

Prediction of MPE limit at a given distance

Equation from IEEE C95.1

$$S = \frac{EIRP}{4\pi R^2} \text{ re - arranged } R = \sqrt{\frac{EIRP}{S4\pi}}$$

where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Note:

The EIRP was calculated by addition of the maximum conducted carrier power plus the antenna gain.

Result

Prediction Frequency (MHz)	Maximum Conducted Power (dBm)	Antenna Gain (dBi)	Maximum EIRP (mW)	Minimum Distance (cm)	Power density at distance (mW/cm ²)	Power density limit (S) (mW/cm ²)
920.0	22.99	2	315.50	6.4	0.6129	0.6133
924.9	22.91	2	309.74	6.4	0.6017	0.6166