

Page: 1/24

EQUIPMENT FCC ID: MX5402920001

Written by : D. RAUD January 18,2002

Test report #: 019054DR

entraction are always, in	d Alberta			and decimal than
TEST	AD		III.	1201
	1/4 12	ru	117:	101

This report concerns:	Original grant ✓ Class II change
Equipment tested :	Radio Frequency Identifier for CARD PRINTER
Equipment FCC ID :	MX5402920001
Designed by :	ZEBRA TECHNOLOGIES
	ZI rue d'AMSTERDAM 44470 VARADES - FRANCE
Manufactured by :	ELTRON 1001 Flynn Road
	CAMARILLO - CA 93012
	TR 0 467 (D() ())
Deferred grant requested per 47 CF	FR 0.457 (d)(1)(ii) YES NO
Deferred grant requested per 47 CF if yes, defer until:	YES NO V
if yes, defer until: Company Named agrees to notify the	
if yes, defer until: Company Named agrees to notify the	he Commission by :
if yes, defer until: Company Named agrees to notify the intended date of announcement. Transi	he Commission by :

Technical control: Olivier ROY	GYL technologies	Quality Control: Lucien MONTIEL
-5Thy_	1, rue Fleming 49066 ANGERS	2 000
	Tel.: 02.41.36.22.33	mally
0	Fax: 02.41.36.22.23	- 110-07

Page: 2/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

TABLE OF CONTENTS

		Page
1	E.U.T TECHNICAL DESCRIPTION	4
	1.1 Product description	4
	1.2 List of EMI critical components	4
	1.3 Tested systems details	4
	1.4 Test Methodology and procedure	5
	1.5 Test site	5
	1.6 List of measurement apparatus	5
2	PRODUCT LABELLING	6
	2.1 FCC ID Label	
	2.2 Location of the Label on EUT	
3	SYSTEM TEST CONFIGURATION	7
	3.1 Justification	7
	3.2 EUT TEST CONFIGURATION DIAGRAM	7
	3.3 EUT EXERCISING CONDITIONS	8
4	POWER LINE CONDUCTED EMISSION (§ 15.107 class B)	9
	4.1 Test results measurements	
	4.2 Table 1 - Combination of conducted emission testing for the p210 model	9
	4.3 Summary of 6 highest signals per wire measured on each configuration	10
	4.4 Test set up pictures	11
5	OPEN FIELD RADIATED EMISSION (§ 15.109 class B)	12
	5.1 Test results measurements	12
	5.2 FIELD STRENGTH CALCULATION	12
	5.3 Summary of 6 highest signals measured on the P210 configuration	12
	5.4 Summary of 6 highest signals measured on the P310 configuration	13
6	Intentional radiator versus part 15 Subpart C §15.225, 15.209, 15.205	14
	6.1 Measurement of frequency stability(§15.225 (c))	14
	6.2 Harmonic level measurement	14
	6.3 Test set up pictures	
7		
	7.1 Electrical Schematic	

Page: 3/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD	January 18,2002	Test report # : 019054DR
7.2 P210 RFID Board Layout		18
7.3 P310 RFID Board Layout		19
7.4 RFID ON PRINTING RIBBON		20
8 User Notice abstract		21
9 PRINTER MODELS USED		22
9.1 Printer Model 1		22
9.2 Printer Model 2		24

Page: 4/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

1 E.U.T TECHNICAL DESCRIPTION

1.1 PRODUCT DESCRIPTION

The 13,56 MHz Radio Frequency IDentifier (RFID) is composed of :

A transceiver (emitter and receiver) placed on an electronic board (see exhibit 7)

A passive transceiver embedded in the printing ribbon frame (see exhibit 7)

This features is used in printer family range whose purpose is printing cards. Its primary function is to check if the inserted printing ribbon is the right one. Pictures given in exhibit 9. show how the RFID cards are mounted on two different printer models

1.2 LIST OF EMI CRITICAL COMPONENTS

ITEM	Reference	Frequency	Manufacturer
Oscillator	ABLS-10.000-18-R70-B-4-Y-FT	10.00 MHz	Prime Elect
Oscillator	ABLS-13.5600-18-R70-B-4-Y-FT	13.56 MHz	Prime Elect
Ferrite bead	Steward: LI0805H121R		Kent Elect.
Inductance	0805CS-681XJBC	680 nH 5%	Coilcraft
Inductance	0805CS-391XGBC	390 nH 2%	Coilcraft
Inductance	0805CS-821XGBC	820 nH 2%	Coilcraft

1.3 TESTED SYSTEMS DETAILS

The FCC IDs for all equipment, plus description of all cables used in the tested system (including inserted cards, which have grants) are:

Description	FCC ID	Cable description	Cable	Length
Model & Serial number			termination	(m)
Radio Frequency Identifier (RFID)	Submitted for Grant	None	None	None
Printer Model 210	FCC Class B Test report 019054 DK	serial shielded cable parallel shielded cable	Plastic molded	2 m 1,8 m
DELL Portable PC	DoC	USB shielded cable	metallic	1,5 m
EOS ZVC65SG24E AC/DC adapter or PowerBox SPN-270-24 AC/DC adapter		unshielded cable	plastic molded jack	1.5m
Printer Model 310	FCC Class B Test report 019041CH	USB shielded cable parallel shielded cable	Plastic molded	2 m 1,8 m
NEC POWERMATE PC model NLX7YA06402US	DoC	USB shielded cable	metallic	1,5 m
Zenith Display ZCM1426-XT	CKLHCM-427	shielded cable	Plastic molded	1m
Mouse Microsoft	C3KKMP5	unshielded cable	Plastic molded	1.5 m

Page: 5/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

1.4 TEST METHODOLOGY AND PROCEDURE

Both conducted and radiated testing were performed in accordance with ANSI C63.4 procedure, as revised in 1992. The specification used was the Class B limits of FCC Rules Part 15 Subpart B for conductive (§ 15-107) and radiated (§ 15-109) interference measurements and Subpart C (§ 15.201 to 15.209 and §15.225) for intentional radiator.

Final radiated measurement is performed with an antenna located at 3 meters distance from EUT (Preliminary radiated emission test (prescan) was realized at a distance of 1 meter in the underground of open area test site)

1.5 TEST SITE

The open area test site and conducted measurement facility used to collect the radiated data is located at the following address:

GYL TECHNOLOGIES 18 Rue du Nid de Pie 49008 ANGERS Cedex 01 France

This site has been fully described in a report dated September 20, 2000 submitted to your Office, and accepted in a letter dated June 18, 2001

1.6 LIST OF MEASUREMENT APPARATUS

APPARATUS	MANUFACTURER	REFERENCE	SERIAL	VERIFICATION
			NUMBER	DATE
RECEIVERS				
CISPR Receptive chain:	Hewlett Packard	HP 8574A		28/11/2000
Quasi-Peak Detector	Hewlett Packard	HP 85650A	2811A01134	28/11/2000
Spectrum Analyzer	Hewlett Packard	HP 8568B	2816A116603	28/11/2000
Pre-selector	Hewlett Packard	HP 85685A	287A00784	28/11/2000
EMI Software (For conducted emission)	Hewlett Packard	HP 85869A		28/11/2000
REMS Software (For radiated emission)	Hewlett Packard	HP 85879A Rev A.02.01		28/11/2000
ARTIFICIAL MAINS NI	ETWORKS			
LISN	Rohde & Schwarz	ESH2-Z5	871777/031	28/11/2000
LISN	Rohde & Schwarz	ESH2-Z5	872094/037	28/11/2000
ANTENNAS				
Bilog	Chase	CBL6112	2290	28/11/2000
H Field loop antenna	Rohde & Schwarz	HFH2-Z2	8719200/36	28/11/2000

Page: 6/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

2 PRODUCT LABELLING

2.1 FCC ID LABEL

A label on the equipment, except the header giving:

Manufacturer name

Printer model

Serial number

Part number

shows the following statement:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The user manual also provides the information, required by section 15.105, to the user. The following statement is placed in a prominent location in the manual: (see attached user manual abstract)

2.2 LOCATION OF THE LABEL ON EUT

At the bottom of the printers

Page: 7/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

3 SYSTEM TEST CONFIGURATION

3.1 JUSTIFICATION

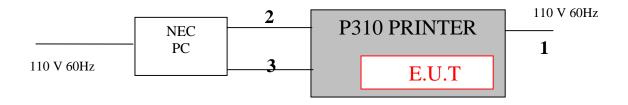
Two printers, representing the worst case applications, were selected to validate the RFID for the whole printer family range.

Different printed circuit shape but same components, circuitry and electrical schematic

Distance and positioning versus motherboard

Number of electronic cards

Internal wiring complexity

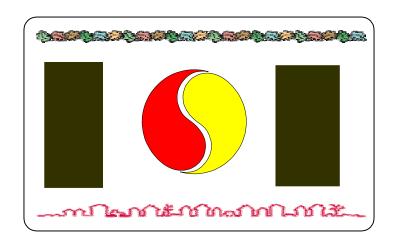

Plastic and metal enclosures

In both cases, the hereunder-described test configuration was chosen to place the equipment under test in the worst case conditions and having the RFID device working in a continuous mode.

For each configuration, two conducted lines perturbations measurements are performed, one on external power supply of the P.C and one on the mains cord of the E.U.T. The radiated perturbations or emissions measurements are also performed with EUT and P.C in the field measurement area.

3.2 EUT TEST CONFIGURATION DIAGRAM

- 1 Mains power cord 1.5m long (2 wires + ground)
- 2 parallel shielded cable
- 3 USB shielded cable
- 4 24 V dc cable


Page: 8/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

3.3 EUT EXERCISING CONDITIONS

Conducted and radiated measurement are made when printing a typical card with contrast and saturation parameters set to default values (Word 97) as shown by the hereunder figure. In order to have the equipment running in the worst case conditions, Open area measurement are made in USB mode and parallel mode.

Page: 9/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

4 POWER LINE CONDUCTED EMISSION (§ 15.107 class B)

4.1 TEST RESULTS MEASUREMENTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data pages, and then are measured with quasi-peak detector. The minimum margin measured is around 9dB

4.2 Table 1 - Combination of conducted emission testing for the P210 model

As the EUT can be powered either by an AC/DC adapter from EOS and from PowerBox, conducted emission test were performed according to the following sequences to verify the compliance of product in any configuration

	E	EOS AC/DC adapter		Power Box AC/DC adapter				Interface used		
	Sta	andby	Pr	inting	Sta	andby	Pr	inting	parallel	USB
Appendix	Line	Neutral	Line	Neutral	Line	Neutral	Line	Neutral		
1-1	X								X	
1-2		X							X	
1-3			X						X	
1-4				X					X	
1-5	X									X
1-6		X								X
1-7			X							X
1-8				X						X
1-9					X					X
1-10						X				X
1-11							X			X
1-12								X		X
1-13					X				X	
1-14						X			X	
1-15							X		X	
1-16								X	X	

Page: 10/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

4.3 SUMMARY OF 6 HIGHEST SIGNALS PER WIRE MEASURED ON EACH CONFIGURATION

PRODUCT	Test		MINIMU	Data and Plot		
P210 Printer model	Result	WIRE	LINE	NEUTI	RAL LINE	on following
		dΒμV	MHz	dΒμV	MHz	pictures
	Pass	35.3	0.5147	33.2	0.504	
with	Pass	29.4	0.6087	32.3	0.6537	
EOS AC/DC adapter	Pass	29.9	0.7962	32.4	0.6732	Appendix P210
	Pass	32.6	0.888	30.3	0.8917	1-1 to 1-8
	Pass	29.5	1.011	31.4	1.028	
	Pass	36.6	13.52	37	13.52	
	Pass	35.3	0.4693	37.1	0.4732	
with	Pass	38.7	3.301	36.1	2.948	
Power Box AC/DC	Pass	35.6	11.53	41.1	12.54	Appendix P210
adapter	Pass	46.2	13.52	46.9	13.52	1-9 to 1-16
	Pass	35.2	19.72	39.7	14.95	
	Pass	37	20.74	36.9	16.33	

PRODUCT	Test		MINIMU	Data and Plot		
P310 Printer model	Result	WIRE	LINE	NEUTRAL LINE		on following
		dΒμV	MHz	dΒμV	MHz	pictures
	Pass	38.1	13.52	38.8	13.52	
	Pass	32.8	13.86	33.9	14.1	
using Parallel	Pass	33.8	15.08	33.9	15.08	Appendix P310
interface in standby	Pass	32.2	15.72	30.3	16.33	1-1 to 1-4
then printing mode	Pass	28.7	16.74	35.6	24.94	
	Pass	34.8	24.94	27.8	26.23	
	Pass	13.52	36.3	13.52	36.4	
	Pass	14.4	32.8	14.4	33	
using USB interface	Pass	15.99	30.4	15.14	32.3	Appendix P310
in standby then	Pass	17.24	28.7	15.85	30	1-5 to 1-8
printing mode	Pass	24.94	38.8	24.94	38.8	
	Pass	26.23	34.8	26.9	33.6	

CISPR RECEI	CISPR RECEPTIVE CHAIN H.P 8574A CONFIGURATION					
Quasi-Peak Adapter	Normal mode, Band With = 9 kHz					
Spectrum	Resolution Band With = 100 kHz Video Band With = 300 kHz					
Analyzer	Sweep Peak measurement: 100 ms/MH					
	min Quasi-peak measurement : 200s/MHz					
Pre-selector	Normal mode, Internal preamplifier : 20 dB					

All readings are quasi-peak unless stated otherwise.

EQUIPMENT FCC ID: MX5402920001

Page: 11/25

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

4.4 TEST SET UP PICTURES

P210 PRINTER

P310 PRINTER

Page: 12/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

5 OPEN FIELD RADIATED EMISSION (§ 15.109 class B)

5.1 TEST RESULTS MEASUREMENTS

During testing no significant emission problem was observed. The minimum margin measured is around 3dB

The following data tables lists the most significant emission frequencies, measured level, correction factor (includes cable and antenna corrections), corrected reading and the limit. The highest peaks are measured in quasi-peak detection mode. Correction factors are mentioned in the appendixes given the detailed results

5.2 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and cable loss, and subtracting the preamplifier gain (if any) from the measurements reading. The basic equation with a sample calculation is

$$FS = RA + AF + CF + PG,$$

Where: FS = Field Strength; RA = Receiver Amplitude; AF = Antenna Factor;

CF = Cable loss; PG = Preamplifier Gain (Pre-selector)

Assuming a receiver reading. The antenna factor and the cable loss are added while the internal pre-selector gain of 20 dB is subtracted, giving the field strength. REMS software performs calculation and result are given in column ABS of Measurements results table.

5.3 SUMMARY OF 6 HIGHEST SIGNALS MEASURED ON THE P210 CONFIGURATION

PRODUCT	Result	MIN	IMUM	Data and Plot
		MA	RGIN	on following
		dΒμV	MHz	Pictures
	Pass	37.2	60.022	
P210 Printer	Pass	38.5	120.056	
equipped with	Pass	43.5	288.000	Appendix P210
EOS AC/DC adapter	Pass	44.2	612.161	2-1 and 2-2
	Pass	41.9	612.166	
	Pass	44.3	636.118	

PRODUCT	Result	MA	IMUM RGIN	Data and Plot on following
		dΒμV	MHz	Pictures
	Pass	37.6	83.992	
P210 Printer	Pass	36.0	96.031	
equipped with	Pass	40.7	516.098	Appendix P210
Power Box AC/DC adapter	Pass	41.4	540.121	2-3
	Pass	41.1	612.124	
	Pass	38.6	636.110	

Page: 13/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

5.4 SUMMARY OF 6 HIGHEST SIGNALS MEASURED ON THE P310 CONFIGURATION

5.4.1 USB INTERFACE STANBY AND PRINTING MODE

PRODUCT	Result		IMUM RGIN MHz	Data and Plot on following Pictures
	Pass	37.2	58.973	Tietures
P310 Printer	Pass	32.1	63.980	
equipped with	Pass	38.4	200.453	Appendix P310
Tektris power supply	Pass	35.2	255.988	2-1 to 2-2
	Pass	38.9	352.007	
	Pass	41.7	767.995	

5.4.2PARALLEL INTERFACE STANBY AND PRINTING MODE

PRODUCT	Result		IMUM RGIN	Data and Plot on following
		dΒμV	MHz	Pictures
	Pass	33.4	44.260	
P310 Printer	Pass	31.4	56.710	
equipped with	Pass	37.0	58.973	Appendix P310
Tektris power supply	Pass	34.1	63.989	2-3 to 2-4
	Pass	38.4	200.453	
	Pass	42.2	768.002	

CISPR	CISPR RECEPTIVE CHAIN H.P 8574A CONFIGURATION						
Quasi-Peak Adapter		Normal mode Band With = 120 kHz					
Spectrum	=	solution Band With = 1 MHz Video Band With = 3 MHz					
Analyzer	Sweep min	Peak measurement : 1 ms/MHz Quasi-peak measurement : 20s/MHz					
Pre-selector	Ir	Normal mode nternal preamplifier : 20 dB					

All readings are quasi-peak unless stated otherwise.

Page: 14/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

6 FIELD STRENGTH OF INTENTIONAL RADIATOR VERSUS PART 15 SUBPART C §15.225, 15.209, 15.205

6.1 MEASUREMENT OF FREQUENCY STABILITY (§15.225 (C))

Nominal value at 20 °C temperature and 5 V voltage: 13,559 MHz

Test Co	nditions		Test Results				
Temperature	Voltage	Low limit	Measured	High limit	Measured	1 est Results	
-20 °C	4.25 V		13.5588		13.5588	Pass	
+ 50°C	4.25 V		13.5588		13.5588	Pass	
-20 °C	5.75 V	13.5577	13.5589	13.5603	13.5589	Pass	
+ 50°C	5.75 V		13.5589		13.5589	Pass	

6.2 HARMONIC LEVEL MEASUREMENT

Measurements were performed on fundamental frequency h1 until the 10th harmonic. Preliminary spectrum signature was conducted at 1 meter from EUT, final measurement being conducted at 3 meters distance from EUT according to ANSIC63.4 measurement method described in §8.

Test conditions: see § 3.1 to 3.3 of this report

Peak detection is used instead of average; the result is equal for continuous wave

RBW = 100 kHz for fundamental frequency (h1) measurement (VBW=3*RBW)

RBW = 5 kHz for harmonic greater than fundamental frequency (h1) measurement (VBW=3*RBW)

6.2.1MEASUREMENT DONE ON PRINTER P210 MODEL

Harmonic	Frequency (MHz)	Antenna factor dB	Cable loss	dΒμ	ed level V/m	Limit (l	m (**)	Margin	Results
number		D= 3m	dB	D= 1m	D= 3m	§ 15.225	§15.209		
h1	13.5591553	20	0.9	75.2	54	80		-26	Pass
h2	27.1183106	20	0.8	24.3	15.1		40	-24.9	Pass
h3	40.6774659	13.8	1.0		29.2		40	-10.8	Pass
h4	54.2366212	9.0	1.0		17.2		40	-22.8	Pass
h5	67.7957765	7.2	1.2		24.4		40	-15.6	Pass
h6	81.3549318	8.7	1.3		27.3		40	-12.7	Pass
h7	94.9140871	11.5	1.5		31.2		40	-8.8	Pass
h8	108.473242	12.5	1.5		27.4		40	-12.6	Pass
h9	122.032398	13.2	1.6		27.1		40	-12.9	Pass
h10	135.591553	12.9	1.7		25.2		40	-14.8	Pass

(**) Unit change: $80 \text{ dB}\mu\text{V/m} = 10 \text{ mV/m}, 40 \text{dB}\mu\text{V/m} = 0.1 \text{mV/m}$

Page: 15/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

6.2.2MEASUREMENT DONE ON PRINTER P310 MODEL USING USB INTERFACE

Harmonic	Frequency (MHz)	Antenna factor dB	Cable loss	Measured level dBµV/m		Limit (I dBµV/		Margin	Results
number	(IVITIZ)	D= 3m	dB	D= 1m	D=3m	§ 15.225	§15.209		
h1	13.5591553	20	0.9	62	34.5	80		-45.5	Pass
h2	27.1183106	20	0.8	23.2	23.2		40	-16.8	Pass
h3	40.6774659	13.8	1.0	20	4.8		40	-35.2	Pass
h4	54.2366212	9.0	1.0	14.9	8.2		40	-31.8	Pass
h5	67.7957765	7.2	1.2	9.56	16.5		40	-23.5	Pass
h6	81.3549318	8.7	1.3	5.5	4.1		40	-35.9	Pass
h7	94.9140871	11.5	1.5	9.2	17.2		40	-22.8	Pass
h8	108.473242	12.5	1.5	0.2	1.2		40	-38.8	Pass
h9	122.032398	13.2	1.6	10.8	5.8		40	-34.2	Pass
h10	135.591553	12.9	1.7	5.6	11.6		40	-28.4	Pass

6.2.3MEASUREMENT DONE ON PRINTER P310 MODEL USING PARALLEL INTERFACE

Harmonic	Frequency (MHz)	Antenna factor dB	Cable loss	Measured level dBμV/m		Limit (D=3m) dBµV/m (**)		Margin	Results
number	(IVIIIZ)	D= 3m	dB	D= 1m	D= 3m	§ 15.225	§15.209		
h1	13.5591553	20	0.9	62	34.5	80		-45.5	Pass
h2	27.1183106	20	0.8	23.2	23.2		40	-16.8	Pass
h3	40.6774659	13.8	1.0	20.4	15.5		40	-24.5	Pass
h4	54.2366212	9.0	1.0	15.4	11.4		40	-28.6	Pass
h5	67.7957765	7.2	1.2	6.9	17.1		40	-22.9	Pass
h6	81.3549318	8.7	1.3	3.1	1.1		40	-38.9	Pass
h7	94.9140871	11.5	1.5	10.2	11.2		40	-28.8	Pass
h8	108.473242	12.5	1.5	1.2	1.2		40	-38.8	Pass
h9	122.032398	13.2	1.6	12.8	8.8		40	-31.2	Pass
h10	135.591553	12.9	1.7	8.6	10.6		40	-29.4	Pass

EQUIPMENT FCC ID: MX5402920001

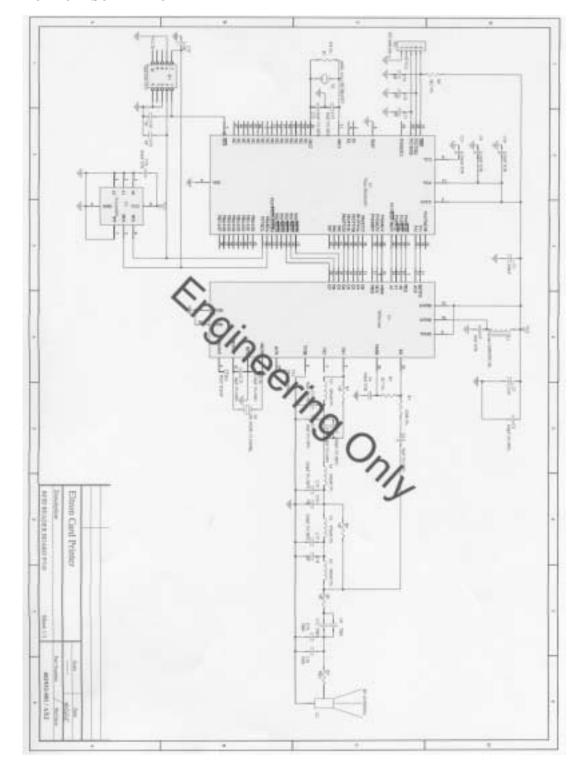
Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

6.3 TEST SET UP PICTURES

P210 set up

P310 set up

Page: 16/25

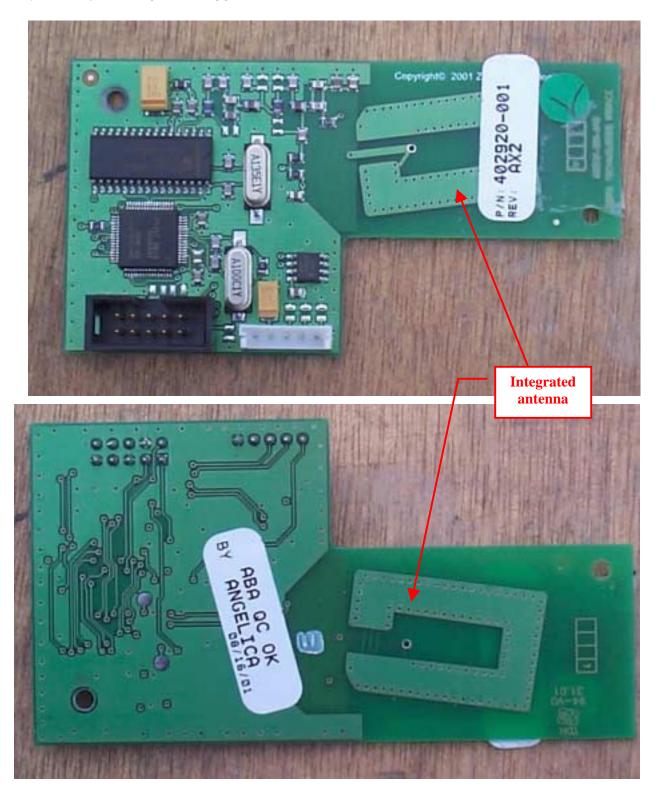

Page: 17/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

7 INTENTIONAL RADIATOR DESCRIPTION

7.1 ELECTRICAL SCHEMATIC

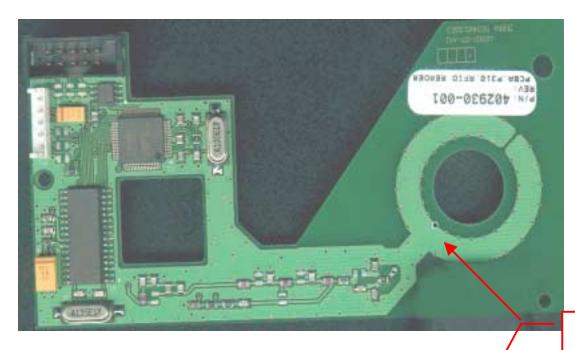


EQUIPMENT FCC ID: MX5402920001

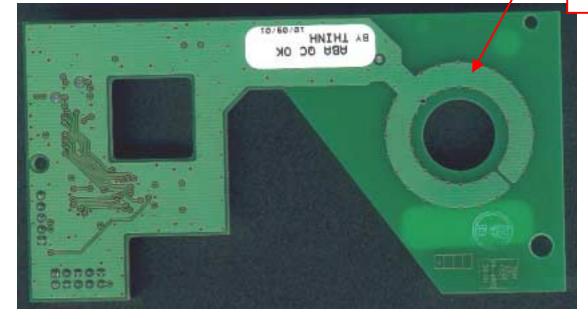
Page: 18/25

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

7.2 P210 RFID BOARD LAYOUT



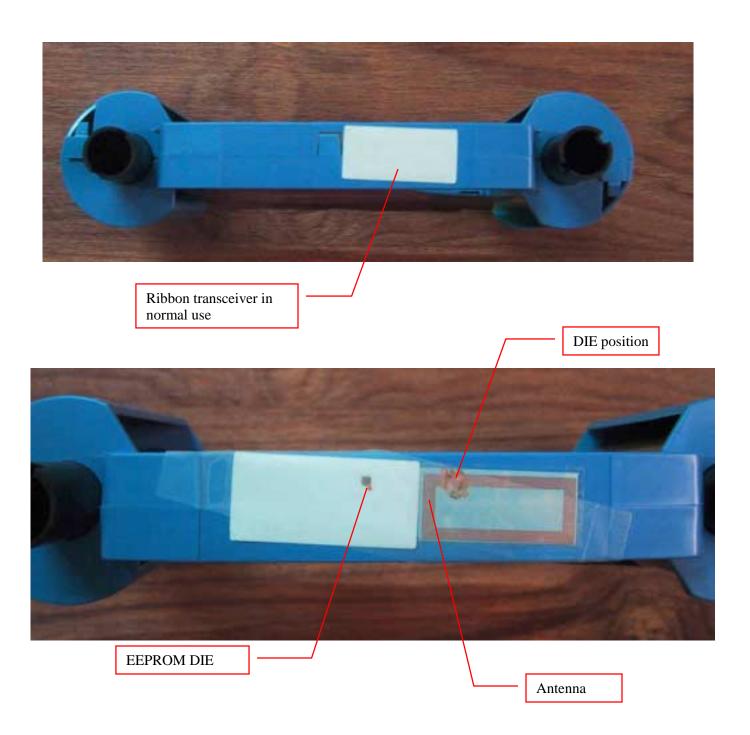
EQUIPMENT FCC ID: MX5402920001


Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

7.3 P310 RFID BOARD LAYOUT

Integrated antenna

Page: 19/25



EQUIPMENT FCC ID: MX5402920001

Page: 20/25

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

7.4 RFID ON PRINTING RIBBON

Page: 21/25

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

8 User Notice abstract

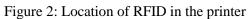
Page: 22/25

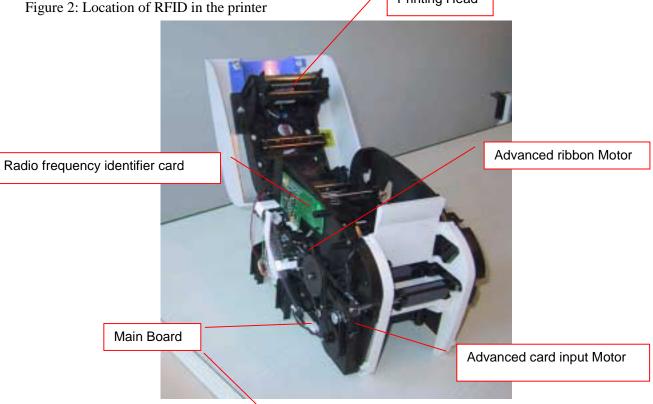
EQUIPMENT FCC ID: MX5402920001

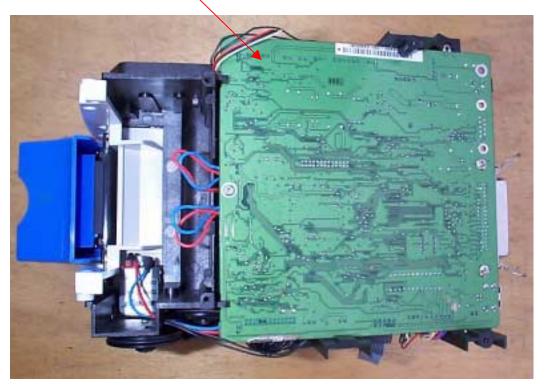
Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

9 PRINTER MODELS USED

9.1 PRINTER MODEL 1


Printer Reference: P210 CEM Serial number: P210000548 Manual: P210 User's Manual


EQUIPMENT FCC ID: MX5402920001


Written by: D. RAUD January 18,2002 Test report #: 019054DR

Printing Head

Page: 23/25

EQUIPMENT FCC ID: MX5402920001

Page: 24/25

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

9.2 PRINTER MODEL 2

Printer Reference: P310 CEM

Serial number: None

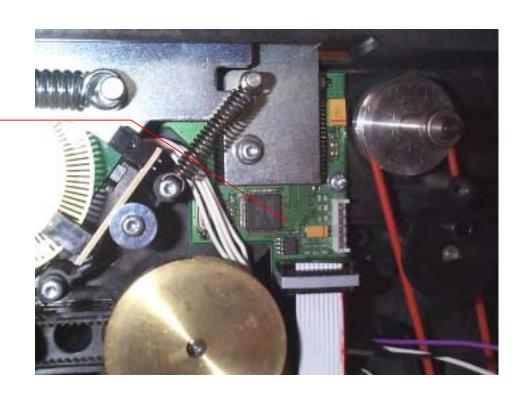
Manual: P310 User's Manual

EQUIPMENT FCC ID: MX5402920001

Written by: D. RAUD January 18,2002 **Test report #: 019054DR**

Motherboard

Page: 25/25


Magnetic card writer

USB option card

Arcotronics Filter

Smart card programming driver

Radio Frequency Identifier card located under the magnetic writer card

