

Test report No.: 2390144R-SAUSV01S-A

SAR Test Report (Class II Permissive Change)

Product Name	Intel Wi-Fi 6E AX211
Trademark	Intel
Model and /or type reference	AX211D2W
Applicant's name / address	ASUSTeK Computer, Inc 1F, No. 15, Lide Rd, Beitou, Taipei, 112 Taiwan
Manufacturer's name	Intel Corporation
FCC ID	MSQAX211D2
Applicable Standard	IEEE 1528-2013 KDB 447498 D01 v06 KDB 865664 D01 v01r04
Test Result	Max. SAR Measurement (1g) 2.4 GHz: 0.805 W/kg 5 GHz: 0.728 W/kg 6 GHz: 1.068 W/kg Max. psPD Measurement (4cm²) 6 GHz: 6.077 W/m²
Verdict Summary	IN COMPLIANCE
Documented By (Senior Project Specialist / Ida Tung)	Ida Tung
Tested By (Senior Engineer / Luke Cheng)	Ida Tung Luke Cheng Low Vin
Approved By (Assistant Manager / San Lin)	San Vin
Date of Receipt	2023/09/06
Date of Issue	2024/03/08
Report Version	V3.0

INDEX

		Page
1.		
	1.1 EUT Description	
	1.2 Antenna List	
	1.3 SAR Test Positions	
	1.4 Test Environment	
	1.5 Measurement procedures	
2.	SAR Measurement System	
	2.1 DASY System Description	
	2.2 Area Scans	
	2.3 DASY E-Field Probe	
	2.4 DATA Acquisition Electronics (DAE) and Measurement Server	
	2.5 Robot	15
	2.6 Device Holder	15
	2.7 Phantom	16
3.	Tissue Simulating Liquid	17
	3.1 The composition of the tissue simulating liquid	17
	3.2 Tissue Calibration Result	17
	3.3 Tissue Dielectric Parameters for Phantoms	19
4.	Measurement Procedure	20
	4.1 SAR System Check	20
	4.2 SAR Measurement Procedure	
	4.3 Absorbed Power Density (APD)	24
	4.4 Power Density Measurement Procedure	24
5.	RF Exposure Limits	
6.	Test Equipment List	26
7.	Measurement Uncertainty	
8.	Conducted Power Measurement (Including tolerance allowed for p	roduction unit)
_	Tot Doculto	
9.	Test Results	
	9.1 Test Results Summary	
4.0	9.2 Simultaneous Transmission	
10.	SAR measurement variability	43
	Appendix A. System Check Data	
	Appendix B. Highest measurement Data	
	Appendix C. Test Setup Photographs	
	Appendix D. Probe Calibration Data	
	Appendix E. Dipole & Source Calibration	
	Appendix F. Product Photos-Please refer to the file: 2390144R-Product Photo	S

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

<u>IMPORTANT:</u> No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General conditions

- 1. The test results relate only to the samples tested.
- 2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
- 3. This report must not be used to claim product endorsement by TAF or any agency of the government.
- 4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
- 5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Report No.: 2390144R-SAUSV01S-A

Revision History

Report No.	Version	Description	Issued Date
2390144R-SAUSV01S-A	V1.0	Initial issue of report.	2023/11/08
2390144R-SAUSV01S-A	V2.0	Add Edge(Front) SAR test results.	2023/11/30
2390144R-SAUSV01S-A	V3.0	Add Test Setup Photographs.	2024/03/08

1. General Information

1.1 EUT Description

Product Name	Intel Wi-Fi 6E AX211
Trademark	Intel
Model and /or type	AX211D2W
reference	
Test Sample	UX3405M
FCC ID	MSQAX211D2
Frequency Range	WLAN 2.4GHz: 2412-2472MHz
	WLAN 5GHz: 5180-5240MHz, 5260-5320MHz, 5500-5720MHz, 5745-5825MHz,
	5845-5885MHz
	WLAN 6GHz: 5955-7115MHz
	BT: 2402-2480MHz
Type of Modulation	802.11b: DSSS
	802.11a/g/n/ac/ax: OFDM, OFDMA
	GFSK(1Mbps) / π /4DQPSK(2Mbps) / 8DPSK(3Mbps)
Antenna Type	PIFA
Device Category	Portable
RF Exposure	Uncontrolled
Environment	

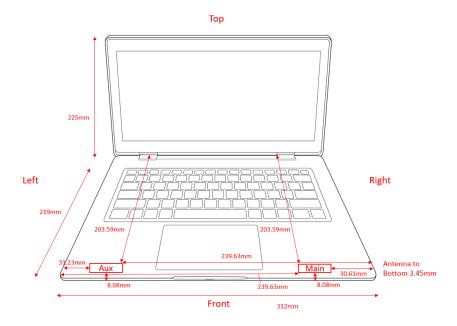
Summary of test result-Reported 1g SAR (W/Kg)					
Test configuration	DTS	NII	6XD	DSS(BT)	
Standalone	0.805	0.728	1.068	0.242	
Cinculton cour	1.416	1.446	2.327	2.327	
Simultaneous			(SPLSR=0.02)	(SPLSR=0.02)	
Summary of test result - F	Summary of test result – Power Density				
Test configuration	6XD				
APD (W/m ²)	5.84				
Reported PD (W/m²)	6.077				

	Host information					
Brand	Product Name	Model No.	Difference			
ASUS	Notebook PC	UX3405M	All models are electrically identical, different model			
		BX3405M	names are for marketing purpose.			
		RX3405M				
		Q415M				
		Q425M				

1.2 Antenna List

No.	Manufacturer	Part No.	ASUS Part No.	Antenna Type	Peak Gain
1	PULSE (NB)	TZ2709D (Main)	14008-05740200 (Main)	PIFA	2.30 dBi for 2400MHz
					3.40 dBi for 5150~5250MHz
					3.40 dBi for 5250~5350MHz
					4.50 dBi for 5470~5.725MHz
					4.50 dBi for 5725~5850MHz
					4.20 dBi for 5850~5895MHz
					4.50 dBi for 5925~6425MHz
					3.10 dBi for 6425~6525MHz
					3.00 dBi for 6525~6875MHz
					3.50 dBi for 6875~7125MHz
		TZ2709E (Aux)	14008-05740100 (Aux)		2.20 dBi for 2400MHz
					3.40 dBi for 5150~5250MHz
					2.90 dBi for 5250~5350MHz
					4.50 dBi for 5470~5725MHz
					4.20 dBi for 5725~5850MHz
					4.20 dBi for 5850~5925MHz
					3.90 dBi for 5925~6425MHz
					4.10 dBi for 6425~6525MHz
					4.10 dBi for 6525~6875MHz
					3.50 dBi for 6875~7125MHz

Note: The above EUT information by host manufacturer.


1.3 SAR Test Positions

According to KDB Publication 616217 D04, SAR evaluation is required for the bottom surface of the laptop keyboard.

The laptop does not support flip to PAD mode; the antenna is installed on the keyboard, with a distance from the bottom of 3.45mm. Considering the antenna's distance from the front edge is 8.08mm, testing was conducted on both the bottom and front edge of the keyboard to justify SAR testing for that particular position.

Antonno		Separation distances (mm)				
Antenna	Back	Right	Left	Тор	Bottom	Front
Main	203.59	30.61	239.63	225	3.45	8.08
Aux	203.59	239.63	31.23	225	3.45	8.08

Note: AX211D2W modular declaration compliance distance is 14mm, therefore sides exceeding this distance are excluded.

1.4 Test Environment

Ambient conditions in the laboratory:

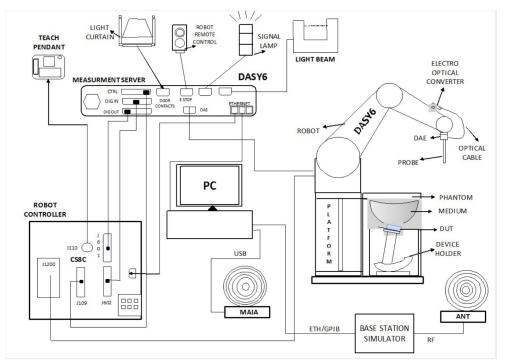
Test Date: 2023/10/03 - 2023/11/29

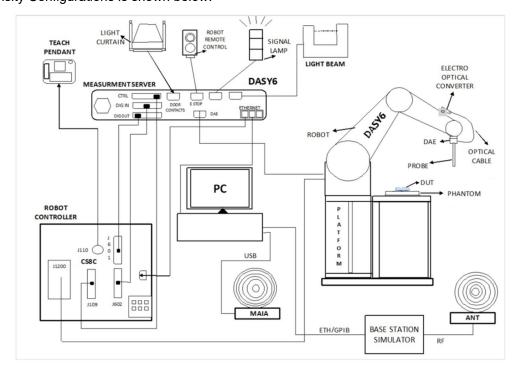
Items	Required	Actual
Temperature (°C)	18-25	23 ± 2
Humidity (%RH)	30-70	50 ± 20

USA	FCC Registration Number: TW0033	
Canada CAB Identifier Number: TW3023 / Company Number: 26930		
Site Description	Accredited by TAF	
	Accredited Number: 3023	
Test Laboratory	DEKRA Testing and Certification Co., Ltd.	
	Linkou Laboratory	
Address	No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C	
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C.	
Phone Number	+886-3-275-7255	
Fax Number	+886-3-327-8031	

1.5 Measurement procedures

IEEE 1528-2013
47CFR § 2.1093
KDB 248227 D01 v02r02
KDB 447498 D01 v06
KDB 616217 D04 v01r02
KDB 865664 D01 v01r04
IEC TR 63170:2018


IEC/IEEE 62209-1528:2020


2. SAR Measurement System

2.1 DASY System Description

SAR Configurations is shown below:

Power Density Configurations is shown below:

Page: 10 of 44

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- > The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7/8/10 and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- > The phantom, the device holder and other accessories according to the targeted measurement.

2.2 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing.

2.2.1 Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 5x5x7 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis.

2.2.2 SAR measurement drifts

Before an area scan and after the zoom scan, single point SAR measurements are performed at defined locations to estimate the SAR measurement drift due to device output power variations. If a device is known to drift randomly, additional single point drift reference measurements should be performed at regular intervals throughout the area and zoom scan test durations. The SAR drift shall be kept within ± 5%, whether there are substantial drifts or not. The field difference will be calculated in dB units in the DASY software.

2.2.3 Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions.

2.3 DASY E-Field Probe

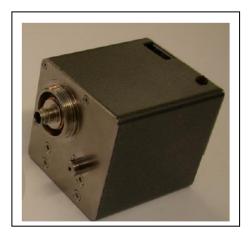
The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards under ISO 17025. The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	Ex3DV4			
Construction	Symmetrical design with triangular core Built-in shielding against static ch	narges		
	PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	EEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	4 MHz – 10 GHz			
	Linearity: ± 0.2 dB (30 MHz to 10 GHz)			
Directivity	± 0.1 dB in TSL (rotation around probe axis)			
	± 0.3 dB in TSL (rotation normal to probe axis)	1		
Dynamic Range	10 μW/g to 100 mW/g			
	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)			
Dimensions	Overall length: 337 mm (Tip: 20 mm)			
	Tip diameter: 2.5 mm (Body: 12 mm)			
	Typical distance from probe tip to dipole centers: 1 mm	1000		
Application	High precision dosimetric measurements in any exposure scenario (e.g.,	ion dosimetric measurements in any exposure scenario (e.g., very strong		
	gradient fields). Only probe which enables compliance testing for frequen	ient fields). Only probe which enables compliance testing for frequencies up to 6		
	GHz with precision of better 30%.			

E-Field mm-Wave Probe Specification


Model	EUmmWVx	
Construction	Two dipoles optimally arranged to obtain pseudo-vector information	
	Minimum three measurements/point, 120° rotated around pro	obe axis
	Sensors (0.8 mm length) printed on glass substrate protected	d by high density foam
Frequency	750 MHz to 110 GHz	
Dynamic Range	< 20 V/m to 10000 V/m with PRE-10	
	(min < 20 V/m to 2000 V/m)	
Position Precision	< 0.2 mm	
Dimensions	Overall length: 337 mm (tip: 20 mm)	
	Tip diameter: encapsulation 8 mm	
	(internal sensor < 1mm)	
	Distance from probe tip to dipole centers:	
	< 2 mm	
	Sensor displacement to probe's calibration point: < 0.3 mm	
Application	E-field measurements of 5G devices and other mm-wave transmitters operating above	
	10GHz in < 2 mm distance from device (free-space)	
	Power density, H-field, and far-field analysis using total field	reconstruction

2.4 DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

2.5 Robot

The DASY system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

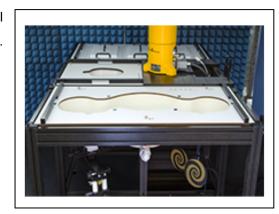
- ➤ High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6 Device Holder

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.



2.7 Phantom

2.7.1 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- > Flat phantom

The device holder positions are adjusted to the standard measurement positions in the three sections. A cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

2.7.2 mmWave Phantom

The mmWave Phantom approximates free-space conditions, allowing to evaluate not only the antenna side of the device but also the front (screen) side or any opposite-radiating side of wireless devices operating above 10 GHz without distorting the RF field. It consists of a 40 mm thick Rohacell plate used as a test bed, which has a loss tangent (tan δ) \leq 0.05 and a relative permittivity (ϵ_r) \leq 1.2. High-performance RF absorbers are placed below the foam.

3. Tissue Simulating Liquid

3.1 The composition of the tissue simulating liquid

Description: Aqueous solution with surfactants and inhibitors

Declarable, or hazardous components:

CAS: 107-21-1	Ethanediol	< 5.2%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000	-	
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using Dielectric Probe Kit and Vector Network Analyzer.

	Tissue Fraguesey		Relat	ive Permittivit	y (er)	C	Conductivity (c	τ)	Tianua Taman
Date	Tissue Type	Frequency (MHz)	Measured	Target	Delta	Measured	Target	Delta	Tissue Temp.
	- 71	()		3	(%)		3	(%)	(-)
	Head	2450	40.20	39.20	2.55	1.79	1.80	-0.56	
	Head	2412	40.40	39.28	2.85	1.74	1.77	-1.69	
2023/10/6	Head	2437	40.30	39.23	2.73	1.75	1.79	-2.35	22.3
	Head	2441	40.30	39.22	2.75	1.78	1.79	-0.56	
	Head	2462	40.20	39.18	2.60	1.81	1.81	0.00	
	Head	5250	35.80	35.95	-0.42	4.61	4.71	-2.12	
	Head	5290	35.70	35.91	-0.58	4.65	4.75	-2.11	
	Head	5600	34.80	35.50	-1.97	5.08	5.07	0.20	
	Head	5530	35.00	35.61	-1.71	4.98	5.00	-0.40	
2023/10/3	Head	5610	34.80	35.49	-1.94	5.09	5.08	0.20	22.1
	Head	5690	34.60	35.41	-2.29	5.19	5.16	0.58	
	Head	5800	34.30	35.30	-2.83	5.34	5.27	1.33	
	Head	5775	34.30	35.33	-2.92	5.31	5.25	1.14	
	Head	5855	34.10	35.25	-3.26	5.41	5.33	1.50	

Page: 17 of 44

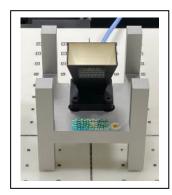
	T:	F	Relat	ive Permittivit	y (er)	C	conductivity (c	τ)	T: T
Date	Tissue Type	Frequency (MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)	Tissue Temp.
	Head	6500	35.30	34.50	2.32	5.96	6.07	-1.81	
	Head	6025	35.80	35.07	2.08	5.43	5.51	-1.45	
2023/10/4	Head	6185	35.70	34.88	2.36	5.61	5.70	-1.58	22.2
2023/10/4	Head	6505	35.40	34.49	2.63	5.97	6.08	-1.81	22.2
	Head	6825	35.10	34.11	2.90	6.33	6.45	-1.86	
	Head	6985	35.00	33.92	3.19	6.51	6.63	-1.81	
	Head	2450	40.27	39.20	2.73	1.77	1.80	-1.67	
	Head	2462	40.22	39.18	2.65	1.78	1.81	-1.66	
	Head	5250	36.46	35.95	1.42	4.71	4.71	0.00	
	Head	5290	36.35	35.91	1.23	4.77	4.75	0.42	
2022/44/20	Head	5600	35.49	35.50	-0.03	5.19	5.07	2.37	22.3
2023/11/29	Head	5530	35.68	35.61	0.20	5.09	5.00	1.80	22.3
	Head	5800	34.94	35.30	-1.02	5.45	5.27	3.42	
	Head	5775	35.01	35.33	-0.91	5.41	5.25	3.05	
	Head	6500	35.40	34.50	2.61	6.11	6.07	0.66	
	Head	6505	35.50	34.49	2.92	6.12	6.08	0.66	

3.3 Tissue Dielectric Parameters for Phantoms

The head tissue dielectric parameters recommended by the IEC/IEEE 62209-1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head tissue parameters that have not been specified are interpolated according to the head parameters specified in IEC/IEEE 62209-1528.

Target Frequency	H	ead
(MHz)	εr	σ (S/m)
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1640	40.2	1.31
1750	40.1	1.37
1800 – 2000	40.0	1.40
2450	39.2	1.80
3000	38.5	2.40
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.3	5.27
5800	35.3	5.27
6000	35.1	5.48
6500	34.5	6.07
7000	33.9	6.65
7500	33.3	7.24

4. Measurement Procedure


4.1 SAR System Check

4.1.1 Dipoles

The SAR dipoles are optimized symmetrical dipole with λ /4 balun matched to a Flat phantom section filled with tissue simulating liquids. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC signals. They are available for the variety of frequencies between 300MHz and 10 GHz. The provided tripod is used to hold the dipole below the phantom. As the distance between the dipole center and the TSL is critical, a spacer is placed between the dipole and the phantom. The spacing distance is frequency dependent.

4.1.2 Verification Source

The verification sources apply to system check or verification at specific mmWave frequencies. The sources comprisehorn-antennas and very stable signal generators.

4.1.3 SAR System Check Result

- 1. Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %.
- 2. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

	Frequency	Input	Measured	Targeted	Normalized	Delta 1g	Measured	Targeted	Normalized	Delta 10g	Tissue
Date	(MHz)	Power	1g SAR	1g SAR	1g SAR	(%)	10g SAR	10g SAR	10g SAR	(%)	Temp.
	(1411 12)	(mW)	(W/kg)	(W/kg)	(W/kg)		(W/kg)	(W/kg)	(W/kg)	(70)	(°C)
2023/10/6	2450	250	13.50	52.40	54	3.05	6.35	24.60	25.4	3.25	22.3
2023/10/3	5250	100	7.94	80.80	79.4	-1.73	2.31	23.20	23.1	-0.43	22.1
2023/10/3	5600	100	8.84	84.20	88.4	4.99	2.54	23.80	25.4	6.72	22.1
2023/10/3	5800	100	8.61	81.80	86.1	5.26	2.43	23.00	24.3	5.65	22.1
2023/10/4	6500	100	29.70	293.00	297	1.37	5.67	53.80	56.7	5.39	22.2
2023/11/29	2450	250	14.00	52.40	56	6.87	6.58	24.60	26.32	6.99	22.3
2023/11/29	5250	100	7.75	80.80	77.5	-4.08	2.27	23.20	22.7	-2.16	22.3
2023/11/29	5600	100	9.13	84.20	91.3	8.43	2.60	23.80	26	9.24	22.3
2023/11/29	5800	100	8.09	81.80	80.9	-1.10	2.31	23.00	23.1	0.43	22.3
2023/11/29	6500	100	30.90	293.00	309	5.46	5.87	53.80	58.7	9.11	22.3

4.1.4 Power Density System Check Result

The system performance check verifies that the system operates within its specifications.

The system check is successful if the difference between the normalized measured local power density and the numerically validated target value is within the reported expanded uncertainty of the measurement system.

The recommended settings for measurement of verification sources are listed in the following:

Frequency (GHz)	Grid step	Grid extent X/Y (mm)	Measurement points
10	0.125 (λ/8)	60 / 60	18 x 18

According to the DASY specification in the user's manual and SPEAG's recommendation, the deviation threshold of ± 0.66 dB represents the expanded standard uncertainty for system performance check. The system check is successful if the measured results are within ± 0.66 dB tolerances to the target value shown in the calibration certificate of the verification source.

Date	Frequency (GHz)	Distance (mm)	Input Power (mW)	Measured Avg PD 4 cm ² (W/m ²)	Targeted Avg PD 4 cm ² (W/m ²)	Deviation (dB)
2023/10/5	10	10	132	-0.19	164.0	172.00

Note: The Measured Avg PD was the average of psPDn+, psPDtot+ and psPDmod+, which refers to the demonstration from calibration certificate.

4.2 SAR Measurement Procedure

The Dasy calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

E:RMS electric field strength (V/m)

The SAR / APD measurements for the EUT should be performed on the channel that produces the highest rated output power of each transmitting antenna.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR / APD distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR / APD location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

4.3 Absorbed Power Density (APD)

Absorbed Power Density (APD) is defined as the energy flow per unit area directly under the body surface that based on Poynting vector. The equation description is as below:

$$S_{ab} = \iint_A \text{Re}[S] \cdot \frac{ds}{A} = \iint_A \text{Re}[E \times H^*] \cdot \frac{ds}{A}$$

Where:

E = electric field strength (V/m)

H = magnetic field strength (A/m)

S = power density (W/m2 or mW/cm2)

APD is expressed in units of Watts per square meter or units of milliwatt per square centimeter.

4.4 Power Density Measurement Procedure

The power density for an electromagnetic field represents the rate of energy transfer per unit area. The local power density (i.e. Poynting vector) at a given spatial point is deduced from electromagnetic fields by the following formula:

$$S = \frac{1}{2} \operatorname{Re}[E \times H^*] \cdot \vec{n}$$

Where: E is the complex electric field peak phasor and H is the complex conjugate magnetic field peak phasor.

The spatial-average power density distribution on the evaluation surface is determined per the IEC TR 63170. The spatial area, A is specified by the applicable exposure limit or regulatory requirements. The circular shape was used.

$$S_{av} = \frac{1}{2A} \Re(\int E \times H \cdot \hat{n} \, dA)$$

5. RF Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, RSS-102 Issue 5, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg
Power density ¹	1 mW/cm²

Note: $1 \text{ mW/cm}^2 = 10 \text{ W/m}^2$

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last Calibration	Next Calibration
Reference Dipole 2450MHz	Speag	D2450V2	930	2022/11/21	2025/11/20
Reference Dipole 5GHz	Speag	D5GHzV2	1321	2021/02/05	2024/02/04
Reference Dipole 6.5GHz	Speag	D6.5GHzV2	1021	2021/02/09	2024/02/08
Verification Source Antenna	Speag	5G Verification	2006	2023/04/25	2024/04/24
10GHz		Source 10GHz			
Device Holder	Speag	N/A	N/A	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1791	2023/02/01	2024/01/31
Data Acquisition Electronic	Speag	DAE4	1651	2023/02/22	2024/02/21
E-Field Probe	Speag	EX3DV4	7784	2023/02/01	2024/01/31
mmWave E-field Probe	Speag	EUmmWV4	9546	2023/04/18	2024/04/17
SAR Software	Speag	DASY8	V16.2.4.2524	N/A	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-20	N/A	N/A
Power Amplifier	Mini-Circuit	ZVE-8G+	447202211	N/A	N/A
Directional Coupler	Agilent	87300C	MY44300353	N/A	N/A ¹
Attenuator	Woken	WATT-218FS-10	N/A	N/A	N/A ¹
Attenuator	Mini-Circuit	BW-S20W2+	N/A	N/A	N/A ¹
Vector Network Analyzer	Agilent	E5071C	MY46108013	2023/03/09	2024/03/08
Power Meter	Anritsu	ML2495A	1434004	2022/12/22	2023/12/21
Power Sensor	Anritsu	MA2411B	1339196	2022/12/22	2023/12/21

Note: 1. System Check, the path loss measured by the network analyzer, includes the signal generator, amplifier, cable, attenuator and directional coupler.

Page: 26 of 44

Per KDB 865664 D01 requirements for dipole calibration, the following are recommended FCC procedures for SAR dipole calibration.

- 1. After a dipole is damaged and properly repaired to meet required specifications.
- 2. When the measured SAR deviates from the calibrated SAR value by more than 10% due to changes in physical, mechanical, electrical or other relevant dipole conditions.
- 3. When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification.

D5GHzV2-1321

	Frequency	Tissue	Return loss	Limit	Verified Date
Calibration	5250 MHz	Head	-39.2		2021/2/5
Measurement	5250 MHz	Head	-39.38	Within 20%	2022/2/7
Measurement	5250 MHz	Head	-39.31		2023/2/2

	Frequency	Tissue	Return loss	Limit	Verified Date
Calibration	5600 MHz	Head	-27.4		2021/2/5
Measurement	5600 MHz	Head	-26.91	Within 20%	2022/2/7
Measurement	5600 MHz	Head	-26.6		2023/2/2

	Frequency	Tissue	Return loss	Limit	Verified Date
Calibration	5800 MHz	Head	-23.6		2021/2/5
Measurement	5800 MHz	Head	-26.92	Within 20%	2022/2/7
Measurement	5800 MHz	Head	-23.6		2023/2/2

D6.5GHzV2-1021

	Frequency	Tissue	Return loss	Limit	Verified Date
Calibration	6500 MHz	Head	-34.1		2021/2/9
Measurement	6500 MHz	Head	-31.54	Within 20%	2022/2/9
Measurement	6500 MHz	Head	-33.89		2023/2/3

Page: 27 of 44

4. When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement.

D5GHzV2-1321

	Frequency	Tissue	Impedance	Limit	Verified Date
Calibration	5250 MHz	Head	50.8		2021/2/5
Measurement	5250 MHz	Head	50.86	Within 5Ω	2022/2/7
Measurement	5250 MHz	Head	49.95		2023/2/2

	Frequency	Tissue	Impedance	Limit	Verified Date
Calibration	5600 MHz	Head	52.9		2021/2/5
Measurement	5600 MHz	Head	50.99	Within 5Ω	2022/2/7
Measurement	5600 MHz	Head	50.11		2023/2/2

	Frequency	Tissue	Impedance	Limit	Verified Date
Calibration	5800 MHz	Head	53.0		2021/2/5
Measurement	5800 MHz	Head	51.12	Within 5Ω	2022/2/7
Measurement	5800 MHz	Head	51.06		2023/2/2

D6.5GHzV2-1021

	Frequency	Tissue	Impedance	Limit	Verified Date
Calibration	6500 MHz	Head	51.0		2021/2/9
Measurement	6500 MHz	Head	51.08	Within 5Ω	2022/2/9
Measurement	6500 MHz	Head	50.97		2023/2/3

Page: 28 of 44

7. Measurement Uncertainty

Measurement uncertainty for 300 MHz to 3 GHz												
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.					
	value	Dist.		1g	10g	(1g)	(10g)					
Measurement System Err	ors	- 1		•	1	1						
Probe Calibration	±12.0%	N	2	1	1	±6.0%	±6.0%					
Probe Calibration Drift	±1.7%	R	1.732	1	1	±1.0%	±1.0%					
Probe Linearity	±4.7%	R	1.732	1	1	±2.7%	±2.7%					
Broadband Signal	±2.8%	R	1.732	1	1	±1.6%	±1.6%					
Probe Isotropy	±7.6%	R	1.732	1	1	±4.4%	±4.4%					
Other Probe+Electronic	±0.8%	N	1	1	1	±0.8%	±0.8%					
RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%					
Probe Positioning	±0.006 mm	N	1	0.14	0.14	±0.1%	±0.1%					
Data Processing	±1.2%	N	1	1	1	±1.2%	±1.2%					
Phantom and Device Erro	ors		•									
Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%					
Conductivity (temp.)	±3.3%	R	1.732	0.78	0.71	±1.5%	±1.4%					
Phantom Permittivity	±14.0%	R	1.732	0	0	±0.0%	±0.0%					
Distance DUT - TSL	±2.0%	N	1	2	2	±4.0%	±4.0%					
Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%					
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%					
DUT Modulation	±2.4%	R	1.732	1	1	±1.4%	±1.4%					
Time-average SAR	±1.7%	R	1.732	1	1	±1.0%	±1.0%					
DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%					
Val Antenna Unc.	±0.0%	N	1	1	1	±0.0%	±0.0%					
Unc. Input Power	±0.0%	N	1	1	1	±0.0%	±0.0%					
Correction to the SAR res	sults											
Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%					
SAR scaling	±0.0%	R	1.732	1	1	±0.0%	±0.0%					
Combined Uncertainty						±11.0%	±10.9%					
Expanded Uncertainty						±21.9%	±21.7%					

Page: 29 of 44

Measurement uncertainty for 3 GHz to 6 GHz												
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.					
	value	Dist.		1g	10g	(1g)	(10g)					
Measurement System Err	rors	· ·				1	-					
Probe Calibration	±14.0%	N	2	1	1	±7.0%	±7.0%					
Probe Calibration Drift	±1.7%	R	1.732	1	1	±1.0%	±1.0%					
Probe Linearity	±4.7%	R	1.732	1	1	±2.7%	±2.7%					
Broadband Signal	±2.6%	R	1.732	1	1	±1.5%	±1.5%					
Probe Isotropy	±7.6%	R	1.732	1	1	±4.4%	±4.4%					
Other Probe+Electronic	±1.2%	N	1	1	1	±1.2%	±1.2%					
RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%					
Probe Positioning	±0.005 mm	N	1	0.29	0.29	±0.2%	±0.2%					
Data Processing	±2.3%	N	1	1	1	±2.3%	±2.3%					
Phantom and Device Erro	ors		•									
Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%					
Conductivity (temp.)	±3.4%	R	1.732	0.78	0.71	±1.5%	±1.4%					
Phantom Permittivity	±14.0%	R	1.732	0.25	0.25	±2.0%	±2.0%					
Distance DUT - TSL	±2.0%	N	1	2	2	±4.0%	±4.0%					
Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%					
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%					
DUT Modulation	±2.4%	R	1.732	1	1	±1.4%	±1.4%					
Time-average SAR	±1.7%	R	1.732	1	1	±1.0%	±1.0%					
DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%					
Val Antenna Unc.	±0.0%	N	1	1	1	±0.0%	±0.0%					
Unc. Input Power	±0.0%	N	1	1	1	±0.0%	±0.0%					
Correction to the SAR res	sults											
Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%					
SAR scaling	±0.0%	R	1.732	1	1	±0.0%	±0.0%					
Combined Uncertainty						±11.9%	±11.8%					
Expanded Uncertainty						±23.8%	±23.6%					

Page: 30 of 44

Measurement uncertainty for 6 GHz to 10 GHz												
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.					
	value	Dist.		1g	10g	(1g)	(10g)					
Measurement System Err	rors	- 1	•	•	•	•	-					
Probe Calibration	±18.6%	N	2	1	1	±9.3%	±9.3%					
Probe Calibration Drift	±1.7%	R	1.732	1	1	±1.0%	±1.0%					
Probe Linearity	±4.7%	R	1.732	1	1	±2.7%	±2.7%					
Broadband Signal	±2.6%	R	1.732	1	1	±1.5%	±1.5%					
Probe Isotropy	±7.6%	R	1.732	1	1	±4.4%	±4.4%					
Other Probe+Electronic	±2.4%	N	1	1	1	±2.4%	±2.4%					
RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%					
Probe Positioning	±0.005 mm	N	1	0.5	0.5	±0.3%	±0.3%					
Data Processing	±3.5%	N	1	1	1	±3.5%	±3.5%					
Phantom and Device Erro	ors	- 1	•	•	•	•	-					
Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%					
Conductivity (temp.)	±2.4%	R	1.732	0.78	0.71	±1.1%	±1.0%					
Phantom Permittivity	±14.0%	R	1.732	0.5	0.5	±4.0%	±4.0%					
Distance DUT - TSL	±2.0%	N	1	2	2	±4.0%	±4.0%					
Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%					
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%					
DUT Modulation	±2.4%	R	1.732	1	1	±1.4%	±1.4%					
Time-average SAR	±1.7%	R	1.732	1	1	±1.0%	±1.0%					
DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%					
Val Antenna Unc.	±0.0%	N	1	1	1	±0.0%	±0.0%					
Unc. Input Power	±0.0%	N	1	1	1	±0.0%	±0.0%					
Correction to the SAR res	sults	-	•	•	•		•					
Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%					
SAR scaling	±0.0%	R	1.732	1	1	±0.0%	±0.0%					
Combined Uncertainty						±14.2%	±14.1%					
Expanded Uncertainty						±28.4%	±28.3%					

Measui	rement uncertainty	for Power	Density				
Error Description	Uncert.	Prob.	Div.	(ci)	Std. Unc.	(vi)	
	Value (±dB)	Dist.			(±dB)	veff	
Uncertainty terms dependent on the	measurement sys	tem			l		
Calibration	0.49	N	1	1	0.49	∞	
Probe correction	0	R	1.732	1	0	∞	
Frequency response (BW ≤ 1 GHz)	0.2	R	1.732	1	0.12	∞	
Sensor cross coupling	0	R	1.732	1	0	∞	
Isotropy	0.5	R	1.732	1	0.29	∞	
Linearity	0.2	R	1.732	1	0.12	∞	
Probe scattering	0	R	1.732	1	0	∞	
Probe positioning offset	0.3	R	1.732	1	0.17	∞	
Probe positioning repeatability	0.04	R	1.732	1	0.02	∞	
Sensor mechanical offset	0	R	1.732	1	0	∞	
Probe spatial resolution	0	R	1.732	1	0	∞	
Field impedance dependance	0	R	1.732	1	0	∞	
Amplitude and phase drift	0	R	1.732	1	0	∞	
Amplitude and phase noise	0.04					∞	
Measurement area truncation	0	R	1.732	1	0	∞	
Data acquisition	0.03	N	1	1	0.03	∞	
Sampling	0	R	1.732	1	0	∞	
Field reconstruction	0.6	R	1.732	1	0.35	∞	
FTE/MEO	0	R	1.732	1	0	∞	
Power density scaling	0	R	1.732	1	0	∞	
Spatial averaging	0.1	R	1.732	1	0.06	∞	
System detection limit	0.04	R	1.732	1	0.02	∞	
Uncertainty terms dependent on the	DUT and environn	nental facto	rs				
Probe coupling with DUT	0	R	1.732	1	0	∞	
Modulation response	0.4	R	1.732	1	0.23	∞	
Integration time	0	R	1.732	1	0	∞	
Response time	0	R	1.732	1	0	∞	
Device holder influence	0.1	R	1.732	1	0.06	∞	
DUT alignment	0	R	1.732	1	0	∞	
RF ambient conditions	0.04	R	1.732	1	0.02	∞	
Ambient reflections	0.04	R	1.732	1	0.02	∞	
Immunity / secondary reception	0	0 R			0	∞	
Drift of the DUT	0.21	R	1.732	1	0.12	∞	
Combined Standard Uncertainty					0.76	∞	
Expanded Standard Uncertainty (959)	%)				1.52		

8. Conducted Power Measurement (Including tolerance allowed for production unit)

WLAN	2.4G 2TX SISO	_							
	_		514/		SISO-Main	(TX1)		SISO-Aux(TX2)
	Frequency	Mode	BW	СН	AV Power	AV Target	СН	AV Power	AV Target
				1	13.86	14	1	13.91	14
				6	13.91	14	6	13.96	14
		b	20	11	13.85	14	11	13.81	14
oort			20	12	13.83	14	12	13.8	14
DSSS/OFDM mode specified maximum output power at an antenna port				13	13.81	14	13	13.79	14
ıten				1	13.75	14	1	13.74	14
n ar				6	13.79	14	6	13.69	14
at aı		g	20	11	13.78	14	11	13.66	14
ver a		9		12	13.8	14	12	13.68	14
wod				13	11.45	11.75	13	11.86	12
put				1	13.71	14	1	13.77	14
ont				6	13.67	14	6	13.68	14
mnı			20	11	13.79	14	11	13.74	14
axir				12	13.72	14	12	13.75	14
m k		n		13	11.56	11.75	13	11.91	12
iffec	WLAN 2.4GHz	(HT)		3	13.75	14	3	13.78	14
bec				6	13.73	14	6	13.74	14
s əp			40	9	13.74	14	9	13.79	14
шос				10	12.18	12.25	10	12.41	12.5
MO				11	9.63	9.75	11	10.63	10.75
OF!				1	13.69	14	1	13.78	14
SS/				6	13.7	14	6	13.69	14
DS			20	11	13.78	14	11	13.73	14
				12	13.71	14	12	13.76	14
		ax		13	11.54	11.75	13	11.78	12
		(HE)		3	13.78	14	3	13.73	14
				6	13.71	14	6	13.67	14
			40	9	13.77	14	9	13.75	14
			40	10	12.13	12.25	10	12.36	12.5
				11	9.58	9.75	11	10.57	10.75

Page: 33 of 44

WL	/LAN 5G 2TX SISO SISO-Main(TX1) SISO-Aux(TX2) SISO-Main(TX1) SISO-Aux(TX2)																	
				SIS	O-Mair	n(TX1)	SIS	SO-Aux	(TX2)				SIS	O-Mair	n(TX1)	SIS	SO-Aux	(TX2)
	Frequency	Mode	BW	СН	AV	_AV	СН	AV	_AV	Frequency	Mode	BW	СН	AV	_AV	СН	AV	_AV
-				36	9.76	Target 10	36	Power 9.78	Target 10				52	Power 9.71	Target 10	52	Power 9.71	Target 10
				40	9.81	10	40	9.82	10				56	9.81	10	56	9.78	10
		а	20	44	9.79	10	44	9.83	10		а	20	60	9.78	10	60	9.82	10
				48	9.76	10	48	9.74	10				64	9.73	10	64	9.79	10
				36	9.74	10	36	9.76	10				52	9.72	10	52	9.78	10
			20	40	9.73	10	40	9.83	10			20	56	9.77	10	56	9.79	10
		n () IT	20	44	9.79	10	44	9.79	10		n "······	20	60	9.81	10	60	9.71	10
	U-NII-1	(HT)		48	9.81	10	48	9.82	10		(HT)		64	9.75	10	64	9.79	10
	(5150~		40	38	9.81	10	38 46	9.77 9.73	10 10	U-NII-2A		40	54 62	9.73 9.69	10	54 62	9.83 9.79	10 10
	5250MHz)	ac(VHT)	80	46 42	9.82	10 10	46	9.73	10	(5250~		80	58	9.69	10	58	9.79	10
		ac(VIII)	00	36	9.78	10	36	9.77	10	5350MHz)	ac (VHT)	160	-	9.87	10	50	9.82	10
				40	9.72	10	40	9.82	10		(****)	100	52	9.75	10	52	9.78	10
			20	44	9.76	10	44	9.81	10			00	56	9.66	10	56	9.79	10
		ax (HE)		48	9.81	10	48	9.74	10			20	60	9.73	10	60	9.73	10
port		(112)	40	38	9.81	10	38	9.75	10		ax		64	9.78	10	64	9.78	10
				46	9.72	10	46	9.83	10		(HE)	40	54	9.73	10	54	9.82	10
antenna			80	42	9.69	10	42	9.77	10				62	9.8	10	62	9.73	10
				100	9.65	10	100	9.71	10			80	58	9.75	10	58	9.78	10
at an		а	20	112 116	9.68 9.71	10	112 116	9.78 9.73	10 10			160	50 149	9.8 9.64	10	50 149	9.76 9.67	10 10
		а	20	128	9.71	10	128	9.73	10		а	20	157	9.72	10	157	9.66	10
power				132	9.73	10	132	9.69	10		, a	20	165	9.77	10	165	9.67	10
ut p				100	9.69	10	100	9.77	10				149	9.62	10	149	9.62	10
specified maximum output				112	9.72	10	112	9.72	10			20	157	9.71	10	157	9.76	10
υ 0			20	116	9.72	10	116	9.77	10		n (HT)		165	9.76	10	165	9.63	10
mui				128	9.62	10	128	9.75	10	U-NII-3 (5725~	(111)	40	151	9.65	10	151	9.67	10
ıaxi		n		132	9.61	10	132	9.64	10				159	9.78	10	159	9.74	10
d m		(HT)		102	9.63	10	102	9.74	10	5850MHz)	ac(VHT)	80	155	9.93	10	155	9.84	10
ifie			4.0	110	9.72	10	110	9.76	10	•		-	149	9.61	10	149	9.71	10
bec			40	118	9.66	10	118	9.77	10			20	157	9.75	10	157	9.64	10
le s				126 134	9.75 9.75	10 10	126 134	9.62 9.71	10 10		ax		165 151	9.74 9.64	10 10	165 151	9.67 9.64	10 10
OFDM mode			20	144	9.68	10	144	9.64	10		(HE)	40	159	9.71	10	159	9.62	10
Σ			40	142	9.63	10	142	9.64	10				138	9.77	10	138	9.77	10
딘	U-NII-2C	ac		138	9.91	10	138	9.93	10			80	155	9.71	10	155	9.78	10
0	(5470~ 5725MHz)	(VHT)	80	106	9.93	10	106	9.94	10				169	9.71	10	169	9.76	10
	37 23WII 12)			122	9.86	10	122	9.92	10		а	20	173	9.71	10	173	9.75	10
			160	114	9.88	10	114		10				177	9.72	10	177	9.76	10
				100	9.72	10	100	9.69	10				169	9.74	10	169	9.65	10
				112	9.76	10	112	9.79	10		n	20	173	9.72	10	173	9.76	10
			20	116	9.74	10	116	9.71	10		(HT)		177	9.73	10	177	9.63	10
				128	9.74	10	128	9.61	10			40	167	9.77	10	167	9.71	10
				132	9.67	10	132	9.62	10	U-NII-4		00	175	9.67	10	175	9.72	10
				144 102	9.77 9.67	10 10	144 102	9.79 9.68	10 10	(5850~ 5925MHz)	ac(VHT)	80	171 163	9.92 9.82	10 10	171 163	9.92 9.81	10 10
		ax		110	9.67	10	1102	9.00	10	00_0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	100	169	9.62	10	169	9.61	10
		(HE)		118	9.68	10	118		10			20	173	9.71	10	173	9.69	10
			40	126	9.74	10	126	9.73	10				177	9.74	10	177	9.73	10
				134	9.72	10	134		10		ax	40	167	9.73	10	167	9.66	10
				142	9.71	10	142	9.64	10		(HE)	40	175	9.71	10	175	9.55	10
			80	106	9.77	10	106	9.71	10	10		80	171	9.79	10	171	9.74	10
				122	9.72	10	122	9.75	10			160	163	9.69	10	163	9.72	10
			160	114	9.63	10	<mark>114</mark>	9.63	10									

VVL/~II	WLAN 6G 2TX SISO																		
	_				O-Mair	n(TX1)	SIS	SO-Aux	(TX2)	_			SIS	O-Mair	n(TX1)	SISO-Aux(TX2)			
	Frequency	Mode	вw	СН	AV Power	AV Target	СН	AV Power	AV Target	Frequency	Mode	вw	СН	AV Power	AV Target	СН	AV Power	AV Target	
				1	4.94	5	1	4.97	5				117	4.15	4.25	117	4.13	4.25	
ort			20	45	4.87	5	45	4.96	5			20	149	4.13	4.25	149	4.14	4.25	
an antenna port				93	4.82	5	93	4.92	5				181	4.16	4.25	181	4.11	4.25	
ם ante				3	8.21	8.25	3	8.21	8.25				115	8.21	8.25	115	8.19	8.25	
ratar	U-NII-5		40	43	8.23	8.25	43	8.12	8.25			40	147	7.36	7.5	147	7.36	7.5	
OFDM mode specified maximum output power at	(5925~	ax		91	8.13	8.25	91	8.17	8.25	U-NII-7	ax		179	7.36	7.5	179	7.41	7.5	
utput	6425MHz)	(HE)		7	10.31	10.5	7	10.22	10.5	(6525~	(HE)		119	10.24	10.5	119	10.21	10.5	
o шпı			80	39	10.13	10.5	39	10.22	10.5	6875MHz)	80		135	9.94	10	135	9.96	10	
naxin				87	10.25	10.5	87	10.29	10.5			80	151	9.82	10	151	9.92	10	
ified r				15	10.41	10.5	15	10.37	10.5				167	9.95	10	167	9.88	10	
sbec			160		10.43	10.5	47	10.38	10.5				183	9.85	10	183	9.96	10	
mode				79 97	10.41	10.5	79 97	10.36	10.5 5			160	143	10.39	10.5	143	10.41	10.5	
FDM			20	105	4.85	5	105	4.95	5 5				175 185	4.17	10.5 4.25	175 185	10.43 4.05	10.5 4.25	
O	U-NII-6		20	113	4.93	5	113	4.95	5			20	209	4.17	4.25	209	4.05	4.25	
	(6425~	ax		99	8.12	8.25	99	8.21	8.25			20	233	-1.05	-1	233	-1.03	-1	
	6525MHz)	(HE)	40	107	8.17	8.25	107	8.21	8.25	U-NII-8	ax		187	7.47	7.5	187	7.32	7.5	
	6525MHz)		80		10.23	10.5	103		10.5	(6875~	(HE)	40	227	7.33	7.5	227	7.35	7.5	
			160	111	10.47	10.5	111	10.47	10.5	7125MHz)			199	9.87	10	199	9.91	10	
		<u>I</u>										80	80	215	9.91	10	215	9.92	10
												160	207	10.35	10.5	207	10.36	10.5	

BT Or	BT Only Support Aux									
	_		SISO-Main(TX1)					SISO-Aux(TX2)		
ower	Frequency	Mode	Modulation	СН	AV	AV	СН	AV	AV	
ut pc				Сп	Power	Target	Сп	Power	Target	
maximum output power				0	N/A	N/A	0	8.81	10.5	
Ш		BR	GFSK	39	N/A	N/A	39	9.67	10.5	
axim				78	N/A	N/A	78	9.21	10.5	
				0	N/A	N/A	0	7.65	9.5	
DO EL	BT 2.4GHz	EDR	8DPSK	39	N/A	N/A	39	7.72	9.5	
ooth				78	N/A	N/A	78	8.07	9.5	
Bluetooth mode				0	N/A	N/A	0	8.88	9	
<u> </u>		BLE	GFSK	19	N/A	N/A	19	8.81	9	
				39	N/A	N/A	39	8.84	9	

9. Test Results

9.1 Test Results Summary

SAR MEASUREM	IENT									
Ambient Tempera	ture (°C): 22	.9 ±2			Relative Humidity (%): 58%					
Liquid Temperatur	re (°C): 22.3	±2			Depth of Liquid (cm): >15					
Test Position	Dist.	Frequ	uency		cted Power		AR //kg)	Distance		
	(mm)	Ch.	MHz	Meas.	Tune-Up Limit	Meas-1g	Scaled-1g	Plot No.		
Test Mode: WLAN	12.4GHz_802	2.11b-1M_	Ant Main							
Bottom	0	1	2412	13.86	14	0.690	0.720			
Bottom	0	6	2437	13.91	14	0.724	0.747			
Bottom	0	11	2462	13.85	14	0.770	0.805	6		
Edge(Front)	0	11	2462	13.85	14	0.159	0.166			
Test Mode: WLAN		2.11b-1M_	Ant Aux							
Bottom	0	6	2437	13.96	14	0.599	0.611			
Test Mode: Blueto	ooth_BT-1M_	Ant Aux								
Bottom	0	39	2441	9.67	10.5	0.156	0.242	4		

^{1.} When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required.

^{2.} When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

SAR MEASUREM	IENT							
Ambient Tempera	ture (°C): 2	3.1±2			Relative Humidity (%): 57%		
Liquid Temperatur	re (°C): 22.	1±2			Depth of Liquid (cm	n): >15		
Test	Dist.	Frequ	uency	Conducted Power (dBm)		S. (W		
Position	(mm)	Ch. MHz		Meas.	Tune-Up Limit	Meas-1g	Scaled-1g	Plot No.
Test Mode: WLAN	I5GHz_802.1	1ac80-VH	T0_Ant Ma	n	•	•		
Bottom	0	58	5290	9.94	10	0.485	0.502	12
Edge(Front)	0	58	5290	9.94	10	0.277	0.286	
Test Mode: WLAN	I5GHz_802.1	1ac80-VH	T0_Ant Aux	(•			
Bottom	0	58	5290	9.95	10	0.461	0.476	
Test Mode: WLAN		1ac80-VH	T0_Ant Ma	n	•			
Bottom	0	106	5530	9.93	10	0.702	0.728	18
Edge(Front)	0	106	5530	9.93	10	0.348	0.361	
Bottom	0	122	5610	9.86	10	0.689	0.726	
Bottom	0	138	5690	9.91	10	0.693	0.722	
Test Mode: WLAN	I5GHz_802.1	1ac80-VH	T0_Ant Aux	(•	•	
Bottom	0	106	5530	9.94	10	0.371	0.384	
Test Mode: WLAN	I5GHz_802.1	1ac80-VH	T0_Ant Ma	n		•	•	
Bottom	0	155	5775	9.93	10	0.650	0.674	21
Edge(Front)	0	155	5775	9.93	10	0.244	0.253	
Bottom	0	171	5855	9.92	10	0.609	0.633	
Test Mode: WLAN	I5GHz_802.1	1ac80-VH	T0_Ant Aux	(•	•	
Bottom	0	155	5775	9.84	10	0.372	0.394	
Bottom	0	171	5855	9.92	10	0.383	0.398	

- 1. When multiple transmission modes have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected
- 2. When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required in that exposure configuration.
- 3. When the reported SAR of the highest measured maximum U-NII-2A for the exposure configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.

SAR MEASUR	EMENT										
Ambient Temp	erature (°C	;): 23±2		R	Relative Humidity (%): 57%						
Liquid Tempera	ature (°C):	22.2±2		D	epth of Liquid (cn	n): >15					
		Freat	uency	Conduct	ed Power	SA	AR	APD			
Test	Dist.			(d	Bm)	(W	/kg)	(W/m ²)	Plot No.		
Position	(mm)	Ch.	MHz	Meas.	Tune-Up Limit	Meas-1g	Scaled-1g	Meas-4cm ²	TIOUTO.		
Test Mode: WL	Test Mode: WLAN6GHz_802.11ax160-HE0_Ant Main										
Bottom	0	15	6025	10.41	10.5	0.695	0.717	4.760			
Bottom	0	47	6185	10.43	10.5	0.796	0.817	4.750			
Bottom	0	111	6505	10.47	10.5	1.050	1.068	5.060	28		
Edge(Front)	0	111	6505	10.47	10.5	0.264	0.268	1.600			
Bottom	0	175	6825	10.45	10.5	0.878	0.897	3.770			
Bottom	0	207	6985	10.35	10.5	0.799	0.835	3.480			
Test Mode: WL	.AN6GHz_	802.11ax	(160-HE0	_Ant Aux							
Bottom	0	15	6025	10.37	10.5	0.527	0.548	3.880			
Bottom	0	47	6185	10.38	10.5	0.525	0.545	3.770			
Bottom	0	111	6505	10.47	10.5	0.747	0.760	5.010			
Bottom	0	175	6825	10.43	10.5	0.925	0.949	5.790			
Bottom	0	207	6985	10.36	10.5	0.975	1.017	5.840			

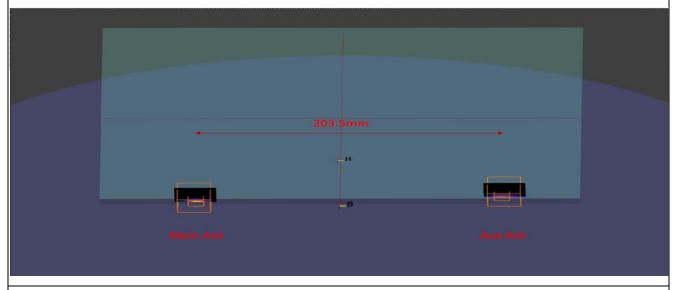
^{1.} When multiple transmission modes have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected

PD MEASUR	PD MEASUREMENT										
Ambient Tem	perature	(°C): 2	22.9±2	Re	elative Humidity ((%): 58%					
Test	Dist.	Frequency .		Conducted Power (dBm)		· ·	Dn+ /m²)	psPI (W/	Plot No.		
Position	(mm)	Ch.	MHz	Meas.	eas. Tune-Up Limit Meas-4cm ² Scaled-4cm ² Meas-4cm ² Scaled-	Scaled-4cm ²					
Test Mode: WLAN6GHz_802.11ax160-HE0_Ant Main											
Bottom	2	15	6025	10.41	10.5	2.470	3.948	2.510	4.012		
Test Mode: V	VLAN6GH	Hz_802.	11ax160	D-HE0_Ant Ma	ain						
Bottom	2	47	6185	10.43	10.5	2.810	4.471	3.030	4.821		
Test Mode: V	VLAN6GH	Hz_802.	11ax160	O-HE0_Ant Ma	ain						
Bottom	2	111	6505	10.47	10.5	3.220	5.076	3.590	5.659		
Test Mode: V	VLAN6GH	Hz_802.	11ax160	O-HE0_Ant Au	ıx						
Bottom	2	175	6825	10.43	10.5	3.520	5.600	3.820	6.077	7	
Test Mode: V	VLAN6GH	Hz_802.	11ax160	D-HE0_Ant Au	ıx						
Bottom	2	207	6985	10.36	10.5	3.200	5.174	3.450	5.578		

^{1.} Per WLAN 6 GHz interim test procedure in Oct. 2020 TCBs Workshop notes. At least 5 channels for BW 160MHz should be tested.

9.2 Simultaneous Transmission

Simult	Simultaneous Transmission Configurations						
1	WLAN 2.4 GHz ANT Main + Bluetooth Aux						
2	WLAN 2.4 GHz ANT Main + WLAN 2.4 GHz ANT Aux						
3	WLAN 5 GHz ANT Main + Bluetooth Aux						
4	WLAN 5 GHz ANT Main + WLAN 5 GHz ANT Aux						
5	WLAN 5 GHz ANT Main + WLAN 5 GHz ANT Aux + Bluetooth Aux						
6	WLAN 6 GHz ANT Main + Bluetooth Aux						
7	WLAN 6 GHz ANT Main + WLAN 6 GHz ANT Aux						
8	WLAN 6 GHz ANT Main + WLAN 6 GHz ANT Aux + Bluetooth Aux						


9.2.1 Simultaneous transmission test exclusion considerations

	1	2	3	4	5	6	7	1+7	1+2	3+7	3 + 4	3+4+7	5 + 7	5 + 6	5+6+7
Test	WLAN2.4GHz	WLAN2.4GHz	WLAN5GHz	WLAN5GHz	WLAN6GHz	WLAN6GHz	Bluetooth ANT								
Position	ANT Main	ANT Aux	ANT Main	ANT Aux	ANT Main	ANT Aux	Aux	Σ1-g SAR	Σ1-g SAR	Σ 1-g SAR	Σ1-g SAR	Σ 1-g SAR	Σ1-g SAR	Σ1-g SAR	Σ1-g SAR
	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)								
Bottom at 0	0.805	0.611	0.728	0.476	1.068	1.017	0,242	1.047	1.416	0.970	1.204	1.446	1.310	2.085	2.327
mm	0.000	0.011	0.720	0.470	1.000	1.017	0.242	1.047	1.410	0.010	1.204	1.440	1.010	2.000	2.027

When the sum of SAR is larger than the limit, The ratio is determined by $(SAR1 + SAR2)^1.5/Ri$, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion. The estimation result as below:

Test Position	WLAN6GHz SAR (W/kg)	WLAN6GHz SAR (W/kg)	Bluetooth SAR (W/kg)	Simultaneous Transmission (W/kg)	Antenna pair in mm	Peak location separation ratio
Bottom	1.068	1.017	0.242	2.327	203.5	0.02

The ratio of value is less than 0.04, thus simultaneous SAR testing is not needed.

10. SAR measurement variability

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequ	ency	SAR 1g (W/kg)								
01	MHz	Out of a st	First Repeated			Repeated	Third Repeated			
Channel		Original	Value	Ratio	Value	Ratio	Value	Ratio		
111	6505	1.050	1.020	1.029	-	-	ı	-		

Appendix

Appendix A. System Check Data

Appendix B. Highest measurement Data

Appendix C. Test Setup Photographs

Appendix D. Probe Calibration Data

Appendix E. Dipole Calibration Data

Appendix F. Product Photos-Please refer to the file: 2390144R-Product Photos