


## **SPECIFIC ABSORPTION RATE CALCULATION**

Calculations per 2.1093 of CFR 47.

These calculations are based upon a typical human figure as approximated below. The height is 5' 8" (173 cm.) and the weight is 160 lbs. (72.6kg).



The calculated absorption cross section for this figure is 143 cm squared.

### **CALCULATED UNCONTROLLED, GENERAL POPULATION SAR**

$$S = PG/(4\pi R^2)$$

Where  $S$  = power density in  $\text{mw}/\text{cm}^2$

$P$  = input power to antenna in  $\text{mw}$ .

$G$  = power gain of antenna

$R$  = distance from antenna in  $\text{cm}$ .

The antenna structure is to be mounted outside the vehicle maintaining a minimum separation distance of 1 meter.

For a minimum distance of 1000 centimeters and 10 watt (10,000mW) operation with a  $\frac{1}{4}$  wave whip antenna,  $S$  is:

$$S = 10000(1)/(4\pi(1000)^2) = 795.77\text{E-}6 \text{ mw}/\text{cm}^2$$

For a body cross sectional area of 143 cm squared,  $(0.000795)(143) = 16.27 \text{ mw}$  is absorbed.

For a body mass of 72.6 kg, this is  $0.01627/72.6 = 224.14\text{E-}6 \text{ watts/kg}$  ( $0.000224 \text{ watts/kg}$ )

This is well within the .08 watts/kg limit prescribed by CFR 47 paragraph 2.1093.