



# FCC PART 22, 24 TYPE APPROVALS EMI MEASUREMENT AND TEST REPORT

For

# TELULAR CORPORATION

580 Old Willets Path Hauppuage, New York 11772

**FCC ID: MTF060304** 

This Report Concerns: Equipment Type:

☐ Original Report ☐ GSM Dual Band Table Top Cellular Phone

Test Engineer: Dan Coronia

**Report Number:** R0701162-22

**Report Date:** 2007-02-02

**Reviewed By:** Hans Mellberg, VP of Engineering

**Prepared By:** Bay Area Compliance Laboratories Corp. (BACL)

(**63**) 1274 Anvilwood Ave.

Sunnyvale, CA 94089 Tel: (408) 732-9162 Fax: (408) 732 9164

**Note**: This test report is specially limited to the above client company and this particular sample only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. Government.

# TABLE OF CONTENTS

| 1 - GENERAL INFORMATION                                                        |              |
|--------------------------------------------------------------------------------|--------------|
| 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)                         |              |
| 1.2 MECHANICAL DESCRIPTION                                                     |              |
| 1.3 EUT PHOTO:                                                                 |              |
| 1.4 OBJECTIVE                                                                  |              |
| 1.5 RELATED SUBMITTAL(S)/GRANT(S)                                              | ے۔۔۔۔۔۔<br>ا |
| 1.7 Test Facility                                                              |              |
|                                                                                |              |
| 2 - SYSTEM TEST CONFIGURATION                                                  |              |
| 2.1 JUSTIFICATION                                                              |              |
| 2.2 Equipment Modifications                                                    |              |
| 2.3 POWER SUPPLY AND LINE FILTERS                                              |              |
| 2.4 LOCAL SUPPORT EQUIPMENT LIST AND DETAILS.  2.5 INTERFACE PORTS AND CABLING |              |
| 3 - SUMMARY OF TEST RESULTS                                                    |              |
| 4 - §2.1047 - MODULATION CHARACTERISTIC                                        |              |
| 4.1 APPLICABLE STANDARD                                                        |              |
| 4.1 APPLICABLE STANDARD                                                        |              |
| 4.3 TEST FROCEDORE  4.3 TEST EQUIPMENT LIST AND DETAILS.                       |              |
| 4.4 Test Results                                                               |              |
| 5 - §1.1307(B) (1) & §2.1091 - RF EXPOSURE                                     | 10           |
| 5.1 APPLICABLE STANDARD                                                        |              |
| 5.2 MPE Prediction.                                                            |              |
| 5.3 Test Result                                                                |              |
| 6 - §2.1053 - SPURIOUS RADIATED EMISSIONS                                      |              |
|                                                                                |              |
| 6.1 APPLICABLE STANDARD                                                        |              |
| 6.3 TEST FROCEDURE                                                             |              |
| 6.4 TEST RESULT                                                                |              |
|                                                                                |              |
| 7 - \$2.1046, \$22.913(A), & \$24.232 – RF OUTPUT POWER                        |              |
| 7.1 APPLICABLE STANDARD                                                        |              |
| 7.2 TEST PROCEDURE                                                             |              |
| 7.4 TEST RESULTS.                                                              |              |
| 8 - §2.1049, §22.917, §22.905, & §24.238 - OCCUPIED BANDWIDTH                  |              |
| 8.1 APPLICABLE STANDARD                                                        |              |
| 8.1 APPLICABLE STANDARD                                                        |              |
| 8.3 TEST EQUIPMENT LIST AND DETAILS                                            |              |
| 8.4 Test Results                                                               |              |
| 9 - §2.1051, §22.917, & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS   | 23           |
| 9.1 APPLICABLE STANDARD                                                        | 23           |
| 9.2 Test Procedure                                                             |              |
| 9.3 TEST EQUIPMENT LIST AND DETAILS                                            |              |
| 9.4 Test Results                                                               |              |
| 10 - §2.1055 (A), §2.1055 (D), §22.355, & §24.235 - FREQUENCY STABILITY        |              |
| 10.1 Applicable Standard                                                       |              |
| 10.2 Test Procedure                                                            |              |
| 10.3 TEST EQUIPMENT LIST AND DETAILS                                           |              |
| 10.4 Test Results                                                              |              |
| 11 - §22.917 & §24.238 - BAND EDGE                                             | 33           |

| 11.1 APPLICABLE STANDARD.                                                   | 33 |
|-----------------------------------------------------------------------------|----|
| 11.2 Test Procedure.                                                        |    |
| 11.3 TEST EQUIPMENT LIST AND DETAILS                                        |    |
| 11.4 Test Results                                                           |    |
| EXHIBIT A - FCC ID LABELING AND WARNING STATEMENT                           | 36 |
| SUGGESTED FCC ID LABEL                                                      | 36 |
| PROPOSED LABEL LOCATION ON EUT                                              | 36 |
| FCC WARNING STATEMENT                                                       | 36 |
| EXHIBIT B - TEST SETUP PHOTOGRAPHS                                          | 37 |
| RADIATED EMISSIONS - FRONT VIEW                                             | 37 |
| Radiated Emission - Rear View                                               | 37 |
| EXHIBIT C - EUT PHOTOGRAPHS                                                 | 38 |
| EUT – EXTERNAL FRONT VIEW WITH WALL MOUNT, BACK UP BATTERY AND POWER SUPPLY | 38 |
| EUT – External Front View                                                   | 38 |
| EUT – External Rear View                                                    |    |
| EUT – HEAD SET PORT VIEW                                                    |    |
| EUT - COVER OFF VIEW (KEYPAD AND SPEAKER CONNECTED)                         |    |
| EUT - COVER OFF VIEW (KEYPAD REMOVED)                                       |    |
| EUT – PCBA 1 Keyboard detail view side 1                                    |    |
| EUT – PCBA 1 KEYBOARD COMPONENT VIEW SIDE 2                                 |    |
| EUT – LCD with radio board view 1                                           |    |
| EUT – LCD WITH RADIO BOARD VIEW 2                                           |    |
| EUT – RADIO BOARD SIDE 1 VIEW 1 (WITH SHIELDING)                            |    |
| EUT – RADIO BOARD SIDE 1 VIEW 2 (WITHOUT SHIELDING)                         |    |
| EUT – RADIO BOARD SIDE 2 VIEW 1 (WITH SHIELDING)                            |    |
| EUT – RADIO BOARD SIDE 2 VIEW 2 (WITHOUT SHIELDING)                         |    |
| EUT – POWER ADAPTOR SIDE VIEW                                               |    |
|                                                                             |    |
| EXHIBIT D - BLOCKDIAGRAM                                                    | 47 |
| EXHIBIT E - SCHEMATICS                                                      | 48 |
| EXHIBIT F - USERS MANUAL                                                    | 49 |

# 1 - GENERAL INFORMATION

# 1.1 Product Description for Equipment under Test (EUT)

The *TELULAR CORPORATION's* product, FCC ID: MTF060304 model: SX7P-200G or the "EUT" as referred to in this report is a GSM850 & PCS1900 table top Cellular Phone.

## 1.2 Mechanical Description

Approximate measurement is: 165mm (L) x 170 mm (W) x 65mm (H)

\* The test data gathered are from typical production sample, serial number: 701162 provided by BACL

#### 1.3 EUT Photo:



Please see additional photos in Exhibit C

## 1.4 Objective

This type approval report is prepared on behalf of *TELULAR CORPORATION* in accordance with Part 2, Subpart J, Part 22 Subpart H, and Part 24 Subpart E of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for RF output power, modulation characteristic, occupied bandwidth, spurious emission at antenna terminal, field strength of spurious radiation, frequency stability, band edge, and conducted and radiated margin.

## 1.5 Related Submittal(s)/Grant(s)

No Related Submittals.

## 1.6 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services Part 24 Subpart E - PCS

Applicable Standards: TIA/EIA 603-C, ANSI C63.4-2003.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

## 1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

Test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the test methods and procedures set forth in ANSI C63.4-2003& TIA/EIA-603.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations is attached hereinafter and can also be found at <a href="http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm">http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm</a>

# 2 - SYSTEM TEST CONFIGURATION

## 2.1 Justification

The EUT was configured for testing according to TIA/EIA-603 C.

The final qualification test was performed with the EUT operating at normal mode.

# 2.2 Equipment Modifications

No modifications were made to the EUT.

# 2.3 Power Supply and Line Filters

| Manufacturer       | Description          | Model        | Serial Number |
|--------------------|----------------------|--------------|---------------|
| Tamura Electronics | AC/DC Adapter        | TL-A115      | N/A           |
| Telular Corp.      | 3.6V Back up Battery | BP3x50AA1200 | N/A           |

# 2.4 Local Support Equipment List and Details

| Manufacturer  | Description                            | Model                 | Serial Number            |
|---------------|----------------------------------------|-----------------------|--------------------------|
| Agilent       | Wireless<br>Communications Test<br>Set | 8960 Series 10 E5515C | GB44051221               |
| Dell          | Laptop                                 | Inspiron 1300         | CN-0RJ272-70166-69A-03TC |
| Mini-Circuits | Splitter                               | ZFRSC-42              | SF874700404              |

# 2.5 Interface Ports and Cabling

| Cable Description | Cable Description Length (M) From      |                     | To       |
|-------------------|----------------------------------------|---------------------|----------|
| RF cable          | RF cable 0.2 Communications tess       |                     | Splitter |
| RF cable          | 0.4                                    | Antenna port on EUT | Splitter |
| Data cable        | Data cable 0.5 Communications test set |                     | Laptop   |

# **3 - SUMMARY OF TEST RESULTS**

| FCC RULES                                            | DESCRIPTION OF TEST                                                 | RESULT    |
|------------------------------------------------------|---------------------------------------------------------------------|-----------|
| § 2.1047                                             | Modulation Characteristics                                          | Compliant |
| § 2.1053                                             | Field Strength of Spurious Radiation                                | Compliant |
| §2.1091                                              | RF Exposure                                                         | Compliant |
| § 2.1046,<br>§ 22.912 (d)<br>§ 24.232                | RF Output Power                                                     | Compliant |
| § 2.1049<br>§ 22.917<br>§ 22.905<br>§ 24.238         | Out of Band Emissions, Occupied Bandwidth                           | Compliant |
| \$ 2.1051,<br>\$ 22.917<br>\$ 24.238(a)              | Spurious Emissions at Antenna Terminals                             | Compliant |
| § 2.1055 (a)<br>§ 2.1055 (d)<br>§ 22.355<br>§ 24.235 | Frequency stability vs. temperature Frequency stability vs. voltage | Compliant |
| § 22.917<br>§24.238                                  | Band Edge                                                           | Compliant |

# 4 - §2.1047 - MODULATION CHARACTERISTIC

# 4.1 Applicable Standard

Requirement: FCC § 2.1047.

## **4.2 Test Procedure**

GSM digital mode is used by EUT. Connect EUT to Simulator and spectrum analyzer, check the waveform.

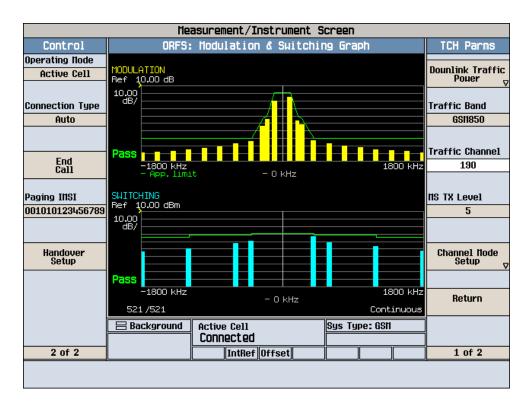
#### **Environmental Conditions**

| Temperature:       | 26° C    |
|--------------------|----------|
| Relative Humidity: | 46%      |
| ATM Pressure:      | 1020mbar |

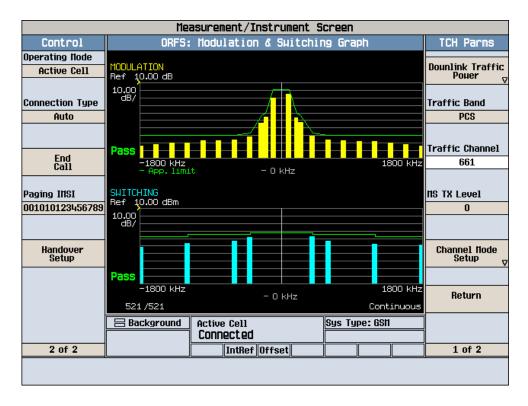
The testing was performed by Dan Coronia on 2007-01-26 to 31.

# 4.3 Test Equipment List and Details

| Manufacturer | Description              | Model  | Serial Number | Cal. Date   |
|--------------|--------------------------|--------|---------------|-------------|
| Agilent      | Analyzer, Communications | E5515C | GB44051221    | 2005-08-08* |


<sup>\*</sup> Two Year Calibration Cycle

**Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.


#### **4.4 Test Results**

Please refer to the hereinafter plots.

## Plots of Modulation Characteristic for GSM850



## Plots of Modulation Characteristic for GSM1900



# 5 - §1.1307(b) (1) & §2.1091 - RF EXPOSURE

# 5.1 Applicable Standard

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

| Frequency Range (MHz) | Electric Field<br>Strength (V/m) | Magnetic Field<br>Strength (A/m) | Power Density (mW/cm <sup>2</sup> ) | Averaging Time (minute) |
|-----------------------|----------------------------------|----------------------------------|-------------------------------------|-------------------------|
|                       | Limits for Ger                   | neral Population/Uncor           | ntrolled Exposure                   |                         |
| 0.3-1.34              | 614                              | 1.63                             | *(100)                              | 30                      |
| 1.34-30               | 824/f                            | 2.19/f                           | $*(180/f^2)$                        | 30                      |
| 30-300                | 27.5                             | 0.073                            | 0.2                                 | 30                      |
| 300-1500              | /                                | /                                | f/1500                              | 30                      |
| 1500-100,000          | /                                | /                                | 1.0                                 | 30                      |

f = frequency in MHz

### **5.2 MPE Prediction**

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$ 

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

#### **GSM Band**

Maximum peak output power at antenna input terminal: <u>32.56 (dBm)</u> Maximum peak output power at antenna input terminal: 32.50 (dBii)

Maximum peak output power at antenna input terminal: 1786.49 (mW)

Prediction distance: 20 (cm)

Predication frequency: 836.6 (MHz)

Antenna Gain (typical): 0.5 (dBi)

Antenna gain: 1.122 (numeric)

Power density at predication frequency at 20 cm: 0.399 (mW/cm<sup>2</sup>)

MPE limit for uncontrolled exposure at prediction frequency: 0.560 (mW/cm<sup>2</sup>)

<sup>\* =</sup> Plane-wave equivalent power density

#### **PCS Band**

Maximum peak output power at antenna input terminal: 29.22 (dBm) Maximum peak output power at antenna input terminal: 835.60 (mW)

Prediction distance: 20 (cm)
Predication frequency: 1880 (MHz)
Antenna Gain (typical): 0.5 (dBi)

Antenna gain: 1.122 (numeric)
Power density at predication frequency at 20 cm: 0.187 (mW/cm²)

MPE limit for uncontrolled exposure at prediction frequency: 1 (mW/cm<sup>2</sup>)

#### **5.3** Test Result

The EUT is a mobile device. The power density level at 20 cm is <u>0.399</u> mW/cm², which is below the uncontrolled exposure limit of 0.560 mW/cm² at 836.580 MHz for GSM band. The power density level at 20 cm is <u>0.187</u> mW/cm², which is below the uncontrolled exposure limit of 1mW/cm² at 1880 MHz for PCS band.

# 6 - §2.1053 - SPURIOUS RADIATED EMISSIONS

#### **6.1 Applicable Standard**

Requirements: CFR 47, § 2.1053, § 22.917, § 24.238.

#### **6.2 Test Procedure**

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in  $dB = 10 \lg (TXpwr in Watts/0.001)$  – the absolute level

Spurious attenuation limit in  $dB = 43 + 10 \text{ Log}_{10}$  (power out in Watts)

#### **Environmental Conditions**

| Temperature:       | 26° C    |
|--------------------|----------|
| Relative Humidity: | 46%      |
| ATM Pressure:      | 1020mbar |

The testing was performed by Dan Coronia on 2007-01-26 to 31.

## **6.3 Test Equipment List and Details**

| Manufacturer       | Description                                              | Model               | Serial Number | Cal. Date   |
|--------------------|----------------------------------------------------------|---------------------|---------------|-------------|
| Agilent            | Analyzer,<br>Communications                              | E5515C              | GB44051221    | 2005-08-08* |
| Agilent            | Analyzer, Spectrum                                       | E4446A              | US44300386    | 2006-03-06  |
| Agilent            | Amplifier, Pre                                           | 8447D               | 2944A10198    | 2006-08-17  |
| HP                 | Amplifier, Pre,<br>Microwave                             | 8449B               | 3147A00400    | 2006-08-21  |
| Rohde &<br>Schwarz | Generator, Signal                                        | SMIQ03              | 849192/0085   | 2006-10-18  |
| A. H. Systems      | Antenna, Horn, DRG                                       | SAS-200/571         | 261           | 2005-04-20* |
| HP                 | Generator, Signal                                        | 83650B              | 3614A00276    | 2006-05-10  |
| A.R.A.             | Antenna, Horn                                            | Horn DRG-118/A 1132 |               | 2006-08-17  |
| Wainwright         | ght Filter, Band Reject WRCG823/850-<br>813/860-40/8SS 2 |                     | 2             | N/A         |
| Wainwright         | WRCG1850/1910-                                           |                     | 5             | N/A         |

<sup>\*</sup> Two Year Calibration Cycle

<sup>\*</sup> Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

# **6.4 Test Result**

Worst case reading as follows:

**GSM** 850

-6.2 dB at 1673.20 MHz

GSM 1900

-15.8 dB at 3760.00 MHz

Run #1: 30MHz -10GHz GSM 850 Band Middle Channel

| Indic     | cated     | Table  | Test Ar | itenna | Substituted |        | Antenna    | Cable | Absolute | I imit | Margin |
|-----------|-----------|--------|---------|--------|-------------|--------|------------|-------|----------|--------|--------|
| Frequency | Amplitude | Angle  | Height  | Polar  | Frequency   | Level  | Gain       | Loss  | Level    | Lillit | Margin |
| MHz       | dBuV/m    | Degree | Meter   | H/V    | MHz         | dBm    | Correction | dB    | dBm      | dBm    | dB     |
| 1673.20   | 58.63     | 181    | 1.8     | V      | 1673.20     | -26.60 | 8.7        | 1.3   | -19.2    | -13    | -6.2   |
| 1673.20   | 57.38     | 280    | 1.2     | Н      | 1673.20     | -27.80 | 8.7        | 1.3   | -20.4    | -13    | -7.4   |
| 2509.80   | 38.48     | 149    | 1.1     | V      | 2509.80     | -31.70 | 9.5        | 1.6   | -23.8    | -13    | -10.8  |
| 2509.80   | 35.46     | 154    | 1.1     | Н      | 2509.80     | -35.30 | 9.5        | 1.6   | -27.4    | -13    | -14.4  |
| 3346.40   | 25.55     | 185    | 1.5     | V      | 3346.40     | -45.20 | 10.2       | 2.2   | -37.2    | -13    | -24.2  |
| 3346.40   | 23.00     | 234    | 1.6     | Н      | 3346.40     | -53.10 | 10.2       | 2.2   | -45.1    | -13    | -32.1  |
| 41.83.00  | 22.96     | 186    | 1.3     | V      | 41.83.00    | -52.93 | 11.1       | 2.5   | -44.3    | -13    | -31.3  |
| 41.83.00  | 21.58     | 230    | 1.2     | Н      | 41.83.00    | -56.11 | 11.1       | 2.5   | -47.5    | -13    | -34.5  |

Run # 2: 30MHz -20GHz GSM 1900 Band Middle Channel

| Indic     | cated     | Table  | Test Ar | tenna | Substitu  | ted    | Antenna    | Cable | Absolute | I imit | Margin |
|-----------|-----------|--------|---------|-------|-----------|--------|------------|-------|----------|--------|--------|
| Frequency | Amplitude | Angle  | Height  | Polar | Frequency | Level  | Gain       | Loss  | Level    | Limit  | Margin |
| MHz       | dBuV/m    | Degree | Meter   | H/V   | MHz       | dBm    | Correction | dB    | dBm      | dBm    | dB     |
| 3760.00   | 68.90     | 80     | 1.3     | v     | 3760.00   | -37.85 | 11.4       | 2.3   | -28.8    | -13    | -15.8  |
| 3760.00   | 67.65     | 190    | 1.6     | h     | 3760.00   | -38.60 | 11.4       | 2.3   | -29.5    | -13    | -16.5  |
| 5640.00   | 49.40     | 160    | 1.0     | v     | 5640.00   | -44.86 | 11.2       | 3.1   | -36.8    | -13    | -23.8  |
| 5640.00   | 46.57     | 220    | 1.1     | h     | 5640.00   | -46.99 | 11.2       | 3.1   | -38.9    | -13    | -25.9  |
| 7520.00   | 35.90     | 100    | 1.5     | v     | 7520.00   | -51.95 | 11.1       | 4.1   | -44.95   | -13    | -31.95 |
| 7520.00   | 33.73     | 90     | 1.7     | h     | 7520.00   | -54.35 | 11.1       | 4.1   | -47.35   | -13    | -34.35 |

# 7 - §2.1046, §22.913(a), & §24.232 - RF OUTPUT POWER

# 7.1 Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (a), in no case may the peak output power of a base station transmitter exceed 2 watt.

#### 7.2 Test Procedure

Conducted:

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

## **Environmental Conditions**

| Temperature:       | 26° C    |
|--------------------|----------|
| Relative Humidity: | 46%      |
| ATM Pressure:      | 1020mbar |

The testing was performed by Dan Coronia on 2007-01-26 to 31.

# 7.3 Test Equipment List and Details

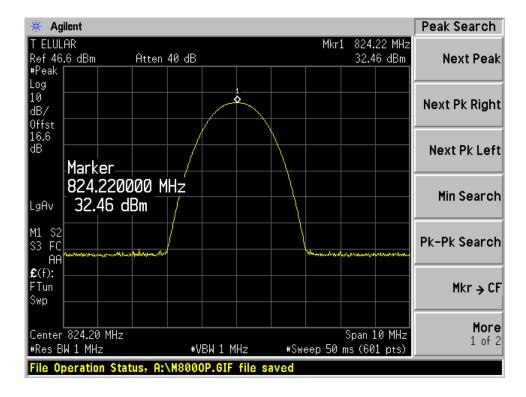
| Manufacturer | Description                 | Model  | Serial Number | Cal. Date   |
|--------------|-----------------------------|--------|---------------|-------------|
| Agilent      | Analyzer,<br>Communications | E5515C | GB44051221    | 2005-08-08* |
| Agilent      | Analyzer, Spectrum          | E4446A | US44300386    | 2006-03-06  |

<sup>\*</sup> Two Year Calibration Cycle

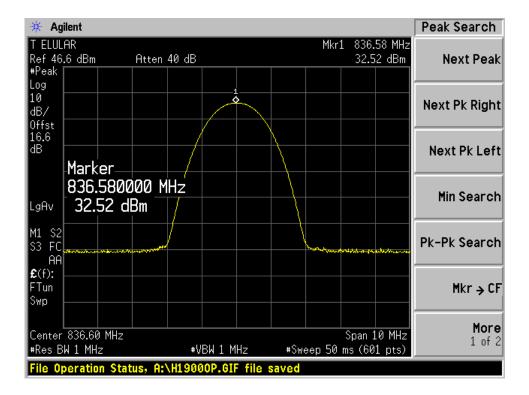
<sup>\*</sup> **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

# 7.4 Test Results

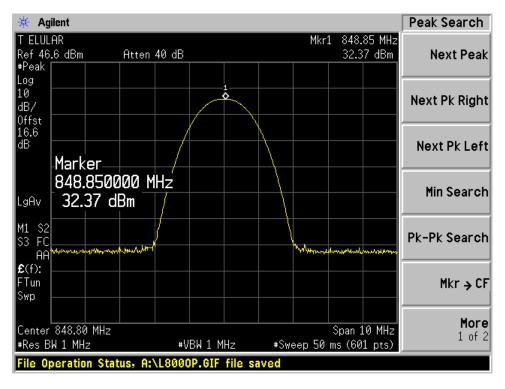
# GSM band, Part 22:


| Channel | Frequency<br>(MHz) | Conducted<br>Output Power<br>(dBm) | ERP<br>(dBm) | ERP<br>(Watt) | Limit<br>(Watt) |
|---------|--------------------|------------------------------------|--------------|---------------|-----------------|
| LOW     | 824.2              | 32.46                              | 30.5         | 1.122         | 7               |
| MIDDLE  | 836.6              | 32.52                              | 31.2         | 1.318         | 7               |
| HIGH    | 848.8              | 32.37                              | 29.9         | 0.977         | 7               |

# PCS band, Part 24:

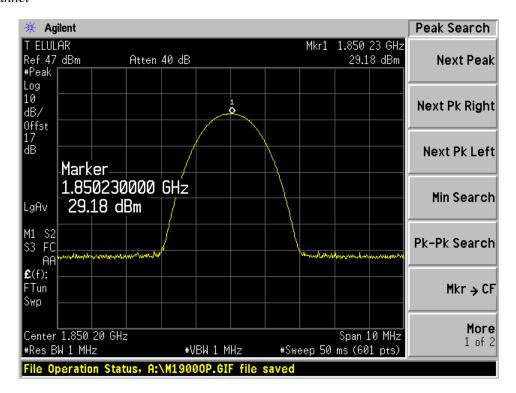

| Channel | Frequency<br>(MHz) | Conducted<br>Output Power<br>(dBm) | EIRP<br>(dBm) | EIRP<br>(Watt) | Limit<br>(Watt) |
|---------|--------------------|------------------------------------|---------------|----------------|-----------------|
| LOW     | 1850.2             | 29.18                              | 29.4          | 0.871          | 2               |
| MIDDLE  | 1880.0             | 29.22                              | 29.5          | 0.891          | 2               |
| HIGH    | 1909.8             | 28.64                              | 28.0          | 0.631          | 2               |

#### **Plots of Conducted Output Power for Part 22**

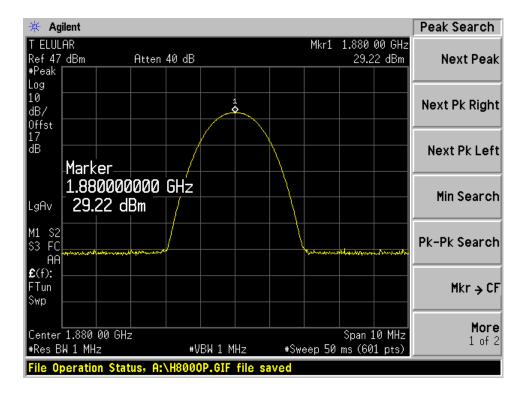

#### Low Channel



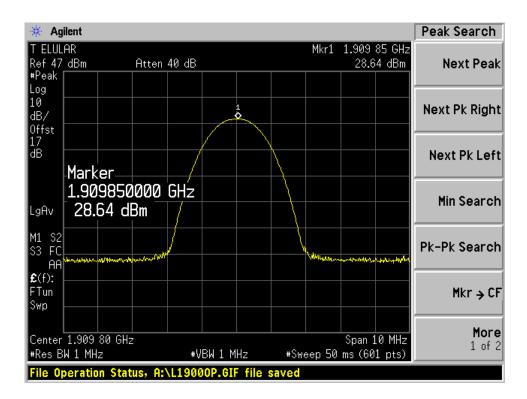
#### Middle Channel




## High Channel




#### Plots of Conducted Output Power for Part 24


Low Channel



#### Middle Channel



#### High Channel



# 8 - §2.1049, §22.917, §22.905, & §24.238 - OCCUPIED BANDWIDTH

# 8.1 Applicable Standard

Requirements: CFR 47, Section 2.1049, Section 22.901, Section 22.917 and Section 24.238.

## **8.2 Test Procedure**

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 30 kHz (GSM /PCS) and the 26 dB & 99% bandwidth was recorded.

#### **Environmental Conditions**

| Temperature:       | 26° C    |
|--------------------|----------|
| Relative Humidity: | 46%      |
| ATM Pressure:      | 1020mbar |

The testing was performed by Dan Coronia on 2007-01-26 to 31.

# 8.3 Test Equipment List and Details

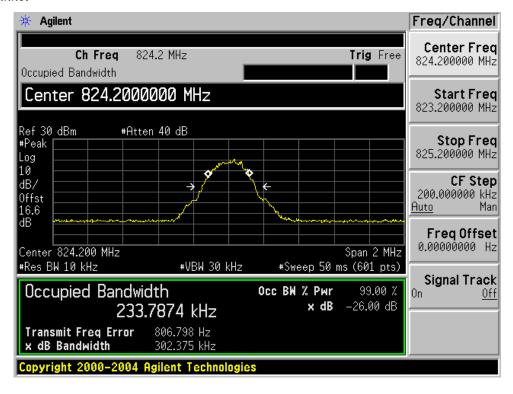
| Manufacturer | Description                 | Model  | Serial Number | Cal. Date   |
|--------------|-----------------------------|--------|---------------|-------------|
| Agilent      | Analyzer,<br>Communications | E5515C | GB44051221    | 2005-08-08* |
| Agilent      | Analyzer, Spectrum          | E4446A | US44300386    | 2006-03-06  |

<sup>\*</sup> Two Year Calibration Cycle

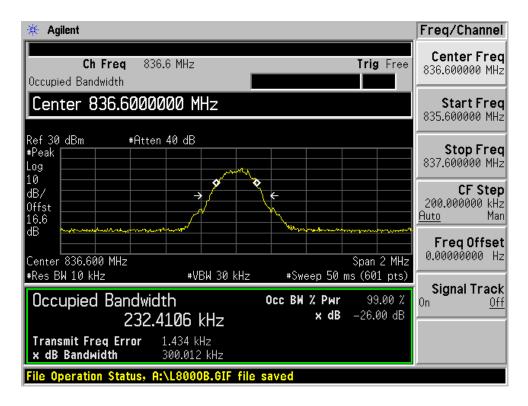
## **8.4 Test Results**

GSM band, Part 22:

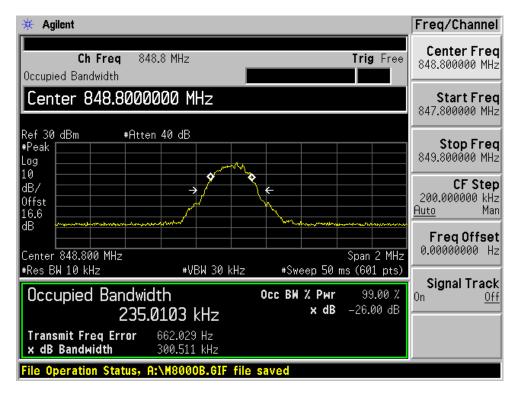
| Channel | Frequency (MHz) | Occupied Bandwidth (MHz) |
|---------|-----------------|--------------------------|
| LOW     | 824.2           | 0.2338                   |
| MIDDLE  | 836.6           | 0.2324                   |
| HIGH    | 848.8           | 0.2350                   |


#### PCS Band, Part 24:

| Channel | Frequency (MHz) | Occupied Bandwidth (MHz) |
|---------|-----------------|--------------------------|
| LOW     | 1850.2          | 0.2293                   |
| MIDDLE  | 1880.0          | 0.2316                   |
| HIGH    | 1909.8          | 0.2298                   |

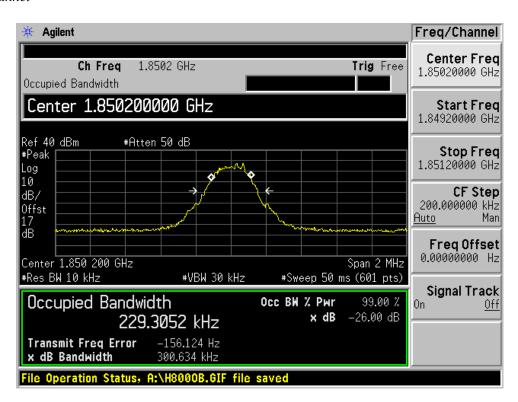

<sup>\*</sup> **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

#### Plots of Occupied Bandwidth for Part22

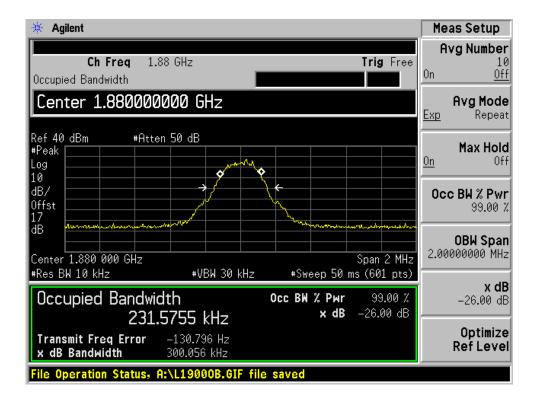

#### Low Channel



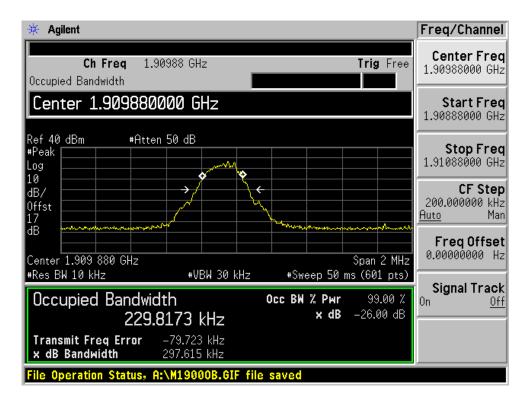
#### Middle Channel




#### High Channel




#### Plots of Occupied Bandwidth for Part24


#### Low Channel



#### Middle Channel



#### High Channel



# 9 - $\S2.1051$ , $\S22.917$ , & $\S24.238(a)$ - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

# 9.1 Applicable Standard

Requirements: CFR 47, § 2.1051. § 22.917 & §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1057.

#### 9.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at  $100 \, \text{kHz}$ . Sufficient scans were taken to show any out of band emissions up to  $10^{\text{th}}$  harmonic.

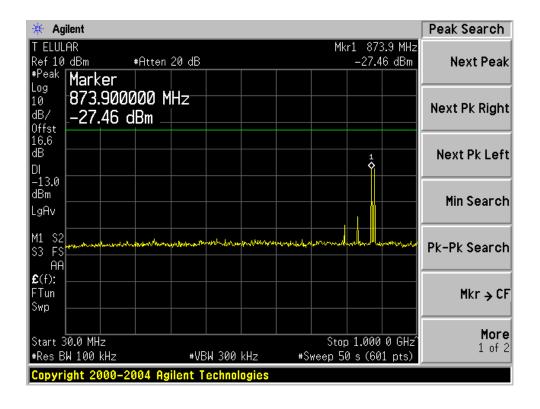
## **Environmental Conditions**

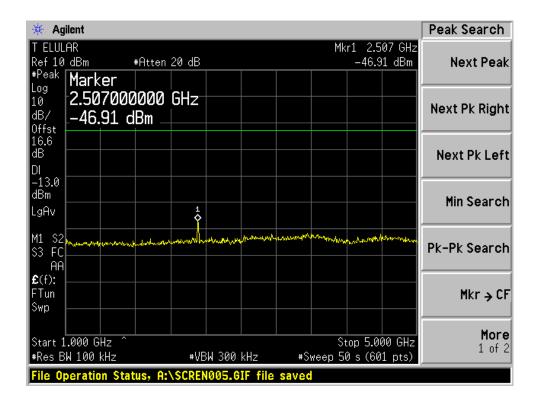
| Temperature:       | 26° C    |
|--------------------|----------|
| Relative Humidity: | 46%      |
| ATM Pressure:      | 1020mbar |

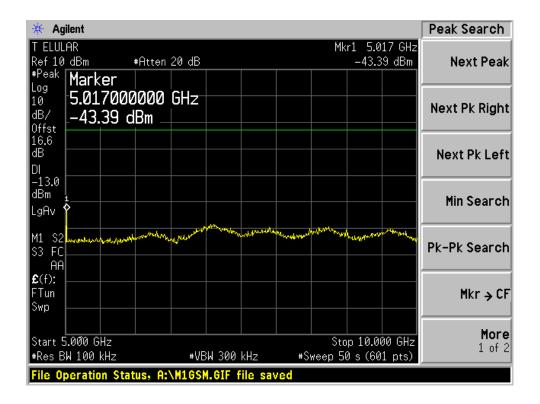
The testing was performed by Dan Coronia on 2007-01-26 to 31.

# 9.3 Test Equipment List and Details

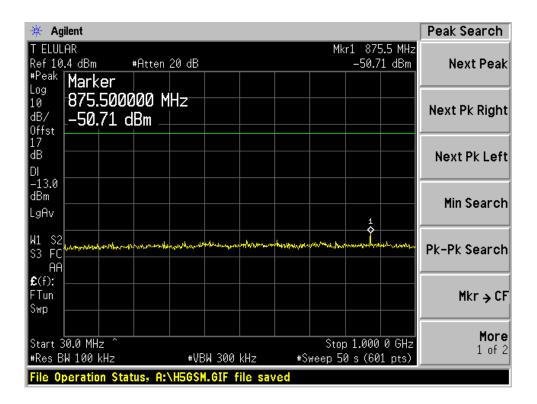
| Manufacturer | Description                 | Model  | Serial Number | Cal. Date   |
|--------------|-----------------------------|--------|---------------|-------------|
| Agilent      | Analyzer,<br>Communications | E5515C | GB44051221    | 2005-08-08* |
| Agilent      | Analyzer, Spectrum          | E4446A | US44300386    | 2006-03-06  |

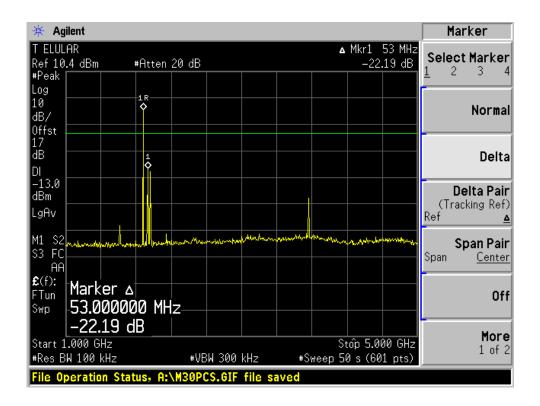

<sup>\*</sup> Two Year Calibration Cycle

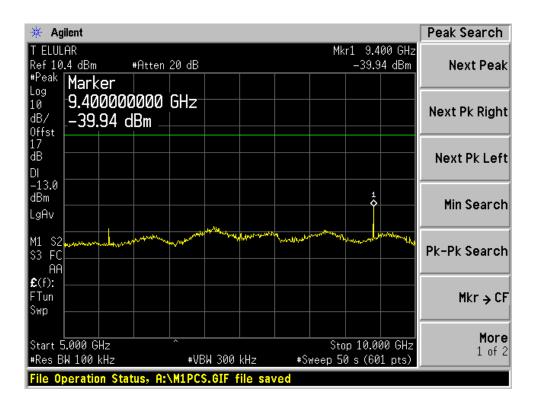

#### 9.4 Test Results

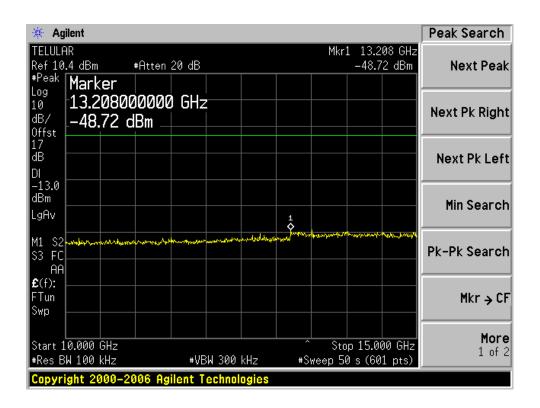

Please refer to the hereinafter plots

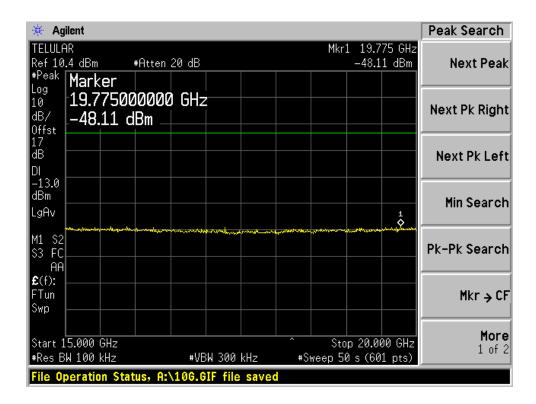
<sup>\*</sup> **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.


#### Plots of Spurious Emissions for Part22





Plots of Spurious Emissions for Part24











# 10 - §2.1055 (a), §2.1055 (d), §22.355, & §24.235 - FREQUENCY STABILITY

# 10.1 Applicable Standard

Requirements: FCC § 2.1055 (a), § 2.1055 (d) & following:

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

Table C-1\_Frequency Tolerance for Transmitters in the Public Mobile Services

Table C-1\_Frequency Tolerance for Transmitters in the Public Mobile Services

| Frequency range (MHz) | Base, fixed (ppm) | Mobile<br>[le]3 watts<br>(ppm) | Mobile<br>[le]3 watts<br>(ppm) |
|-----------------------|-------------------|--------------------------------|--------------------------------|
| 25 to 50              | 20.0              | 20.0                           | 50.0                           |
| 50 to 450             | 5.0               | 5.0                            | 50.0                           |
| 450 to 512            | 2.5               | 5.0                            | 5.0                            |
| 821 to 896            | 1.5               | 2.5                            | 2.5                            |
| 928 to 929            | 5.0               | n/a                            | n/a                            |
| 929 to 960            | 1.5               | n/a                            | n/a                            |
| 2110 to 2220          | 10.0              | n/a                            | n/a                            |

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

#### **10.2 Test Procedure**

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

#### **Environmental Conditions**

| Temperature:       | 26° C    |
|--------------------|----------|
| Relative Humidity: | 46%      |
| ATM Pressure:      | 1020mbar |

The testing was performed by Dan Coronia on 2007-01-26 to 31.

# 10.3 Test Equipment List and Details

| Manufacturer | Description                 | Model     | Serial Number | Cal. Date   |
|--------------|-----------------------------|-----------|---------------|-------------|
| Agilent      | Analyzer,<br>Communications | E5515C    | GB44051221    | 2005-08-08* |
| Agilent      | Analyzer, Spectrum          | E4446A    | US44300386    | 2006-03-06  |
| Tenney       | Oven, Temperature           | VersaTenn | 12.222-193    | 2006-06-04  |

# **10.4 Test Results**

GSM 850 (AC Line)

Frequency Stability versus Temperature

| Reference Frequency: 836.600 MHz, Limit: 2.5ppm |                      |                                |                           |
|-------------------------------------------------|----------------------|--------------------------------|---------------------------|
|                                                 |                      | Frequency N                    | Measure with Time Elapsed |
| Environment Temperature (°C)                    | Power Supplied (VAC) | Measured<br>Frequency<br>(MHz) | Error (ppm)               |
| 50                                              | 120                  | 836.599969                     | -0.0371                   |
| 40                                              | 120                  | 836.599968                     | -0.0383                   |
| 30                                              | 120                  | 836.599976                     | -0.0287                   |
| 20                                              | 120                  | 836.599982                     | -0.0215                   |
| 10                                              | 120                  | 836.599971                     | -0.0347                   |
| 0                                               | 120                  | 836.599967                     | -0.0394                   |
| -10                                             | 120                  | 836.599987                     | -0.0155                   |
| -20                                             | 120                  | 836.599976                     | -0.0287                   |
| -30                                             | 120                  | 836.599963                     | -0.0442                   |

| Reference Frequency: 836.6 MHz, Limit: 2.5ppm                                             |    |            |         |  |
|-------------------------------------------------------------------------------------------|----|------------|---------|--|
| Power Supplied (VAC)  Environment Temperature (°C)  Measured Frequency (MHz)  Error (ppm) |    |            |         |  |
| 102                                                                                       | 20 | 836.599989 | -0.0135 |  |
| 138                                                                                       | 20 | 836.599967 | -0.0155 |  |

<sup>\*</sup> Two Year Calibration Cycle
\* Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

# PCS 1900 (AC Line)

Frequency Stability versus Temperature

| Reference Frequency: 1880 MHz, Limit: 2.5ppm |                      |                                |                           |
|----------------------------------------------|----------------------|--------------------------------|---------------------------|
|                                              |                      | Frequency M                    | Ieasure with Time Elapsed |
| Environment Temperature (°C)                 | Power Supplied (VAC) | Measured<br>Frequency<br>(MHz) | Error (ppm)               |
| 50                                           | 120                  | 1879.999973                    | -0.0141                   |
| 40                                           | 120                  | 18.79.999981                   | -0.0104                   |
| 30                                           | 120                  | 1879.999979                    | -0.0119                   |
| 20                                           | 120                  | 1879.999982                    | -0.0095                   |
| 10                                           | 120                  | 1879.999952                    | -0.0255                   |
| 0                                            | 120                  | 1879.999992                    | -0.0045                   |
| -10                                          | 120                  | 1879.999978                    | -0.0117                   |
| -20                                          | 120                  | 1879.999968                    | -0.0170                   |
| -30                                          | 120                  | 1879.99998                     | -0.0106                   |

| Reference Frequency: 1880 MHz, Limit: 2.5ppm                                          |    |             |         |
|---------------------------------------------------------------------------------------|----|-------------|---------|
| Power Supplied (VAC) Environment Temperature (°C) Measured Frequency (MHz) Error (ppi |    |             |         |
| 102                                                                                   | 20 | 1879.999956 | -0.0235 |
| 138                                                                                   | 20 | 1879.999978 | -0.0117 |

# GSM 850 (Back up Battery)

Frequency Stability versus Temperature

| Reference Frequency: 836.600 MHz, Limit: 2.5ppm |                      |                                |                           |
|-------------------------------------------------|----------------------|--------------------------------|---------------------------|
|                                                 |                      | Frequency 1                    | Measure with Time Elapsed |
| Environment Temperature (°C)                    | Power Supplied (VDC) | Measured<br>Frequency<br>(MHz) | Error (ppm)               |
| 50                                              | 3.6                  | 836.599982                     | -0.0215                   |
| 40                                              | 3.6                  | 836.599971                     | -0.0347                   |
| 30                                              | 3.6                  | 836.599976                     | -0.0287                   |
| 20                                              | 3.6                  | 836.599969                     | -0.0371                   |
| 10                                              | 3.6                  | 836.599987                     | -0.0155                   |
| 0                                               | 3.6                  | 836.599967                     | -0.0394                   |
| -10                                             | 3.6                  | 836.599963                     | -0.0442                   |
| -20                                             | 3.6                  | 836.599968                     | -0.0383                   |
| -30                                             | 3.6                  | 836.599976                     | -0.0287                   |

| Reference Frequency: 836.6 MHz, Limit: 2.5ppm                                             |    |            |         |  |
|-------------------------------------------------------------------------------------------|----|------------|---------|--|
| Power Supplied (VDC)  Environment Temperature (°C)  Measured Frequency (MHz)  Error (ppm) |    |            |         |  |
| 3.1                                                                                       | 20 | 836.599986 | -0.0136 |  |
| 4.1                                                                                       | 20 | 836.599968 | -0.0144 |  |

# PCS 1900 (Back up Battery)

Frequency Stability versus Temperature

| Reference Frequency: 1880 MHz, Limit: 2.5ppm |                      |                                |                        |
|----------------------------------------------|----------------------|--------------------------------|------------------------|
|                                              |                      | Frequency Mea                  | sure with Time Elapsed |
| Environment Temperature (°C)                 | Power Supplied (VDC) | Measured<br>Frequency<br>(MHz) | PPM Error              |
| 50                                           | 3.6                  | 1879.999992                    | 0.0045                 |
| 40                                           | 3.6                  | 18.79.999981                   | 0.0104                 |
| 30                                           | 3.6                  | 1879.999973                    | 0.0141                 |
| 20                                           | 3.6                  | 1879.999982                    | 0.0095                 |
| 10                                           | 3.6                  | 1879.999956                    | 0.0235                 |
| 0                                            | 3.6                  | 1879.999978                    | 0.0117                 |
| -10                                          | 3.6                  | 1879.999998                    | 0.0106                 |
| -20                                          | 3.6                  | 1879.999968                    | 0.0170                 |
| -30                                          | 3.6                  | 1879.999979                    | 0.0119                 |

| Reference Frequency: 1880 MHz, Limit: 2.5ppm |    |                             |           |
|----------------------------------------------|----|-----------------------------|-----------|
| (TID C)                                      |    | Measured Frequency<br>(MHz) | PPM Error |
| 3.1                                          | 20 | 1879.999952                 | 0.0255    |
| 4.1                                          | 20 | 1879.999976                 | 0.0114    |

# 11 - §22.917 & §24.238 - BAND EDGE

# 11.1 Applicable Standard

According to § 22.917, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ .

According to \$24.238, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB.

#### 11.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 10 kHz.

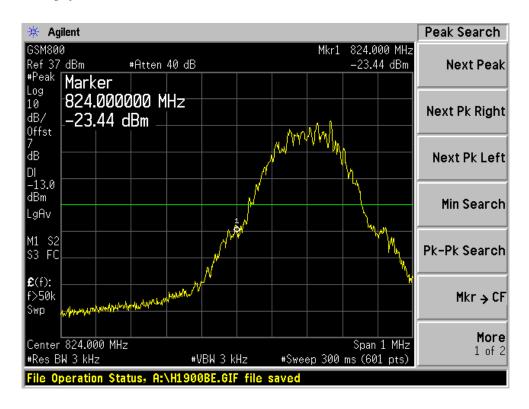
#### **Environmental Conditions**

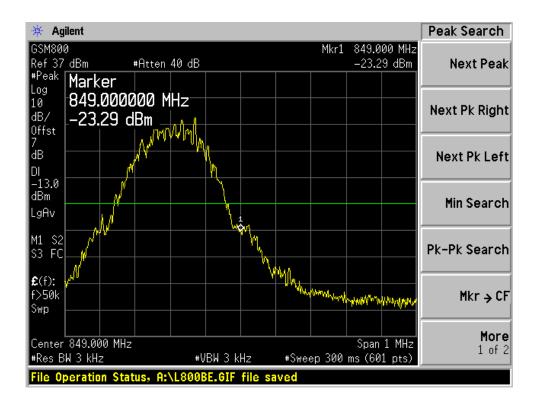
| Temperature:       | 26° C    |
|--------------------|----------|
| Relative Humidity: | 46%      |
| ATM Pressure:      | 1020mbar |

The testing was performed by Dan Coronia on 2007-01-26 to 31.

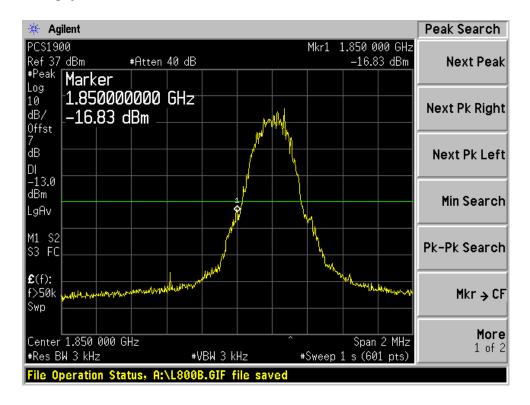
# 11.3 Test Equipment List and Details

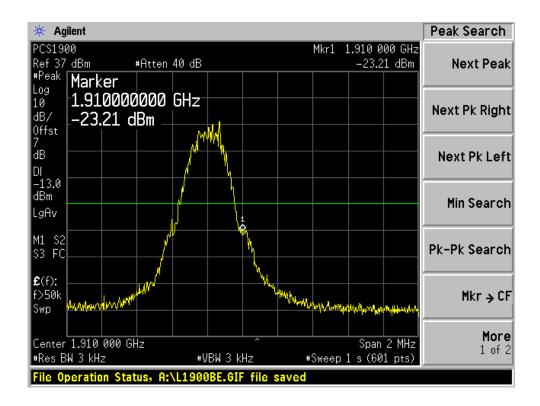
| Manufacturer | Description                 | Model  | <b>Serial Number</b> | Cal. Date   |
|--------------|-----------------------------|--------|----------------------|-------------|
| Agilent      | Analyzer,<br>Communications | E5515C | GB44051221           | 2005-08-08* |
| Agilent      | Analyzer, Spectrum          | E4446A | US44300386           | 2006-03-06  |


<sup>\*</sup> Two Year Calibration Cycle


#### 11.4 Test Results

Please refer to the following plots.


<sup>\*</sup> **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.


## Plots of Band Edge for Part 22





#### Plots of Band Edge for Part 24



