

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to isotropic radiator

R = distance to the center of radiation of the antenna

	Total	
Maximum peak output power at antenna input terminal:	18.4	(dBm) *
Maximum peak output power at antenna input terminal:	69.8	(mW) *
Antenna gain(maximum):	1.6	(dBi) *
Maximum antenna gain:	1.45	(numeric) *
Time Averaging:	100	(%) *
Prediction distance:	20	(cm) *
Prediction frequency:	2452	(MHz) *
FCC MPE limit for uncontrolled exposure at prediction frequency:	1.000	(mW/cm ²)
IC MPE limit for uncontrolled exposure at prediction frequency:	17.19	(W/m ²)
Power density at prediction frequency:	0.020	(mW/cm ²)
This equates to:	0.20	(W/m ²)