The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500

Measured Radio Frequency Emissions From

Temic RKE Transmitter FCC ID: MYT3X6898B; IC: 28071032143

Report No. 415031-190 January 2, 2004

Copyright © 2004

For:
Temic Automotive
85 S. Opdyke Rd.
Auburn Hills, MI 48326-3135

Contact: Keith Vosburgh Tel: 248-514-9263 Fax: 248-454-3250

PO: 43000015448

Valdis V. Liepa

Measurements made by:

Tests supervised by: Report approved by:

> Valdis V. Liepa Research Scientist

Summary

Tests for compliance with FCC Regulations, Part 15, Subpart C, and for compliance with Industry Canada RSS-210, were performed on Temic RKE transmitter. This device is subject to the Rules and Regulations as a transmitter and as a digital device.

In testing performed between December 10 and 17, 2003, the device tested in the worst case met the allowed specifications for radiated emissions by 1.2 dB at fundamental and by 25.8 dB at harmonics (see p. 6). Besides harmonics, there were no other significant spurious emissions found; emissions from digital circuitry were negligible. Line conducted emission tests do not apply, since the device is powered by a 3-volt battery.

1. Introduction

Temic RKE Transmitter was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210, Issue 5, dated November 1, 2001. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057).

2. Test Procedure and Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests.

Table 2.1. Test equipment.

Test Instrument	Eqpt Used	Manufacturer/Model
Spectrum Analyzer (0.1-1500 MHz)		Hewlett-Packard, 182T/8558B
Spectrum Analyzer (9kHz-22GHz)	X	Hewlett-Packard 8593A SN: 3107A01358
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8593E, SN: 3412A01131
Spectrum Analyzer (9kHz-26GHz)		Hewlett-Packard 8563E, SN: 3310A01174
Spectrum Analyzer (9kHz-40GHz)		Hewlett-Packard 8564E, SN: 3745A01031
Power Meter		Hewlett-Packard, 432A
Power Meter		Anritsu, ML4803A/MP
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179
Harmonic Mixer (140-220 GHz)		Pacific Millimiter Prod., GMA, SN: 26
S-Band Std. Gain Horn		S/A, Model SGH-2.6
C-Band Std. Gain Horn		University of Michigan, NRL design
XN-Band Std. Gain Horn		University of Michigan, NRL design
X-Band Std. Gain Horn		S/A, Model 12-8.2
X-band horn (8.2- 12.4 GHz)		Narda 640
X-band horn (8.2- 12.4 GHz)		Scientific Atlanta, 12-8.2, SN: 730
K-band horn (18-26.5 GHz)		FXR, Inc., K638KF
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A
U-band horn (40-60 GHz)		Custom Microwave, HO19
W-band horn(75-110 GHz)		Custom Microwave, HO10
G-band horn (140-220 GHz)		Custom Microwave, HO5R
Bicone Antenna (30-250 MHz)	X	University of Michigan, RLBC-1
Bicone Antenna (200-1000 MHz)	X	University of Michigan, RLBC-2
Dipole Antenna Set (30-1000 MHz)	X	University of Michigan, RLDP-1,-2,-3
Dipole Antenna Set (30-1000 MHz)		EMCO 2131C, SN: 992
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223
Active Loop Antenna (30 Hz-50 MHz		EMCO 6502, SN:2855
Ridge-horn Antenna (300-5000 MHz		University of Michigan
Amplifier (5-1000 MHz)	X	Avantak, A11-1, A25-1S
Amplifier (5-4500 MHz)	X	Avantak
Amplifier (4.5-13 GHz)		Avantek, AFT-12665
Amplifier (6-16 GHz)		Trek
Amplifier (16-26 GHz)		Avantek
LISN (50 μH)		University of Michigan
Signal Generator (0.1-2060 MHz)		Hewlett-Packard, 8657B
Signal Generator (0.01-20 GHz)		Hewlett-Packard

3. Configuration and Identification of Device Under Test

The DUT is a hand held three- and four-button low power transmitter designed to send identification and control signals to a companion receiver. Differences between the two are only in the plastic parts. It is activated by depressing any one of the buttons and transmits two ASK encoded (repeated) words each 170 ms long. The emission is a Manchester format modulated code on a 315.0 MHz carrier. The DUT was designed by Temic Telefunken, Microsystems Ind & Comm'n Electronics, Riglerstr. 17, 85057 Ingolostadt, Germany. It is identified as:

Temic RKE Transmitter

PN(Temic): 00006898, 00008728, 00008731 (3-button). PN(Temic): 00001961, 00001962, 00001963 (4-button)

FCC ID: MYT3X6898B

IC: 28071032143

The board provided for testing had special software that provided a repeated CW operation when two buttons are pushed at the same time. Such was used for emission testing. By depressing a single button, the device operated in normal mode.

The device was tested in the tree-button plastic and re-measured in four-button at the worst case. Note above series of part numbers. These numbers identify different ID encoding that is used in a vehicle to set convenience functions (radio, seat, etc., to a predetermined positions).

3.1 EMI Relevant Modifications

No modifications were made to the DUT by this laboratory. However, the device as first provided had too high emission at the fundamental. Temic changed the power set resistor R 006 from 1.8K to 3K to bring the device in compliance.

4. Emission Limits

4.1 Radiated Emission Limits

The DUT tested falls under the category of an Intentional Radiators and the Digital Devices. For FCC, it is subject to Part 15, Subpart C, (Section 15.231), Subpart B, (Section 15.109), and Subpart A, (Section 15.33). For Industry Canada it is subject to RSS-210, (Sections 6.1 and 6.3). The applicable testing frequencies with corresponding emission limits are given in Tables 4.1 and 4.2 below. As a digital device, the DUT is considered as a Class B device.

Table 4.1. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 6.2.2(r)). (Digital Class B)

Freq. (MHz)	E _{lim} (3m) μV/m	$E_{lim} dB(\mu V/m)$
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW)

Quasi-Peak readings apply to 1000 MHz (120 kHz BW)

Table 4.2. Radiated Emission Limits (FCC: 15.231(b), 15.205(a); IC: RSS-210; 6.1, 6.3). (Transmitter)

Frequency	Fundan Ave. E _{lii}		Spurious** Ave. E _{lim} (3m)			
(MHz)	(μV/m)	dB (μV/m)	(μV/m)	dB (μV/m)		
260.0-470.0	3750-12500*		375-1250			
322-335.4	Restricted			•		
399.9-410	Bands		200	46.0		
608-614						
960-1240				,		
1300-1427	Restricted					
1435-1626.5	Bands		500	54.0		
1660-1710						
1718.9-1722.2						
2200-2300						

4.2 Conductive Emission Limits

The conductive emission limits and tests do not apply here, since the DUT is powered by one internal 3-volt battery.

5. Radiated Emission Tests and Results

5.1 Anechonic Chamber Measurements

To familiarize with the radiated emission behavior of the DUT, the DUT was first studied and measured in a shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

In testing for radiated emissions, the transmitter was modified for CW emission. It was placed on the test table flat, on its side, or on its end.

In the chamber we studied and recorded all the emissions using a bicone antenna up to 300 MHz and a ridged horn antenna above 200 MHz. The measurements made in the chamber below 1 GHz are used for pre-test evaluation only. The measurements made above 1 GHz are used in pre-test evaluation and in the final compliance assessment. We note that for the horn antenna, the antenna pattern is more directive and hence the measurement is essentially that of free space (no ground reflection). Consequently it is not essential to measure the DUT for both antenna polarizations, as long as the DUT is measured on all three of its major axis. In the chamber we also recorded the spectrum and modulation characteristics of the carrier. These data are presented in subsequent sections. We also note that in scanning from 30 MHz to 4.4 GHz using bicone and the ridge horn antennas, there were no other significant spurious emissions observed.

5.2 Outdoor Measurements

After the chamber measurements, the emissions were re-measured on the outdoor 3-meter site at fundamental and harmonics up to 1 GHz using tuned dipoles and/or the high frequency bicone. Photographs in Appendix (at end of this report) show the DUT on the open-site table (OATS).

Linear interpolation, formula: E = -7083 + 41.67*f (MHz) Measure up to tenth harmonic; 120 kHz BW up to 1 GHz, 1 MHz BW above 1 GHz

5.3 Computations and Results

To convert the dBm measured on the spectrum analyzer to $dB(\mu V/m)$, we use expression

$$E_3(dB\mu V/m) = 107 + P_R + K_A - K_G + K_E$$

where

P_R = power recorded on spectrum analyzer, dB, measured at 3m

 K_A = antenna factor, dB/m

 K_G = pre-amplifier gain, including cable loss, dB K_E = pulse operation correction factor, dB (see 6.1)

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Tables 5.1(a-c). There we see that the DUT meets the limits by 2.0 dB at fundamental and by 0.6 dB at harmonics.

6. Other Measurements and Computations

6.1 Correction For Pulse Operation

When the transmitter is activated by momentary push, it transmits two ASK encoded words. Manchester type coding is used with ones and zeros represented by high-low and low-high transitions. Each word is 147.5 ms long. See Fig. 6.1. We compute the duty factor by deviding ON-time by the period or timing period. This gives,

$$0.275$$
ms/ 0.5425 ms = 0.507 or -5.9 dB.

6.2 Emission Spectrum

Using the ridge-horn antenna and DUT placed in its aperture, emission spectrum was recorded and is shown in Figure 6.2.

6.3 Bandwidth of the Emission Spectrum

The measured spectrum of the signal is shown in Figure 6.3. The allowed (-20 dB) bandwidth is 0.25% of 315 MHz, or 787.25 KHz. From the plot we see that the -20 dB bandwidth is 60.0 kHz, and the center frequency is 315.01 MHz.

6.4 Effect of Supply Voltage Variation

The DUT has been designed to be powered by 3 VDC battery. For this test, the battery was replaced by a laboratory variable power supply. Relative power radiated was measured at the fundamental as the voltage was varied from 2.5 to 4.0 volts. The emission variation is shown in Figure 6.4.

6.5 Input Voltage at Battery Terminals

Batteries: before testing $V_{oc} = 3.215 \text{ V}$ after testing $V_{oc} = 3.091 \text{ V}$

Ave. current from batteries I = 8.5 mA (CW)

6.6 Verification for Deactivation Within 5 Seconds

When a button is depressed, the DUT transmits for about 0.5 seconds, independent whether the button is depressed or released. Figure 6.5 shows emission when the DUT button is depressed and released; the emission is less than five seconds.

Table 5.1 Highest Emissions Measured

	Radiated Emission - RF Temic Tx, FCC/										
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dBμV/m	dB	Comments
1	315.0	Dip	Н	-23.7	Pk	18.9	21.9	74.4	75.6	1.2	flat; in 3-button case
2	315.0	Dip	V	-26.9	Pk	18.9	21.9	71.2	75.6	4.4	side
3	630.0	Dip	H	-71.6	Pk	25.2	20.1	34.6	75.6	41.0	flat
4	630.0	Dip	V	-71.5	Pk	25.2	20.1	34.7	75.6	40.9	end
5	945.0	Dip	Н	-89.8	Pk	28.9	17.9	22.3	55.6	33.3	flat
6	945.0	Dip	V	-89.6	Pk	28.9	17.9	22.5	55.6	33.1	side
7	1260.0	Horn	Н	-69.9	Pk	20.4	28.1	23.5	55.6	32.1	side
8	1575.0	Horn	Н	-70.0	Pk	21.4	28.2	24.3	54.0	29.7	end
9	1890.0	Horn	Н	-68.9	Pk	22.1	28.1	26.2	55.6	29.4	flat
10	2205.0	Horn	Н	-70.7	Pk	22.9	27.0	26.3	54.0	27.7	flat
11	2520.0	Horn	Н	-70.8	Pk	24.0	26.6	27.7	55.6	27.9	flat
12	2835.0	Horn	Н	-72.1	Pk	24.9	25.4	28.5	55.6	27.1	flat
13	3150.0	Horn	Н	-71.7	Pk	25.2	24.8	29.8	55.6	25.8	end
14											
15				i ,							
16 Same board in 4-button case											
17	315.0	Dip	H	-23.9	Pk	18.9	21.9	74.2	75.6	1.4	flat; in 4-button case
18											
* Included -5.90 dB duty factor											
20											
21											

Digital Emissions											
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dBμV/m	dB	Comments
1											
2											
3			Digita	Digital emissions are more than 20 dB below FCC Class B limit							
4											

	Conducted Emissions										
	Freq.	Line	Det.	Vtest	Vlim	Pass					
#	MHz	Side	Used	dΒμV	dΒμV	dB	Comments				
_1											
2			Not ap	plicable							
3											
4											

Meas. 12/17/03; U of Mich.

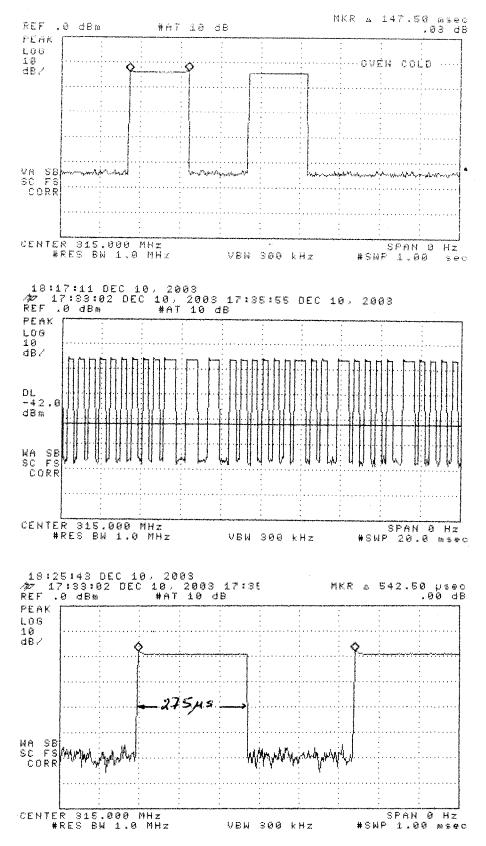


Figure 6.1. Transmissions modulation characteristics: (top) complete transmission, (center) expanded word, (bottom) expanded bits.

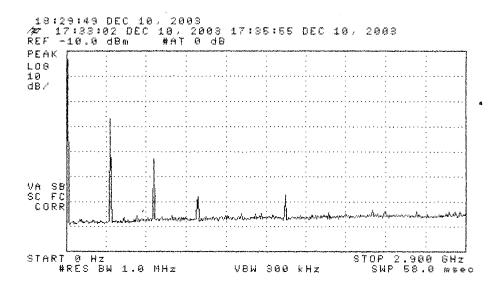


Figure 6.2. Emission spectrum of the DUT (CW emission). The amplitudes are only indicative (not calibrated).

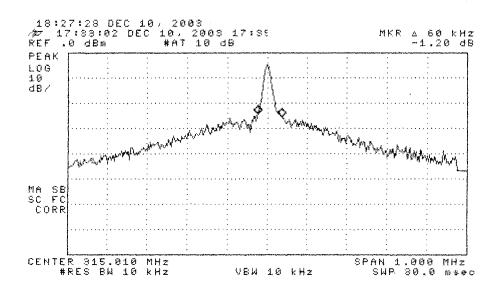


Figure 6.3. Measured bandwidth of the DUT (pulsed emission).

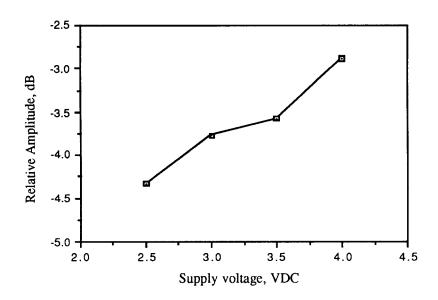


Figure 6.4. Relative emission at 315.0 MHz vs. supply voltage (CW emission).

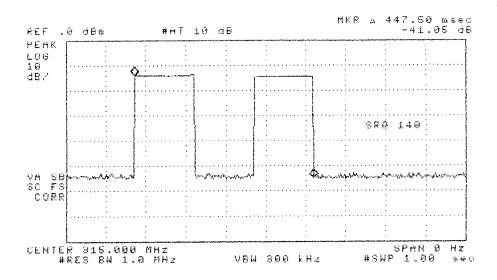


Figure 6.5. Emission after the DUT button is released.

Appendix: DUT on OATS

Appendix: Close-up of the DUT on OATS