

Electromagnetic Compatibility Test Report

Prepared in accordance with

FCC Part 15C, RSS-210 Issue 8 and ANSI C63.10

On

DIGITAL INDICATOR

MarCator 1086 R

**Mahr Federal Inc.
1144 Eddy Street
Providence, RI 02905, USA**

Prepared by:

TUV Rheinland of North America, Inc.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Manufacturer's statement - attestation

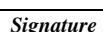
The manufacturer; Mahr Federal Inc., as the responsible party for the equipment tested, hereby affirms:

- a) That he has reviewed and concurs that the test shown in this report are reflective of the operational characteristics of the device for which certification is sought;
- b) That the device in this test report will be representative of production units;
- c) That all changes (in hardware and software/firmware) to the subject device will be reviewed.
- d) That any changes impacting the attributes, functionality or operational characteristics documented in this report will be communicated to the body responsible for approving (certifying) the subject equipment.

Peter Jette
Printed name of official

Signature of official

1144 Eddy Street
Providence, RI 02905, USA
Address


6/12/12
Date

401-784-3443
Telephone number

Peter.Jette@Mahr.com
Email address of official

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Report No.:
31250763.001
Page 3 of 37

Client: Federal Inc. 1144 Eddy Street Providence, RI 02905, USA		Peter Jette 401-784-3443 Peter.Jette@Mahr.com	
Identification:	DIGITAL INDICATOR	Serial No.:	11081514
Test item:	MarCator 1086 R	Date tested:	18 April 2012
Testing location:	TUV Rheinland of North America 762 Park Avenue Youngsville, NC 27596-9470 U.S.A.		Tel: (919) 554-3668 Fax: (919) 554-3542
Test specification:	Emissions: FCC Part 15, Subpart C, RSS-210 Issue 8: FCC Parts 15.207(a) and RSS-GEN 7.2.4, FCC Part 15.31(e) FCC Parts 15.249(d), 15.209, 15.215(c) and RSS-210 A2.9, RSS-GEN 7.2.1 FCC Part 15.249 and RSS-210 Annex 2.9, FCC Parts 15.249(a), 15.249(c), RSS-210 A2.9(a), FCC Part 15.109(a) and RSS-210 2.2 and 2.3, FCC Part 15.107(a) and RSS-210 2.2 and 2.3 FCC Part 2.1093 and RSS-102, Issue 4,		
Test Result	The above product was found to be Compliant to the above test standard(s)		
tested by: Mark Ryan	reviewed by: Robert Richards		
<u>18 April 2012</u> <i>Signature</i>		<u>19 June 2012</u> <i>Signature</i>	
Other Aspects:	None		
Abbreviations: OK, Pass, Compliant, Complies = passed Fail, Not Compliant, Does Not Comply = failed N/A = not applicable			
 90552 and 100881	 NVLAP Lab Code (200094-0)	Industry Canada IC-2932H	

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

TABLE OF CONTENTS

1 GENERAL INFORMATION	5
1.1 SCOPE	5
1.2 PURPOSE	5
1.3 REVISION HISTORY	5
1.4 SUMMARY OF TEST RESULTS	6
2 LABORATORY INFORMATION	7
2.1 ACCREDITATIONS AND ENDORSEMENTS	7
2.2 MEASUREMENT UNCERTAINTY EMISSIONS	8
2.3 CALIBRATION TRACEABILITY	8
2.4 MEASUREMENT EQUIPMENT USED	9
3 PRODUCT INFORMATION	9
3.1 PRODUCT DESCRIPTION	9
3.2 EQUIPMENT MODIFICATIONS	9
4 RADIATED EMISSIONS IN TRANSMIT MODE	10
4.1 RADIATED EMISSIONS - FCC PARTS 15.249, RSS-210 A2.9(A)	10
4.2 BAND EDGE REQUIREMENTS - FCC PART 15.249(D), RSS-210 2.2	21
4.1 CONDUCTED EMISSIONS ON AC MAINS – FCC 207(A) AND RSS-GEN 7.2.4	24
4.1 99% POWER BANDWIDTH	25
4.2 EXTREME VOLTAGE REQUIREMENTS - FCC PART 15.31(E)	27
5 EMISSIONS IN RECEIVE MODE	28
5.1 RADIATED EMISSIONS IN RECEIVE MODE – FCC 15.109(A) AND RSS-210	28
5.2 CONDUCTED EMISSIONS IN RECEIVE MODE – FCC 15.107(A) AND RSS-210	35
6 RF EXPOSURE	36
6.1 EXPOSURE REQUIREMENTS – FCC KDB # 447498 DO1 AND RSS-102 ISSUE 4	36

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

1 General Information

1.1 Scope

This report is intended to document the status of conformance with the requirements of the FCC Part 15C, RSS-210 Issue 8 and ANSI C63.10 based on the results of testing performed on 18 April 2012 on the DIGITAL INDICATOR, Model No. MarCator 1086 R, manufactured by Mahr Federal Inc. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Revision History

Revision	Date	Description of Revision
--	19 June 2012	Initial Release

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

1.4 Summary of Test Results

Applicant	Mahr Federal Inc. 1144 Eddy Street Providence, RI 02905, USA	Tel	401-784-3443	Contact	Peter Jette			
		Fax	401-784-3344	e-mail	Peter.Jette@Mahr.com			
Description		Model		MarCator 1086 R				
Serial Number		Test Voltage/Freq.		3 V DC Lithium battery				
Test Date Completed:		Test Engineer		Mark Ryan				
Standards		Description		Severity Level or Limit	Worst-case Values	Test Result		
FCC Part 15, Subpart C Standard		Radio Frequency Devices-Subpart C: Intentional Radiators		See called out parts below		See Below	Complies	
RSS-210 Issue 8 Standard		Low-Power Licence-exempt Radiocommunication Devices Category I Equipment		See called out parts below		See Below	Complies	
FCC Part 15.249 and RSS-210 Annex 2.9		Operation within the band 2400 to 2483.5 MHz		See called out parts below		See Below	Complies	
FCC Parts 15.249(a), 15.249(c), RSS-210 A2.9(a)		Radiated Output Power for Fundamental and Harmonic Frequencies		Fund: Shall not exceed 50mV/m at 3m Harmonics: Shall not exceed 500μV/m (0.5 mV/m) at 3m, (unrestricted bands)		0.806 mV/m 221 μV/m -	Complies	
FCC Parts 15.249(d), 15.209, 15.215(c) and RSS-210 A2.9, RSS-GEN 7.2.1		Out-of-Band Spurious Emissions (EUT in Transmit Mode)		Below the applicable limits		31.37 dBμV	Complies	
FCC Parts 15.207(a) and RSS-GEN 7.2.4		Conducted Emissions on AC Mains		NA, The EUT is battery operated only		NA	NA	
FCC Part 15.31(e)		Frequency Stability		The EUT is battery operated only. A fresh battery was used for testing		NA	Complies	
RSS-210 A1.1.3		Occupied Bandwidth		99% BW ≤ 0.5% of center freq.		136 kHz	Complies	
FCC Part 15.109(a) and RSS-210 2.2 and 2.3		Receive Mode - Radiated Emissions		Below limit of the restricted bands listed in RSS-GEN section 6		Noise Floor	Complies	
FCC Part 15.107(a) and RSS-210 2.2 and 2.3		Receive Mode - Conducted Emissions on AC Mains		NA, The EUT is battery operated only		NA	NA	
FCC Part 2.1093 and RSS-102, Issue 4		RF Exposure		SAR or MPE Requirements		2.87 mW	Complies	

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

2 Laboratory Information

2.1 *Accreditations and Endorsements*

2.1.1 US Federal Communications Commission

TUV Rheinland of North America located at 762 Park Avenue, Youngsville, NC 27596-9470 is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No 90552 and 100881). The laboratory scope of accreditation includes: Title 47 CFR Part 15, and 18. The accreditation is updated every 3 years.

2.1.2 NIST / NVLAP

Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Standard 17025:2005 (Lab code: 200094-0). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Industry Canada

Registration No.: IC-2932H The OATS has been accepted by Industry Canada to perform testing to 3 and to 10m, based on the test procedures described in ANSI C63.10-2009.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland at the 762 Park Ave. Youngsville, N.C 27596 address has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Registration No. R-1174, R-1679, C-1790 and C-1791).

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

2.1.5 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

$$\text{Field Strength (dB}\mu\text{V/m)} = \text{RAW} - \text{AMP} + \text{CBL} + \text{ACF}$$

Where: RAW = Measured level before correction (dB μ V)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu\text{V/m} = 10^{\frac{\text{dB}\mu\text{V/m}}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor–Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

$$25 \text{ dBuV/m} + 17.5 \text{ dB} - 20 \text{ dB} + 1.0 \text{ dB} = 23.5 \text{ dBuV/m}$$

2.2 Measurement Uncertainty Emissions

	U_{lab}	U_{cisp}
Radiated Disturbance @ 10m		
30 MHz – 1,000 MHz	3.3 dB	5.2 dB
Conducted Disturbance @ Mains Terminals		
150 kHz – 30 MHz	1.18 dB	3.6 dB
Disturbance Power		
30 MHz – 300 MHz	3.88 dB	4.5 dB
Temperature measurement		DC Voltage measurements
$\pm 4.0 \%$	$\pm 4.0 \%$	$\pm 0.5 \%$

2.3 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Report No.:
31250763.001
Page 9 of 37

2.4 Measurement Equipment Used

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy
Radiated Emissions (5 Meter Chamber and Bench top)					
Amplifier, preamp	Agilent Technologies	8449B	3008A01480	01-Feb-11	01-Feb-12
Antenna Horn 1-18GHz	EMCO	3115	2236	13-Dec-10	13-Dec-12
Antenna Horn 1-18GHz	EMCO	3115	5770	18-Aug-10	18-Aug-12
Ant. BiconiLog	Chase	CBL6140A	1108	24-Aug-11	24-Aug-12
Receiver, EMI	Rohde & Schwarz	ESIB40	100043	01-Aug-11	01-Aug-12
Spectrum Analyzer	Agilent Tec.	E7405A	US39440157	06-Dec-10	06-Dec-11
Cable, Coax	MicroCaox	MKR300C-0-0-1200-500500	002	16-Dec-10	16-Dec-11
Cable, Coax	Andrew	FSJ1-50A	003	16-Dec-10	16-Dec-11
Cable, Coax	Andrew	FSJ1-50A	030	16-Dec-10	16-Dec-11
Cable, Coax	Andrew	FSJ1-50A	045	16-Dec-10	16-Dec-11
High Pass Filter	Micro-tronics	BRM50702	049	20-Jan-11	20-Jan-12
Conducted Emissions (AC/DC and Signal I/O)					
LISN 15-18 (NSLK 8126)	Schwarzbeck Mess-Electronik	NSLK 8126	003885	21-Jan-11	21-Jan-12
Transient Limiter	Schaffner	CFL-9206	1649	01-Aug-11	01-Aug-12
Receiver, EMI	Rohde & Schwarz	ESH 3	860905/005	15-Dec-10	15-Dec-11
Spectrum Analyzer	Agilent Tec.	E7405A	US39440157	06-Dec-10	06-Dec-11
Cable, Coax	Pasternack	RG-223	051	16-Dec-10	16-Dec-11
General Laboratory Equipment					
Generator, Noise	York University	CNE III	Ser/98/66	CNR II	CNR II
Meter, Multi	Fluke	179	90580752	06-Dec-10	06-Dec-11
Power Supply, AC	California Instruments	3001ix	53354	07-Dec-10	07-Dec-11
Meter, Temp/Humid/Barom	Davis Instruments	7400	PB00205A13	1-Jan-11	1-Jan-12

3 Product Information

3.1 Product Description

See Description in the test plan in Appendix A of this report

3.2 Equipment Modifications

No modifications were needed to bring product into compliance.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

4 Radiated Emissions in Transmit mode

4.1 Radiated emissions - FCC Parts 15.249, RSS-210 A2.9(a)

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following limits:

Fundamental Frequency: 2400 to 2483.5 MHz – 50 mV/m (94 dB μ V/m) at 3m.

Harmonic Frequencies – 500 μ V/m (54 dB μ V/m) at 3m.

4.1.1 Over View of Test

Results	Complies (as tested per this report)			Date	5 - 6 April 2012		
Standard	FCC Parts 15.205, 15.209, 15.215(c), 15.249(a), 15.249(c), 15.249(d) RSS-210 A2.9, and RSS-GEN 7.2.1						
Product Model	MarCator 1086 R			Serial#	11081514		
Test Set-up	Tested in a 5m Semi Anechoic chamber, placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane on a turn-table.						
EUT Powered By	3.0 V DC Re-chargeable battery	Temp	72° F	Humidity	40%	Pressure	997 mbar
Perf. Criteria	(Below Limit)		Perf. Verification	Readings Under Limit			
Mod. to EUT	None		Test Performed By	Mark Ryan			

4.1.2 Test Procedure

Testing was performed in accordance with 47 CFR Part 15, ANSI C63.10:2009, RSS-GEN Issue 2. These test methods are listed under the laboratory's NVLAP Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

4.1.3 Deviations

Since all emissions outside the band are within the limits of FCC Part 15.209 and RSS-GEN 7.2.1, the emissions shown below are also compliant with FCC Parts 15.205, 15.209, 15.215(c), 15.249(d), RSS-210 A8.5, and RSS-GEN 7.2.1.

4.1.4 Final Test

All final radiated spurious emissions measurements were below (in compliance) the limits.

The worst –case emissions are shown below. All other emissions are on file at TUV Rheinland.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

4.1.4.1 Worst Case Emissions inside the Frequency Band

Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Equivalent EIRP level (dBm)	Spec Limit (dBm)
Orientation 1										
Ch 1:										
2405.00	H	1	29	58.69	0.00	5.36	28.47	92.52		
2405.00	V	1	346	62.48	0.00	5.36	28.47	96.31		
CH 2:										
2440.00	H	1.1	1	61.05	0.00	5.42	28.42	94.89		
2440.00	V	1	3	62.45	0.00	5.42	28.42	96.29		
CH 3:										
2478.00	H	1	16	61.18	0.00	5.45	28.50	95.13		
2478.00	V	1	344	62.14	0.00	5.45	28.50	96.09		
Orientation 2										
Ch 1:										
2405.00	H	1	0	60.76	0.00	5.36	28.47	94.59		
2405.00	V	1	36	56.71	0.00	5.36	28.47	90.54		
CH 2:										
2440.00	H	1.7	355	64.29	0.00	5.42	28.42	98.13	2.87	30.00
2440.00	V	1.3	357	58.55	0.00	5.42	28.42	92.39		
CH 3:										
2478.00	H	1.3	355	63.10	0.00	5.45	28.50	97.05		
2478.00	V	1.3	15	59.52	0.00	5.45	28.50	93.47		
Orientation 3										
Ch 1:										
2405.00	H	1.6	220	56.45	0.00	5.36	28.47	90.28		
2405.00	V	1.6	313	52.56	0.00	5.36	28.47	86.39		
CH 2:										
2440.00	H	1.6	320	56.97	0.00	5.42	28.42	90.81		
2440.00	V	1.5	312	51.19	0.00	5.42	28.42	85.03		
CH 3:										
2478.00	H	1.5	317	56.45	0.00	5.45	28.50	90.40		
2478.00	V	1	275	52.78	0.00	5.45	28.50	86.73		

 Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

 Combined Standard Uncertainty $u_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence

Notes: EUT is Orientation 2 (Facing up)

This highlighted frequency and orientation was worst case (2440 MHz).

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

4.1.4.2 Maximum Time-weighted Emission:

The manufacturer specifies that the Duty Cycle of the device will be up to 1%, depending on the length of the transferred information.

The Highest measured emission is on the second channel (2440 MHz) at 98.3 dB μ V.

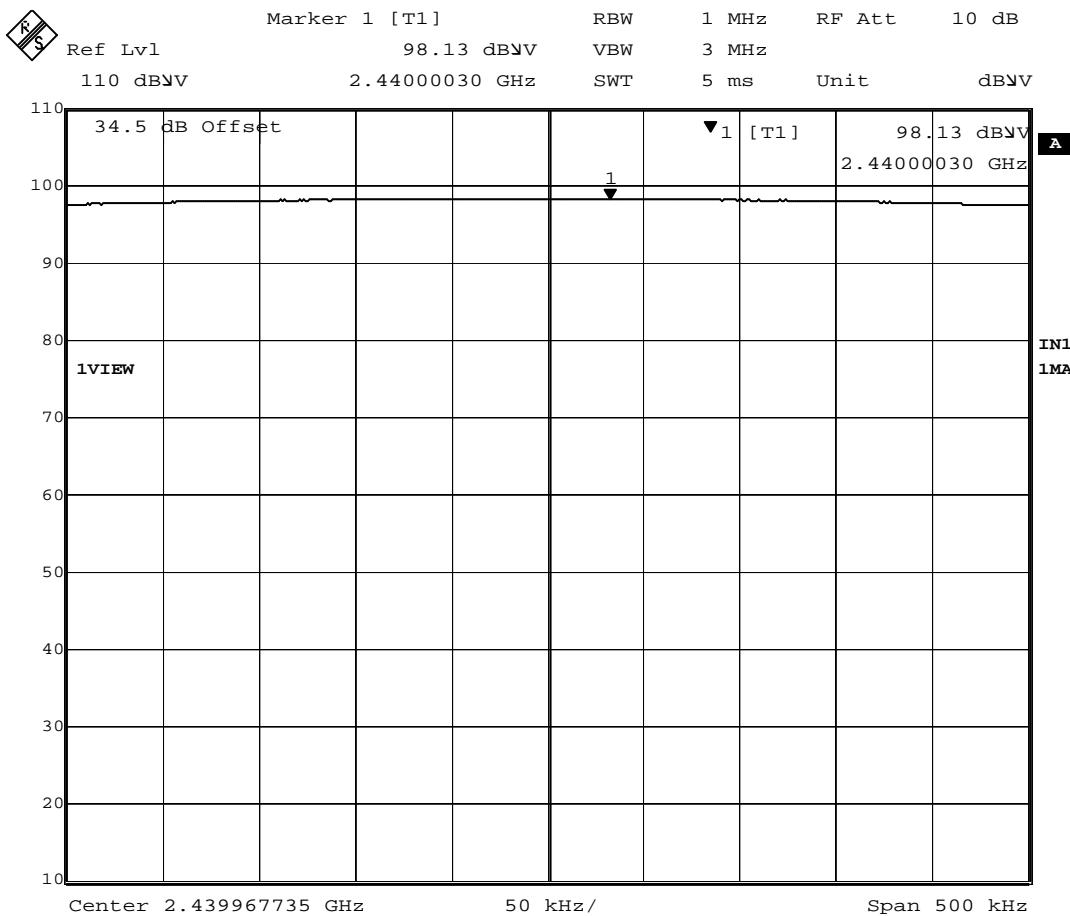
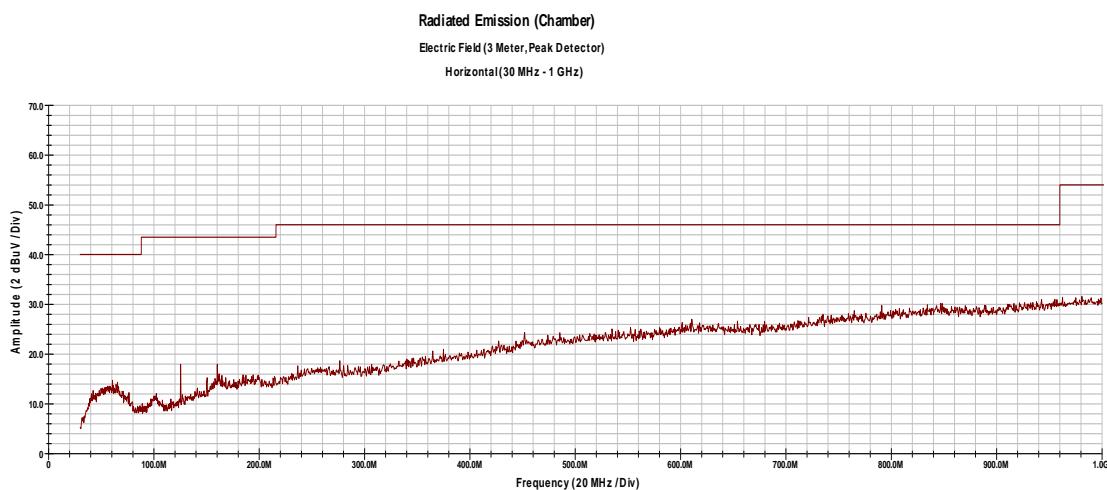


Figure 1. Highest Emission

Note: Correction factors were included in the Spectrum Analyzer trace for this frequency.

Frequency (MHz)	Maximum emission (dB μ V/m @ 3m)	Duty Cycle (%)	Time averaged (dB μ V/m)	Time averaged (μ V/m)	Limit (dB μ V/m)	Margin to limit (dB)
2440	98.13	1	58.13	806	94	35.87


(58.13 dB_{UV}/m is equivalent to 0.806 mV/m which is well below the 50 mV/m limit.)

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

4.1.4.3 Emissions Outside the Frequency Band:

Radiated Emissions Ch 2 – 30 MHz to 1000 MHz

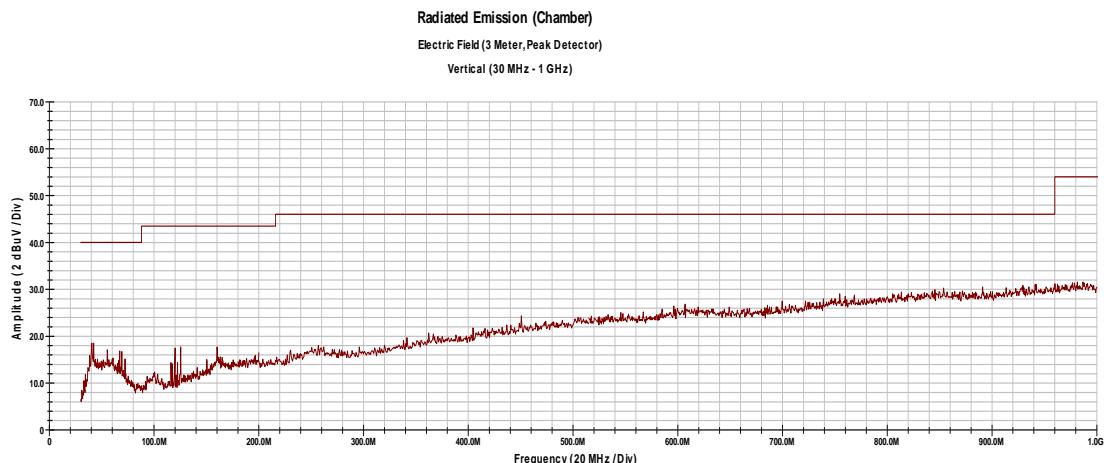
Horizontal

03:03:42 PM, Friday, April 06, 2012

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $U_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence

Notes: All emissions were below the noise floor of the instrumentation.


The remaining two channels gave very similar results.

The signals shown below 200 MHz are anomalies in the preamp of the measuring spectrum analyzer.

The signals shown below 200 MHz are anomalies in the preamp. A notch filter at the transmitter fundamental frequency was used

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

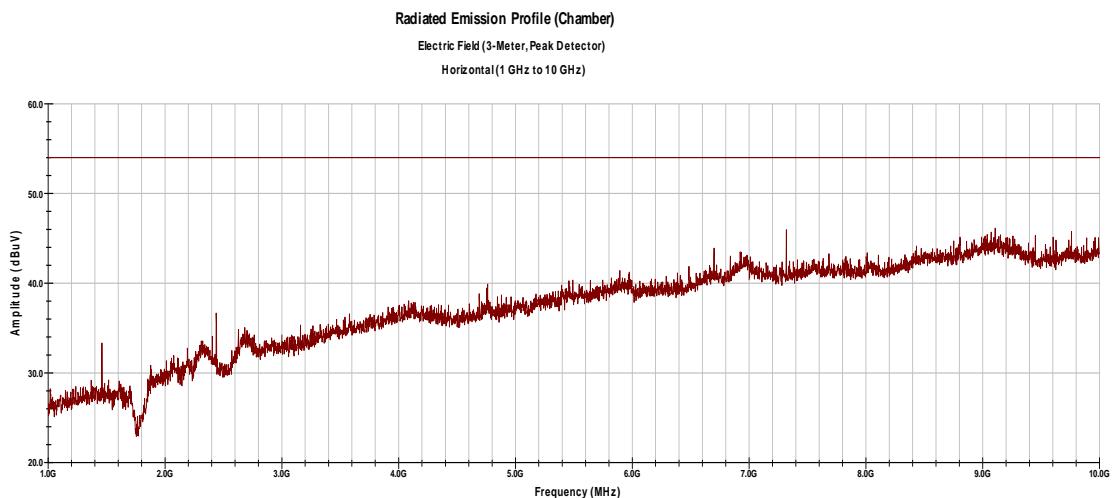
Radiated Emissions Ch 2 – 30 MHz to 1000 MHz Vertical

03:29:31 PM, Friday, April 06, 2012

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $U_c(Y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = k u_c(Y)$ $k = 2$ for 95% confidence

Notes: All emissions were below the noise floor of the instrumentation.


The remaining two channels gave very similar results.

The signals shown below 200 MHz are anomalies in the preamp of the measuring spectrum analyzer.

The signals shown below 200 MHz are anomalies in the preamp. A notch filter at the transmitter fundamental frequency was used.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Worst Case Radiated Emissions: Ch 2 – 1 to 10 GHz Horizontal

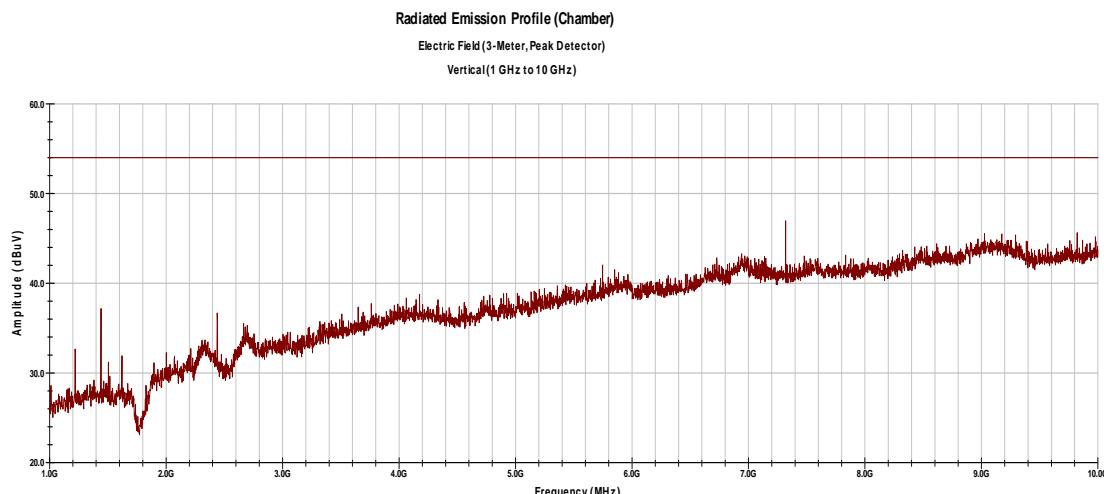
12:46:58 PM, Thursday, April 05, 2012

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $U_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = k u_c(y)$ $k = 2$ for 95% confidence

Notes: a Notch filter was used for the fundamental

Worst case emissions are in the Vertical Polarity (see next page)


The **Green** emissions are using the Average detector

The **Blue** emissions are using the Peak detector

Vertical showed the worst-case emissions (see below)

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Worst Case Radiated Emissions: Ch 2 – 1 to 10 GHz Vertical

12:54:29 PM, Thursday, April 05, 2012

Spec Margin = E-Field Value - Limit. E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $u_c(v) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(v)$ $k = 2$ for 95% confidence

Notes:

The worst case emissions was a harmonic at 46.514 dBuV /m (avg) which is equivalent to 211 μ V/m (at 3m)

The **RED** emissions are using the Average detector

The **Red** emissions are using the Average detector.
The **Blue** emissions are using the Peak detector.

All spurious and harmonic emissions are below the level of Part 15.209, including those not in restricted bands.

This channel and orientation provided the worst case Harmonic and Spurs radiation.

The signals shown below 200 MHz are anomalies in the preamp of the measuring spectrum analyzer.

The signals shown below 200 MHz are anomalies in the preamp. A notch filter at the transmitter fundamental frequency was used.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Radiated Emissions Ch 2 – 10 to 18 GHz

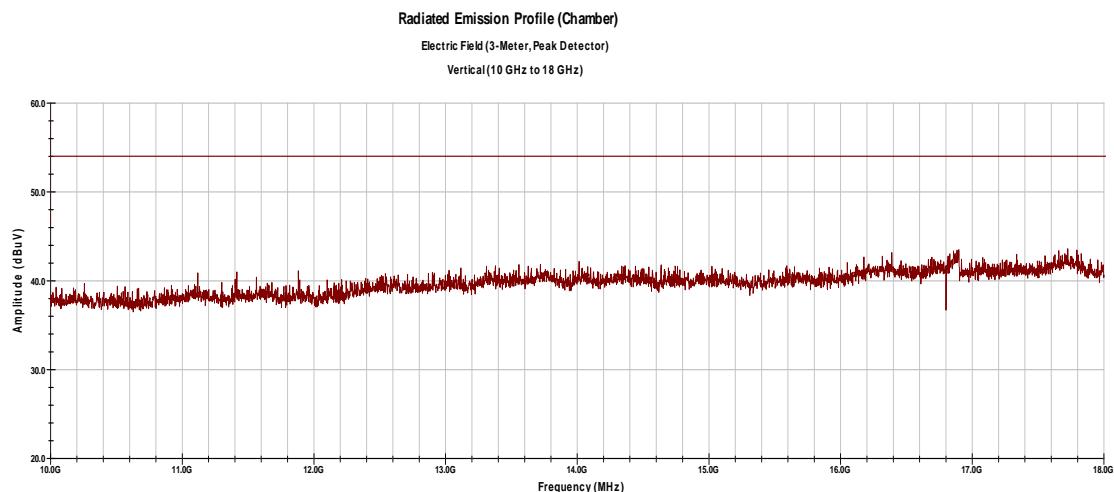
Horizontal

01:01:10 PM, Thursday, April 05, 2012

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $U_c(v) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(v)$ $k = 2$ for 95% confidence

Notes: No measurable emissions were noted


A Notch filter was used on the fundamental frequency

No emissions were seen above the noise floor of the instrumentation

The other two channels presented very similar results.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Radiated Emissions Ch 2 – 10 to 18 GHz Vertical

01:06:31 PM, Thursday, April 05, 2012

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $U_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = k u_c(y)$ $k = 2$ for 95% confidence

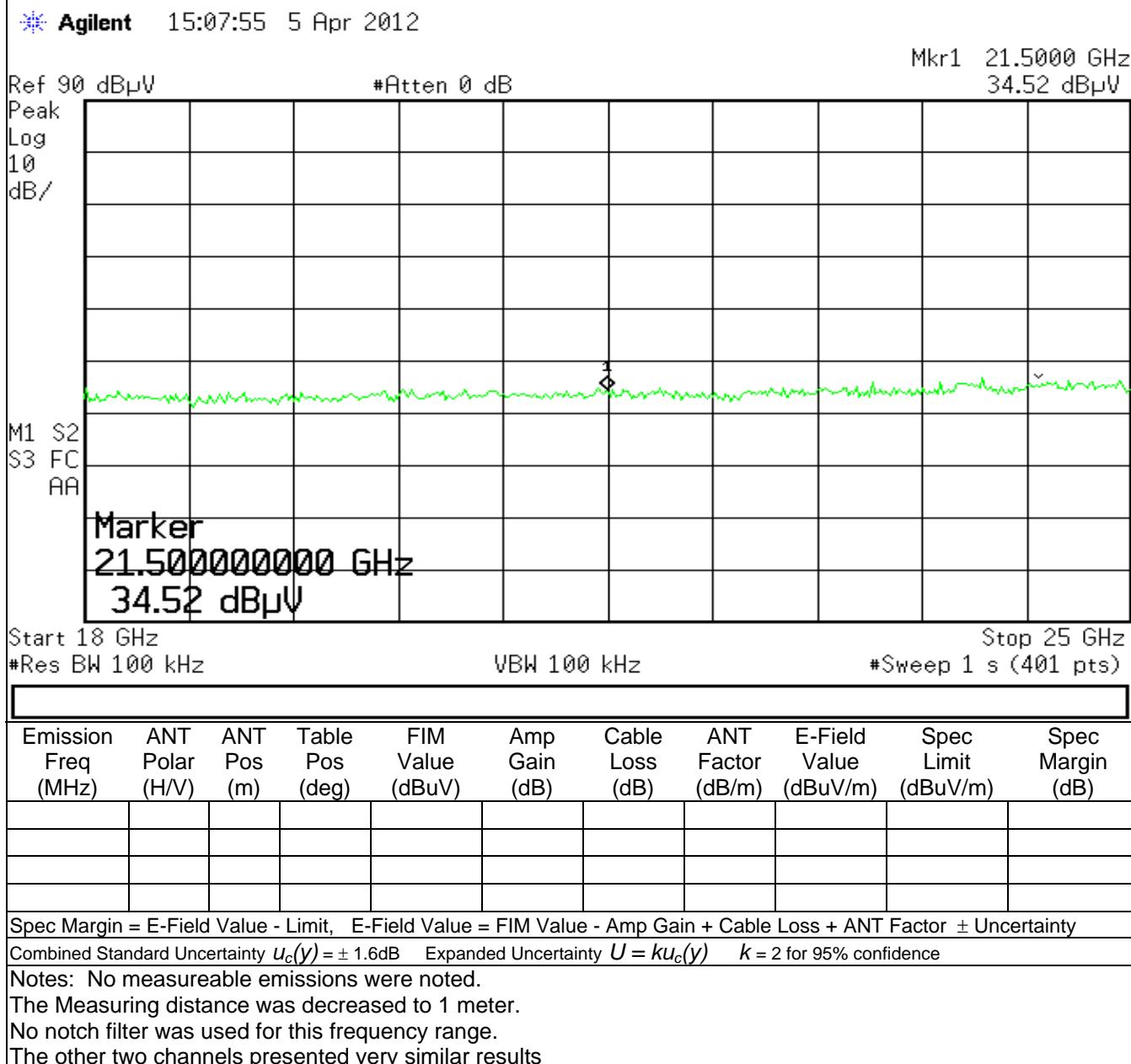
Notes: No measureable emissions were noted.

A Notch filter was used on the fundamental frequency

No emissions were seen above the noise floor of the instrumentation.

The other two channels presented very similar results

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

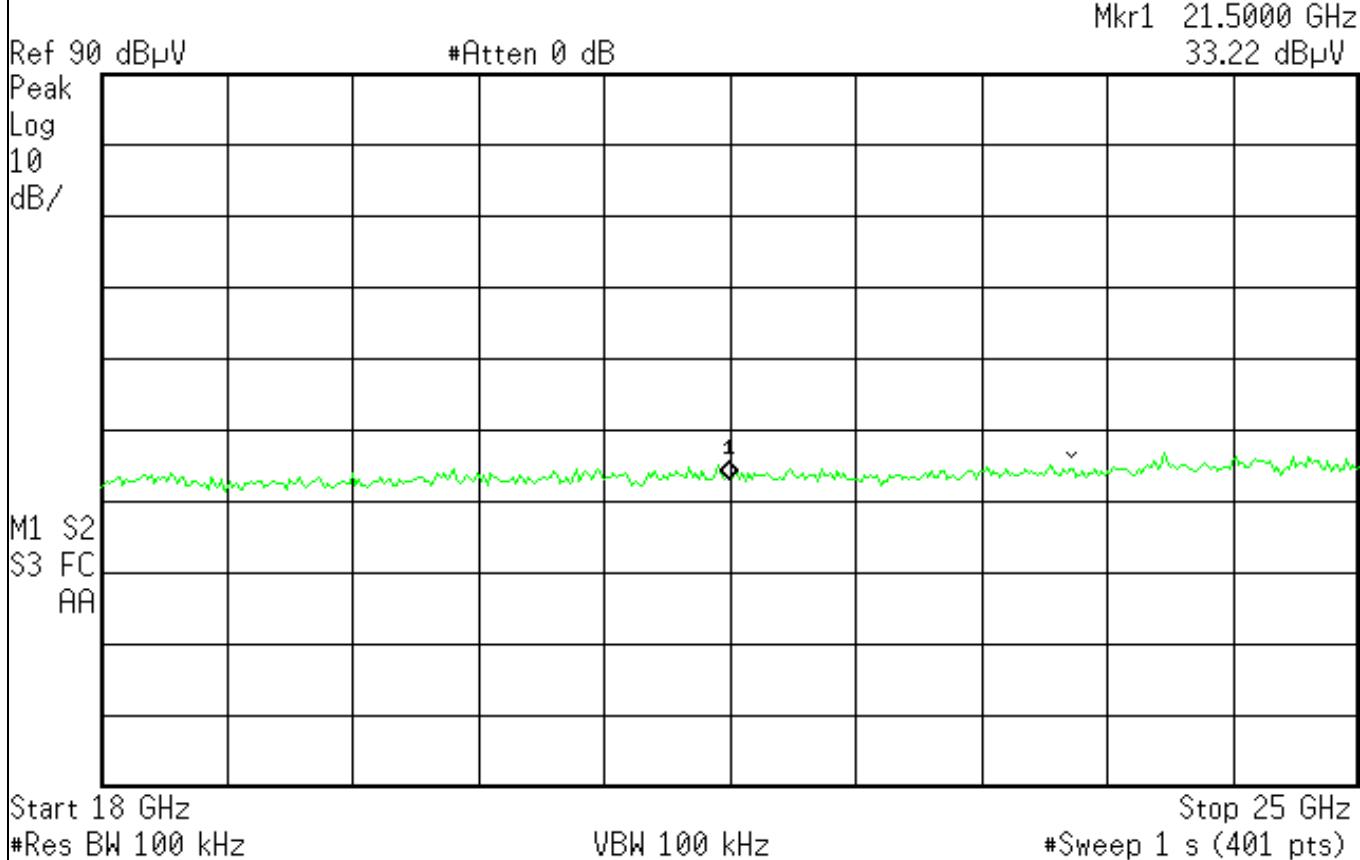

Report No.:

31250763.001

Page 19 of 37

Radiated Emissions Ch 2 – 18 to 25 GHz

Horizontal


The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Report No.:

31250763.001

Page 20 of 37

Radiated Emissions Ch 2 –18 to 25 GHz
 Vertical

 Agilent 15:09:11 5 Apr 2012

Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dB μ V)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dB μ V/m)	Spec Limit (dB μ V/m)	Spec Margin (dB)

 Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

 Combined Standard Uncertainty $u_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence

Notes: No measureable emissions were noted.

The Measuring distance was decreased to 1 meter.

No notch filter was used for this frequency range.

The other two channels presented very similar results

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

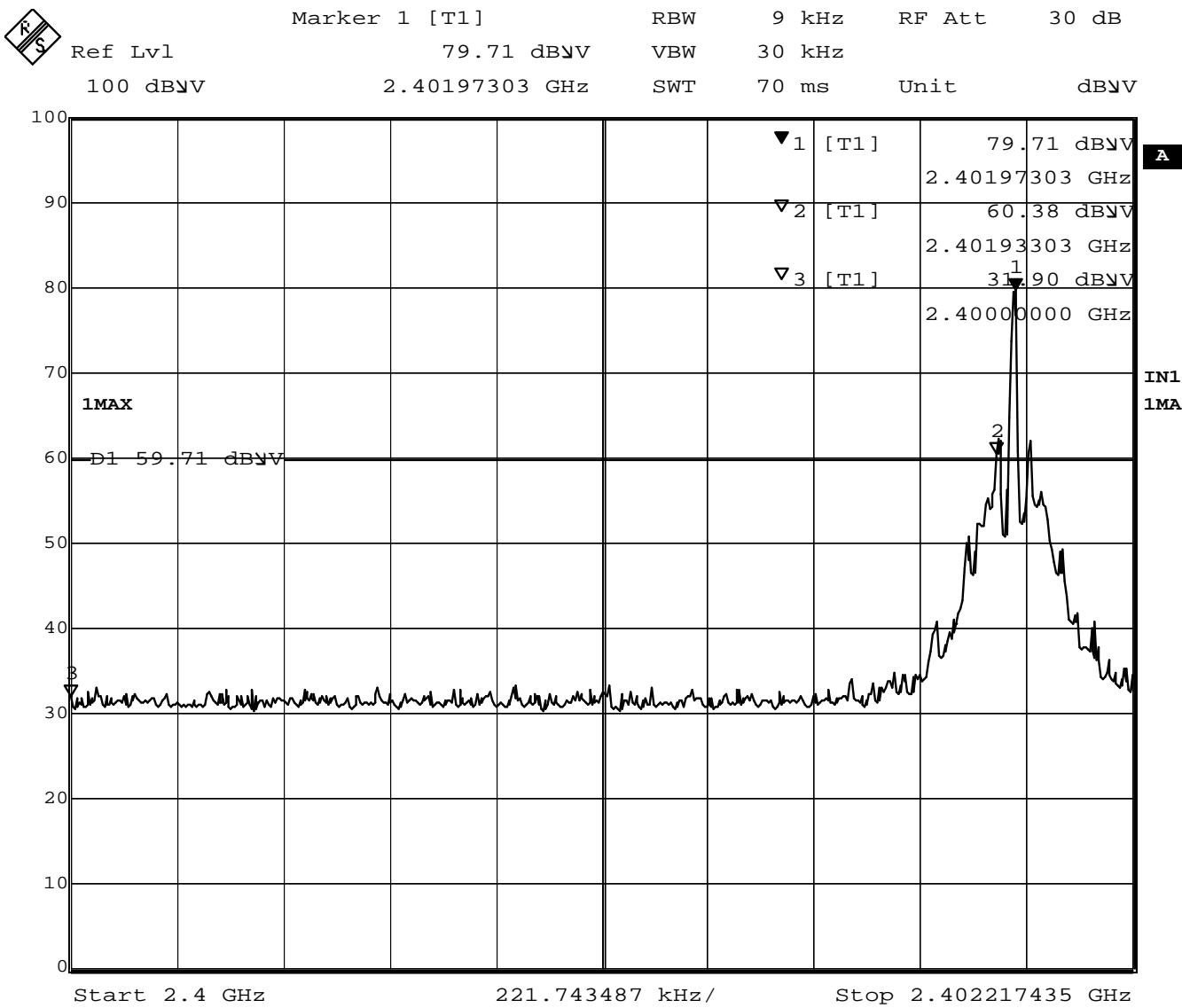
4.2 **Band Edge requirements - FCC Part 15.249(d), RSS-210 2.2**

4.2.1 Test Over View

Results	Complies (as tested per this report)			Date	3 April 2012		
Standard	FCC Part 15.249(d), RSS 210 2.2						
Product Model	MarCator 1086 R			Serial#	11081514		
Test Set-up	Direct Measurement from antenna port						
EUT Powered By	3.0 V DC Lithium battery	Temp	76° F	Humidity	45%	Pressure	999 mbar
Perf. Criteria	(Below Limit)		Perf. Verification	Readings Under Limit			
Mod. to EUT	None		Test Performed By	Mark Ryan			

4.2.2 Test Procedure

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Sec. 15.209, whichever is the lesser attenuation.


4.2.3 Deviations

There were no deviations from the test methodology listed in the test plan.

4.2.4 Final Test

The EUT met the performance criteria requirement as specified in the standards.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Report No.:
31250763.001
Page 22 of 37

Date: 3.APR.2012 12:40:21

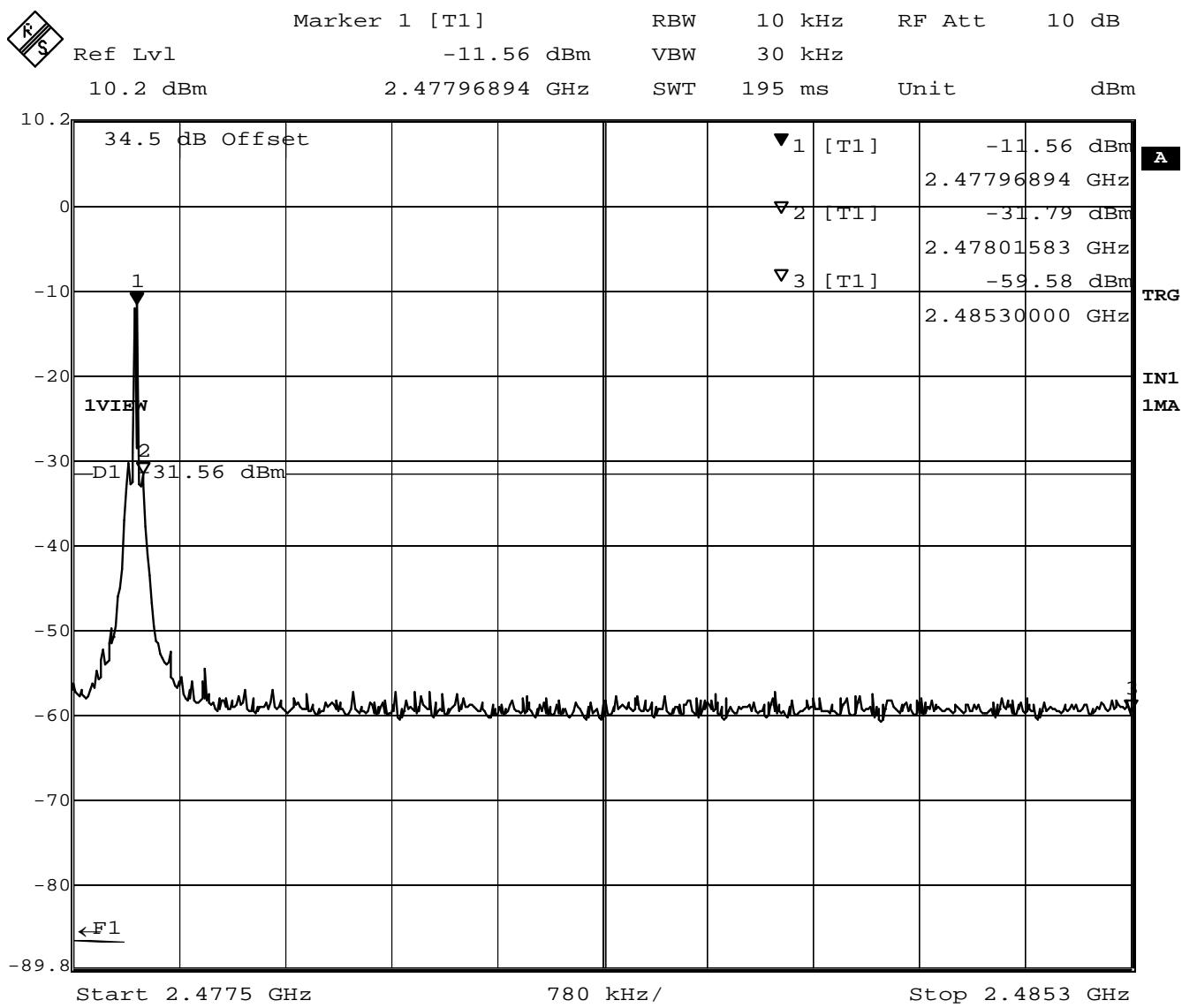
Notes: Measured using the Peak detector. Band Edge is at 2.4 GHz (Marker 3).

The nearest restricted band (2390MHz) is 10 MHz below the band edge

At the lowest channel, the 20dB down point is at 2401.93 MHz.

The band edge is at 2400 MHz

Figure 2: Lower Band Edge Measurement (Radiated Emission)


The EUT is compliant with the rules.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Report No.:

31250763.001

Page 23 of 37

Date: 6.APR.2012 11:34:11

Note: Measured using the Peak and Average detectors.

Band edge at 2483.5 MHz is also the start of a restricted band, so the rules of 15.205 apply.

The 20dB down point is inside the band at 2478.02 MHz.

The highest peak above the band edge is at 2.483.95 MHz:

Figure 3: Upper Band Edge Measurement (Radiated Emission)

The EUT is compliant with the rules.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

4.1 Conducted Emissions on AC Mains – FCC 207(a) and RSS-GEN 7.2.4

This test measures the electromagnet levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other near by electronic equipment.

4.1.1 Over View of Test

Results	NA EUT is battery operated only			Date	NA		
Standard	FCC Parts 15.207(a) and RSS-GEN 7.2.4						
Product Model	MarCator 1086 R			Serial#	NA		
Test Set-up	Tested in shielded room. EUT placed on table, see test plans for details						
EUT Powered By	3.0 V DC Lithium battery	Temp	NA	Humidity	NA	Pressure	NA
Frequency Range	150 kHz – 30 MHz						
Perf. Criteria	(Below Limit)	Perf. Verification		Readings Under Limit for L1 & Neutral			
Mod. to EUT	None	Test Performed By		NA			

4.1.2 Test Procedure

Conducted emissions tests were performed using the procedures of ANSI C64.4: 2009, including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

4.1.3 Deviations

The Test sample is battery operated only. It does not have provision for external power of any kind.

4.1.4 Final Test

This this is not applicable for the device submitted for testing

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

4.1 99% Power Bandwidth

For the purpose of Section A1.1, the 99% bandwidth shall be no wider than .25% of the center frequency for devices operating between 70-900MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. This device operates above 900 MHz.

4.1.1 Test Over View

Results	Complies (as tested per this report)				Date	18 April 2012	
Standard	RSS-210 Section A1.1.3						
Product Model	DIGITAL INDICATOR			Serial#	11081514		
Test Set-up	Direct Measurement from antenna port						
EUT Powered By	3 V DC Lithium battery	Temp	71° F	Humidity	36%	Pressure	1009 mbar
Perf. Criteria	(Below Limit)		Perf. Verification		Readings Under Limit		
Mod. to EUT	None		Test Performed By		Mark Ryan		

4.1.2 Test Procedure

Using the procedures of RSS-GEN section 4.6.1, the 3 kHz resolution bandwidth is 1% of the 300 kHz span. The 10 kHz video bandwidth is over 3 times that of the resolution bandwidth.

The limit of the bandwidth would be 0.5% of 2.4 GHz or 12 MHz.

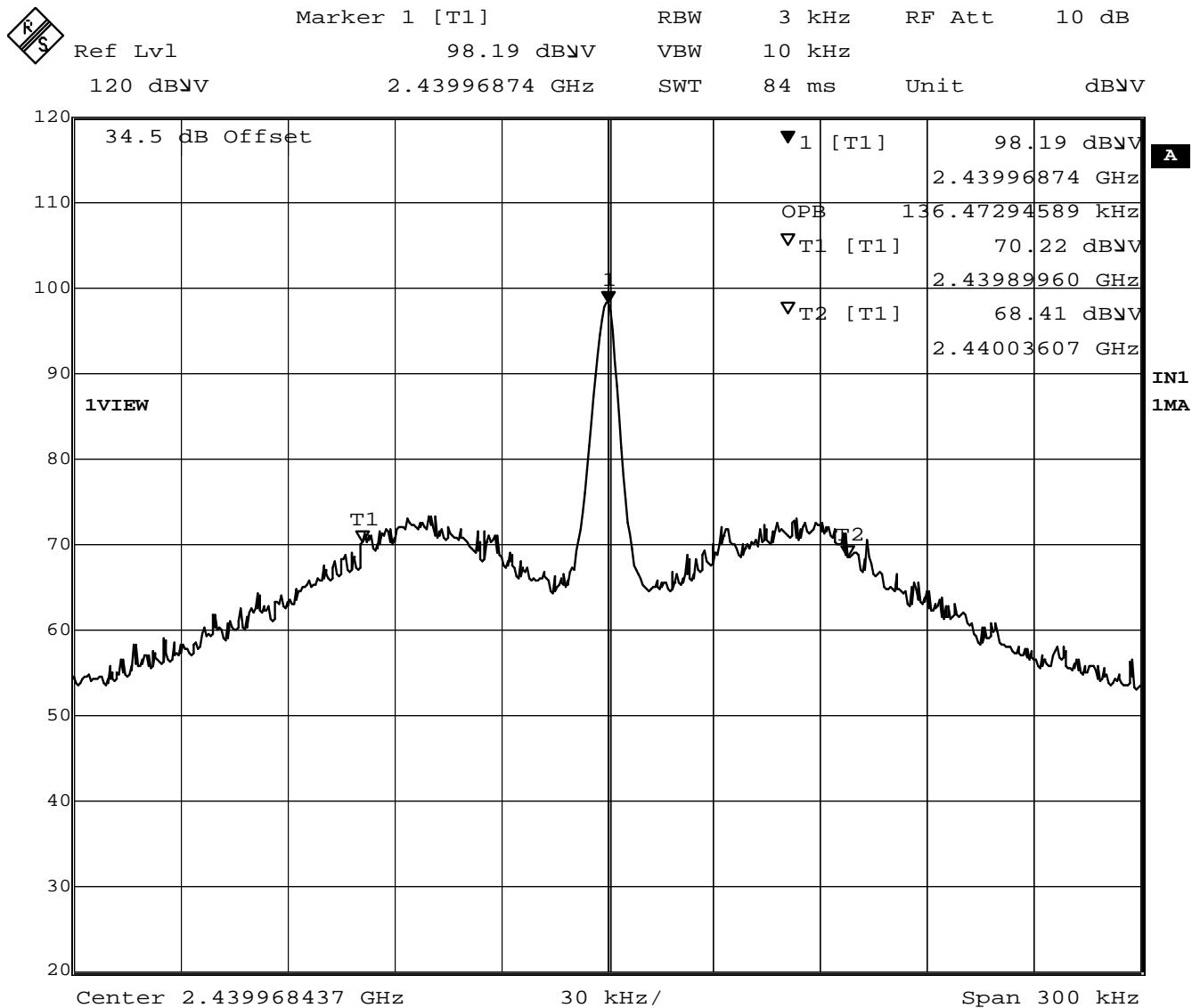
4.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the Electrical Fast transients (EFT) Immunity test.

4.1.4 Final Results

The measured 99% bandwidth is 146.69 kHz, which is well below the 12 MHz limit.

The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.


The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Report No.:

31250763.001

Page 26 of 37

4.1.5 Final Data

Date: 18.APR.2012 12:00:48

Figure 4 – 99% Power Bandwidth = 136 kHz

Span = 300 kHz, RBW = 3 kHz, VBW = 10 KHz

The EUT is compliant to the requirements of RSS-210 A1.1.3

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Report No.:

31250763.001

Page 27 of 37

4.2 Extreme Voltage Requirements - FCC Part 15.31(e)

FCC Part 15.31 states that for intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

4.2.1 Over View of Test

Results	Complies (as tested per this report)		Date	6 April 2012
Standard	FCC Part 15.31(e)			
Product Model	MarCator 1086 R		Serial#	11081514
Test Set-up	Tested in shielded room. EUT placed on table, see test plans for details			
Mod. to EUT	None	Test Performed By	Mark Ryan	

4.2.1 Test Procedure

This device is battery operated: Per FCC Part 15.3(e), a new battery was installed for the tests.

4.2.2 Final Test

As tested, the EUT was found to be compliant to the requirements of the test standard.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

5 Emissions in Receive Mode.

5.1 Radiated Emissions in Receive mode – FCC 15.109(a) and RSS-210

This test measures the electromagnetic levels of spurious signals generated by the EUT that radiated from the EUT and may affect the performance of other nearby electronic equipment.

5.1.1 Over View of Test

Results	Complies (as tested per this report)			Date	6 April 2012					
Standard	FCC Part 15.109(a) and RSS-210 2.2 and 2.3									
Product Model	MarCator 1086 R			Serial#	11081514					
Configuration	See test plan for details									
Test Set-up	Tested in a 5m Semi Anechoic chamber, placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane on a turn-table.									
EUT Powered By	3.0 V DC Lithium battery	Temp	74° F	Humidity	45%	Pressure	999 mbar			
Frequency Range	30 MHz to 13 GHz @ 3m									
Perf. Criteria	(Below Limit)		Perf. Verification	Readings Under Limit						
Mod. to EUT	None		Test Performed By	Mark Ryan						

5.1.2 Test Procedure

Radiated emissions tests were performed using the procedures of ANSI C63.4:2009 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

The frequency range from 30 MHz to 13 GHz was investigated for radiated emissions.

Radiated emission testing was performed at a distance of 3 meters in a 5 meter semi-anechoic chamber.

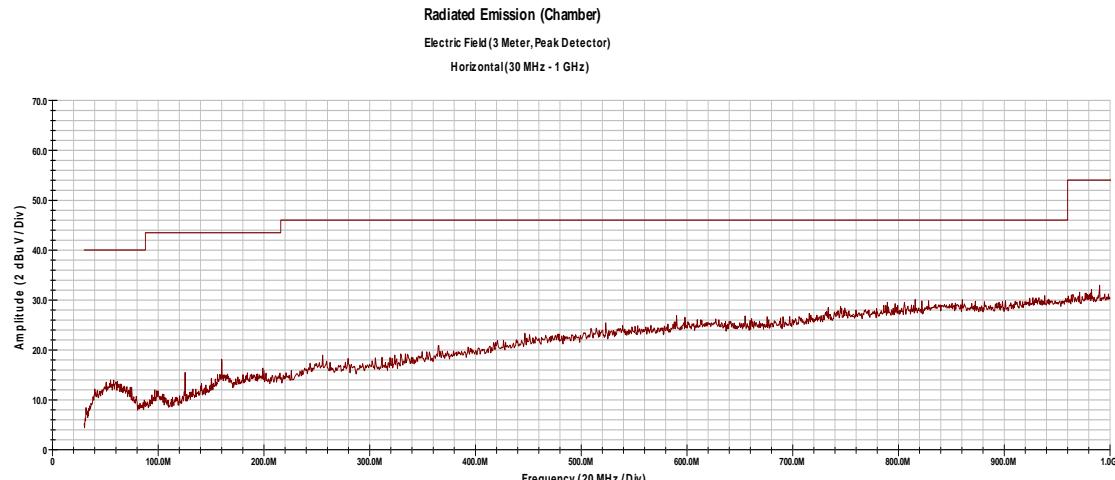
5.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

5.1.4 Final Test

All final radiated emissions measurements were below (in compliance) the limits.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.


Report No.:

31250763.001

Page 29 of 37

5.1.5 Final Graphs and Tabulated Data

Radiated Emissions **Receive Mode** Ch 2 – 30MHz to 1 GHz Horizontal

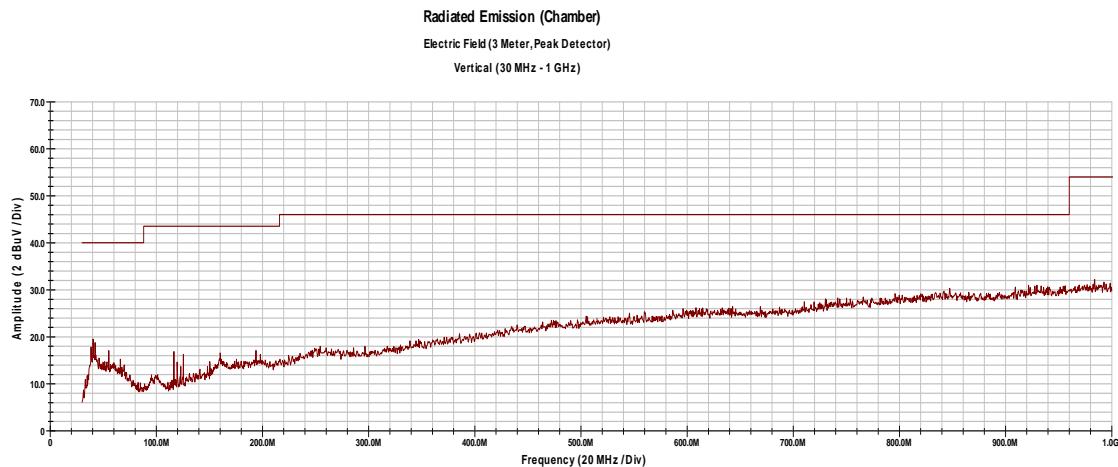
03:16:08 PM, Friday, April 06, 2012

Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)

 Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

 Combined Standard Uncertainty $u_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence

Notes: All emissions were below the noise floor of the instrumentation.


The signals shown below 200 MHz are anomalies in the preamp of the measuring spectrum analyzer.

The transmitter notch filter was not used for these scans.

The remaining two channels gave very similar results.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Radiated Emissions **Receive Mode** Ch 2 – 30MHz to 1 GHz **Vertical**

03:19:18 PM, Friday, April 06, 2012

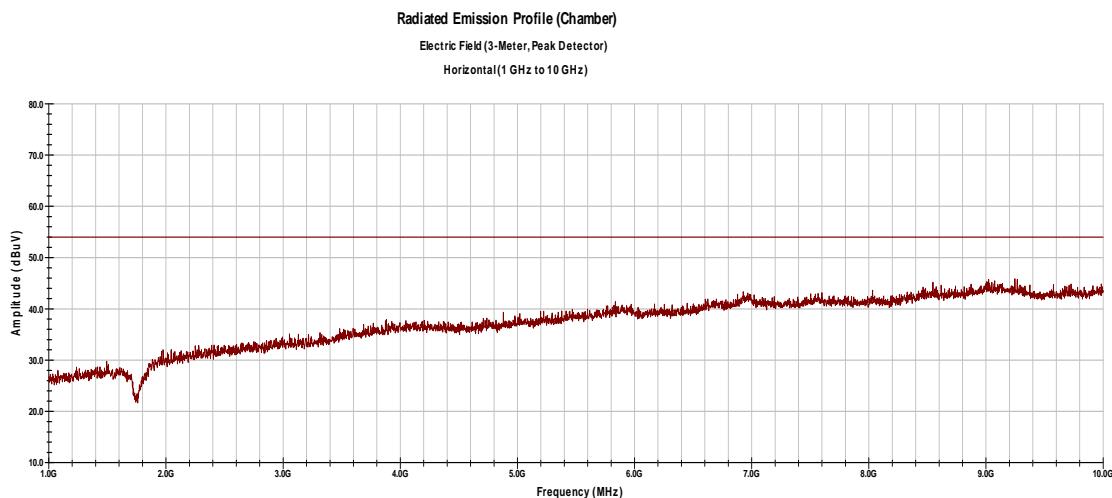
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence

Notes: All emissions were below the noise floor of the instrumentation.

The signals shown below 200 MHz are anomalies in the preamp of the measuring spectrum analyzer.

The transmitter notch filter was not used for these scans.


The remaining two channels gave very similar results.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Report No.:

31250763.001

Page 31 of 37

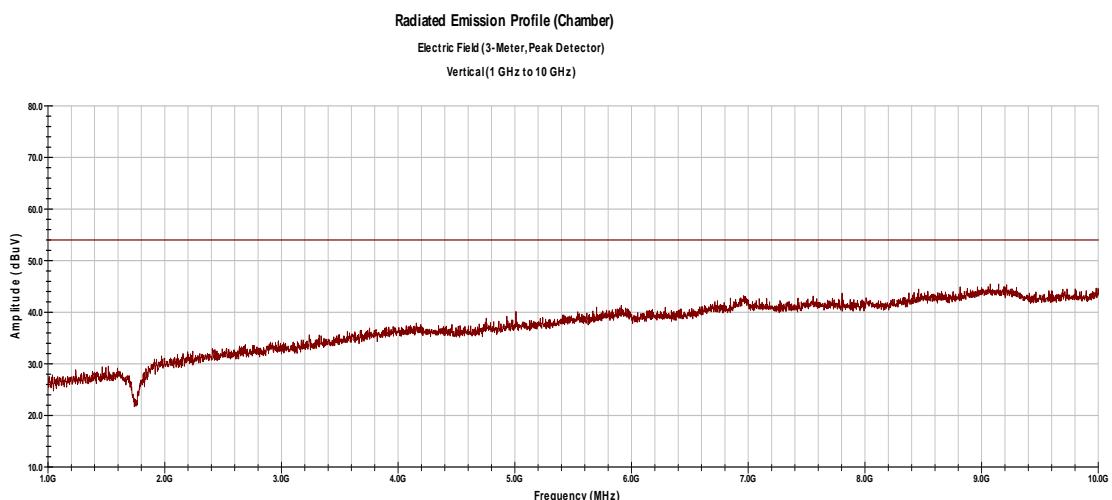
Radiated Emissions Receive Mode Ch 2 – 1 GHz to 10 GHz
 Horizontal

02:22:56 PM, Thursday, April 05, 2012

Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)

 Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

 Combined Standard Uncertainty $u_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence


Notes: All emissions are below the noise floor of the receiver.

The remaining two channels gave very similar results.

The transmitter notch filter was not used for these scans.

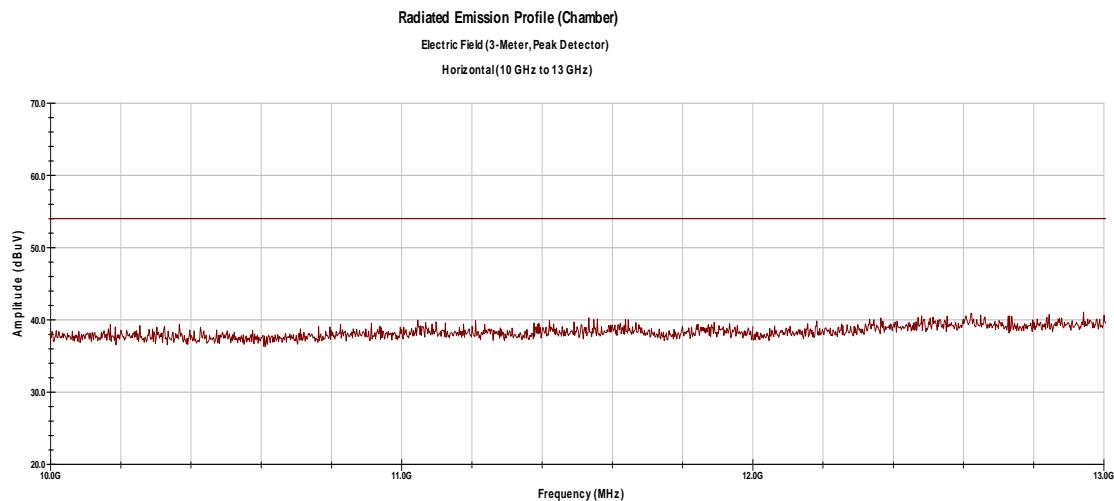
The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Radiated Emissions **Receive Mode** Ch 2 – 1 GHz to 10 GHz Vertical

02:38:10 PM, Thursday, April 05, 2012

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence


Notes: All emissions are below the noise floor of the receiver.

The remaining two channels gave very similar results.

The transmitter notch filter was not used for these scans.

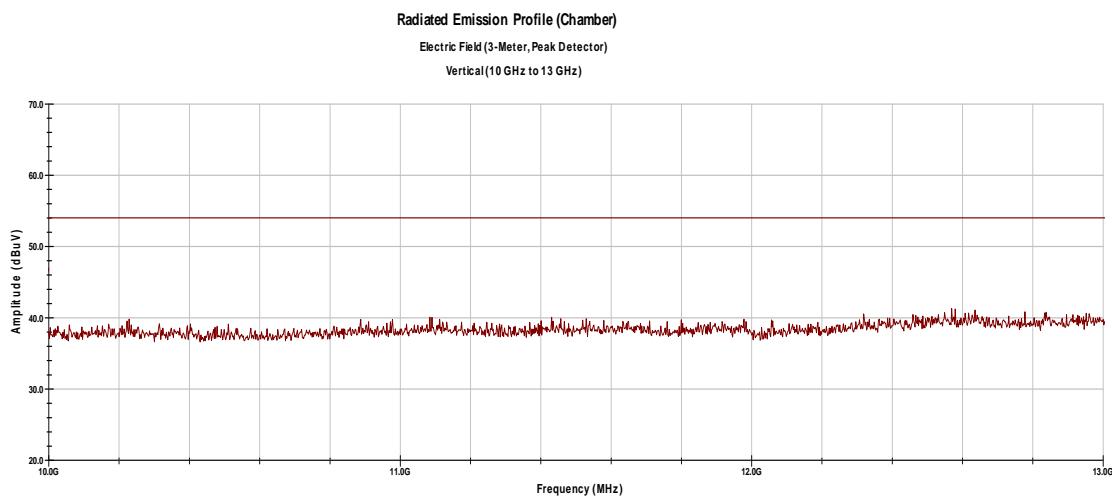
The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Radiated Emissions Receive Mode Ch 2 – 10 GHz to 13 GHz
Horizontal

02:05:58 PM, Thursday, April 05, 2012

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $U_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence


Notes: All emissions are below the noise floor of the receiver.

The remaining two channels gave very similar results.

The transmitter notch filter was not used for these scans.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Radiated Emissions **Receive Mode** Ch 2 – 10 GHz to 13 GHz Vertical

02:08:35 PM, Thursday, April 05, 2012

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.6\text{dB}$ Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence

Notes: All emissions are below the noise floor of the receiver.

The remaining two channels gave very similar results.

The transmitter notch filter was not used for these scans.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

5.2 Conducted Emissions in Receive mode – FCC 15.107(a) and RSS-210

This test measures the electromagnetic levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other nearby electronic equipment.

5.2.1 Over View of Test

Results	NA (as tested per this report)				Date	NA			
Standard	FCC 15.107(a) and RSS-210								
Product Model	MarCator 1086 R			Serial#	11081514				
Test Set-up	Tested in shielded room. EUT placed on table, see test plans for details								
EUT Powered By	3.0 V DC Lithium battery	Temp	NA	Humidity	NA	Pressure	NA		
Frequency Range	150 kHz – 30 MHz								
Perf. Criteria	(Below Limit)	Perf. Verification		Readings Under Limit for L1 & Neutral					
Mod. to EUT	None	Test Performed By		NA					

5.2.2 Test Procedure

Conducted emissions tests were performed using the procedures of ANSI C64.4: 2009, including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

5.2.3 Deviations

The Test sample is battery operated only. It does not have provision for external power of any kind.

5.2.4 Final Test

This this is not applicable for the device submitted for testing

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

6 RF Exposure

6.1 Exposure Requirements – FCC KDB # 447498 DO1 and RSS-102 Issue 4

FCC KDB # 447498 DO1 - Mobile and Portable Device RF Exposure and Procedures and Equipment Authorization Policies section 1) c) states that unless excluded by *specific FCC test procedures*, portable devices with output power $> 60/f_{(GHz)}$ mW shall include SAR data for equipment approval.

RSS-102 section 2.5.1 states that a device is exempt from SAR evaluation if the frequency is “above 2.2 GHz and up to 3 GHz inclusively, and with output power (i.e. the higher of the conducted or radiated (EIRP.) source-based, time-averaged output power) that is less than or equal to 20 mW for general public use...”.

6.1.1 Test Procedure

If the antenna is located $> 20\text{cm}$ from the user, then an MPE calculation is acceptable.

If the antenna is located $< 20\text{cm}$ (portable / mobile / hand-held device) from the user, then SAR evaluation is required.

6.1.2 Evaluation

The EUT may be used as a hand-held portable device where the antenna can be located less than 20cm from the user, therefore SAR evaluation is required.

6.1.2.1 Evaluation for FCC

FCC 447498 D01 Mobile Portable RF Exposure v04, Paragraph 2) section a) i) states:

“A device may be used in portable exposure conditions with no restrictions on host platforms when either the source-based time-averaged output power is $\leq 60/f_{(GHz)}$ mW or all measured 1-g SAR are $< 0.4 \text{ W/kg}$. ”

The minimum power that requires SAR testing is 60 / 2.4 GHz or 25 mW.

The maximum EIRP peak power output of the EUT is: 2.87 dBm which is equivalent to 1.94 mW.

The EUT is well below the 25mW power level.

6.1.2.2 Evaluation for Industry Canada

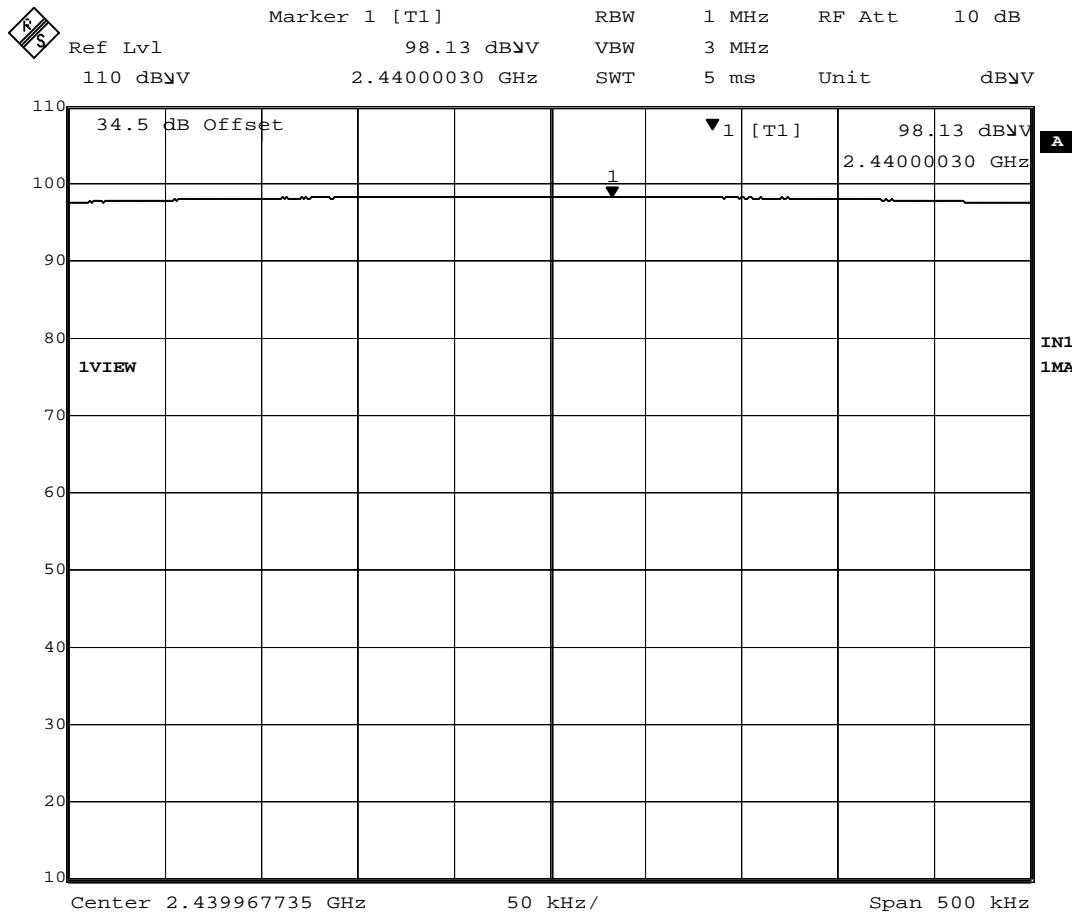
The maximum EIRP peak power output of the EUT is: 2.87 dBm which is equivalent to 1.94 mW.

The EUT is well below the 20mW power level.

6.1.3 Conclusion

SAR data is not required for either FCC or Industry Canada.

Note: the 2.87 dBm power level has not been time-averaged and it is considered the absolute worst case.


The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TÜV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Report No.:

31250763.001

Page 37 of 37

6.1.4 Calculated EIRP Level

Date: 6.APR.2012 14:39:07

Figure 5 – Maximum Peak Power = 98.13 dBµV/m at 3m

Notes: The EUT does not have a means to make direct measurements.

Per the equation in section 5.4.2 of FCC Document # 558074 D01 Meas Guidance v01;

EIRP = $E + 20\log(d) - 104.8$, where:

EIRP = the equivalent isotropic radiated power in dBm,

E = electric field strength in dBµV /m; $E = 98.12$,

d = measurement distance in meters; $d = 3$,

EIRP = $98.13 + 20\log(3) - 104.8 = 98.12 + 9.54 - 104.8 = 2.87 \text{ dBm}$ which is equivalent to: 1.94 mW

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.