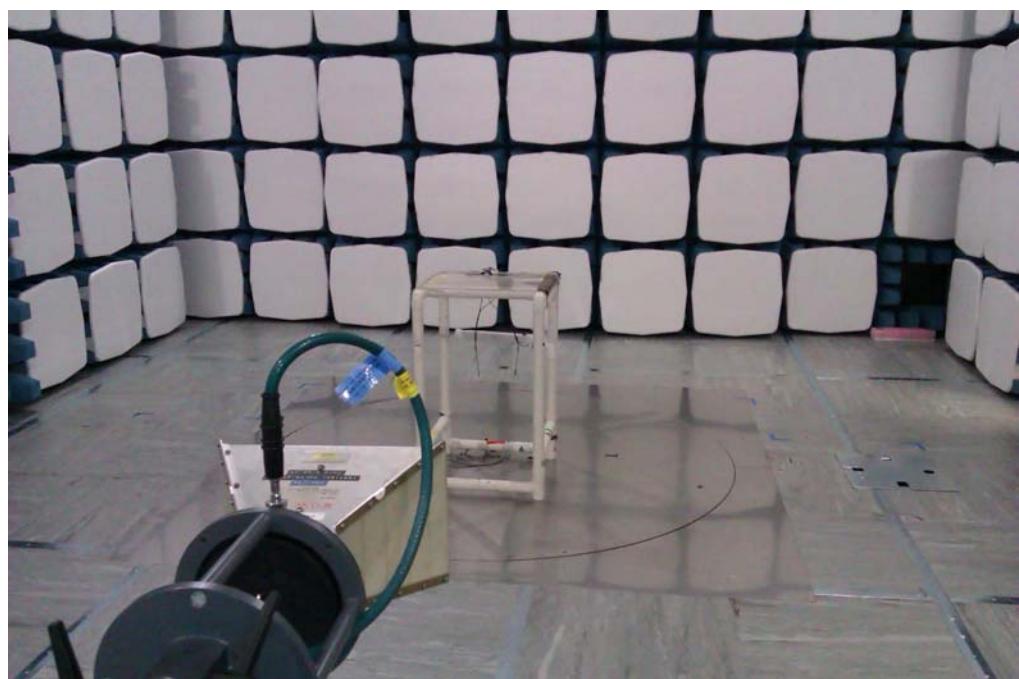
Duty cycle = the sum of the highest average value pulsedwidths over 100ms
100ms

e.g

$$= \frac{7.459\text{ms}}{100\text{ms}} = 0.07459$$

0.07459 or 7.459%

Correction factor (dB) = $20 \times (\log_{10} 0.07459) = -22.54\text{dB}$


Duty cycle = $20\log(1.780 \div 100) = -34.99\text{dB}$

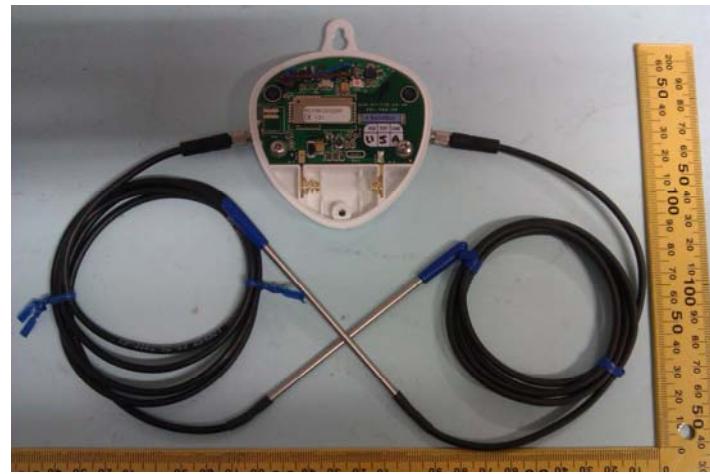
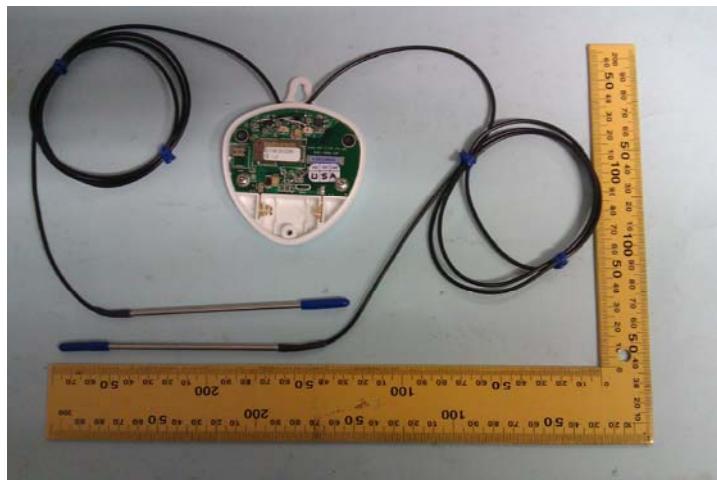
Appendix F: Photographs and Figures

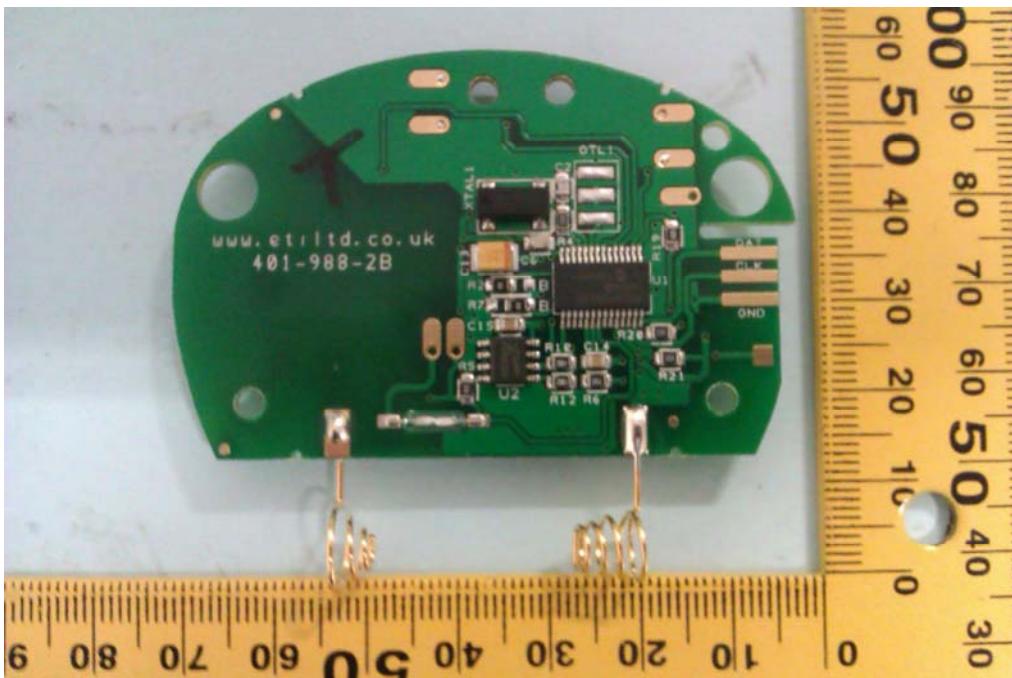
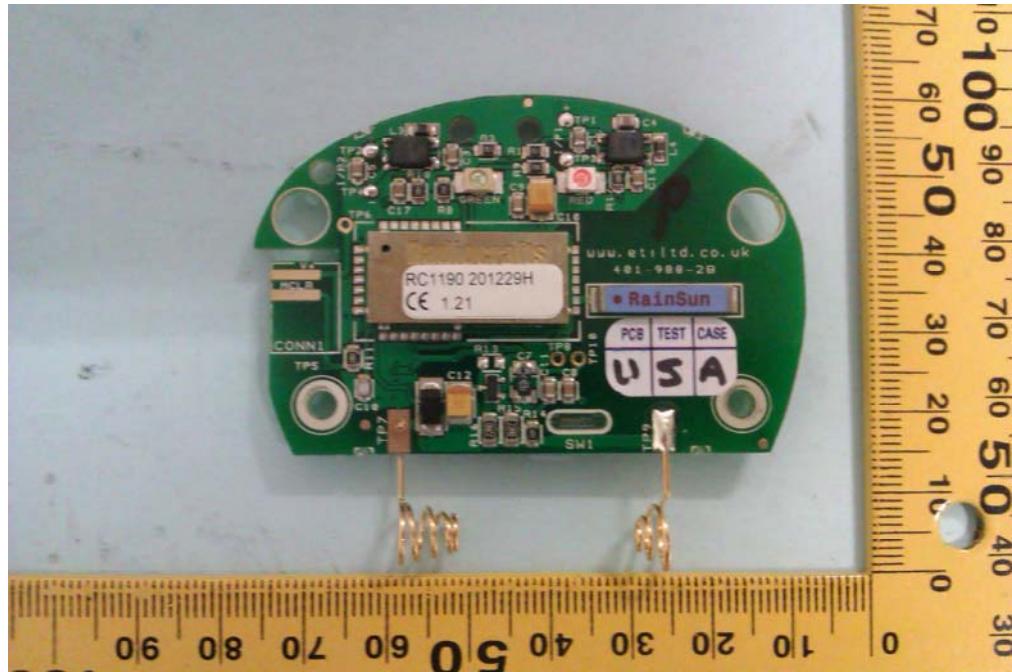
The following photographs were taken of the test samples:

1. Test setup.
2. WTB Overview.
3. WTB2F Overview
4. WTB2C Overview
5. WTB Cover removed/ WTB2F Cover removed/ WTB2C Cover removed
6. PCB Top and Underside View

Photograph 1

Photograph 2



Photograph 3



Photograph 4

Photograph 5

Photograph 6

Appendix G: MPE Calculation

OET Bulletin No. 65, Supplement C 01-01

47 CFR §§1.1307 and 2.1091

2.1091 Radio frequency radiation exposure evaluation: mobile devices.

For purposes of these requirements mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimetres is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limits. As the 20cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than 1mW/cm^2 power density limit, as required under FCC rules.

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{EIRP}{4 \pi R^2} \text{ re - arranged} \quad R = \sqrt{\frac{EIRP}{S 4 \pi}}$$

where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Result

Prediction Frequency (MHz)	Maximum EIRP	Power density limit (S) (mW/cm^2)	Distance (R) cm required to be less than 1mW/cm^2
914.5	0.18	0.6	0.49

