

Appendix B - System Performance Check Plots

Date: 2022/5/5

System Performance Check at 2450 MHz

DUT: Dipole D2450V2_SN903

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.77$ S/m; $\epsilon_r = 38.789$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

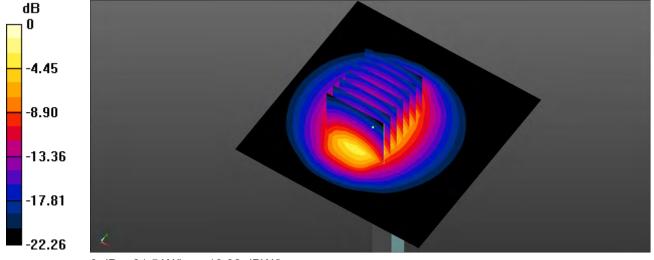
DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN7647; ConvF(8.13, 8.13, 8.13) @ 2450 MHz; Calibrated: 2022/4/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1253; Calibrated: 2021/12/30
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 2450MHz/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.3 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.1 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.94 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 48.4%

Maximum value of SAR (measured) = 21.5 W/kg

0 dB = 21.5 W/kg = 13.32 dBW/kg

Date: 2022/5/22

System Performance Check at 5250 MHz

DUT: Dipole 5GHzV2_SN1203

Communication System: UID 0, CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 4.677$ S/m; $\epsilon_r = 36.206$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

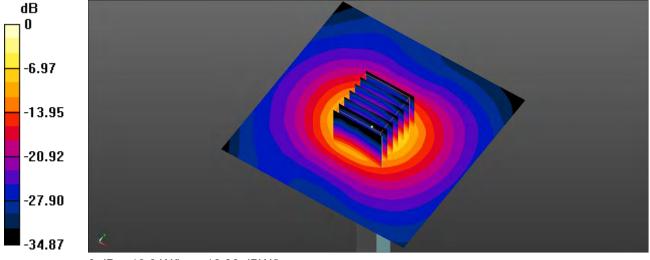
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN7647; ConvF(5.74, 5.74, 5.74) @ 5250 MHz; Calibrated: 2022/4/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1253; Calibrated: 2021/12/30
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5250MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.4 W/kg

System Performance Check at 5250MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 71.55 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 32.2 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.16 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 64.1%

Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg

Date: 2022/5/23

System Performance Check at 5600 MHz

DUT: Dipole 5GHzV2_SN1203

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 5.001$ S/m; $\epsilon_r = 35.757$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

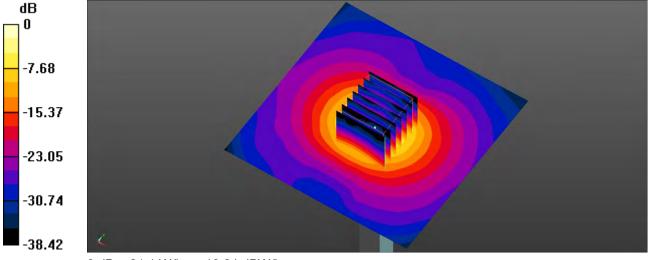
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN7647; ConvF(5.19, 5.19, 5.19) @ 5600 MHz; Calibrated: 2022/4/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1253; Calibrated: 2021/12/30
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5600MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.6 W/kg

System Performance Check at 5600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 72.58 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 37.6 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.25 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 61%

Maximum value of SAR (measured) = 21.1 W/kg

0 dB = 21.1 W/kg = 13.24 dBW/kg

Date: 2022/5/22

System Performance Check at 5750 MHz

DUT: Dipole 5GHzV2_SN1203

Communication System: UID 0, CW (0); Frequency: 5750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; $\sigma = 5.253$ S/m; $\epsilon_r = 35.296$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

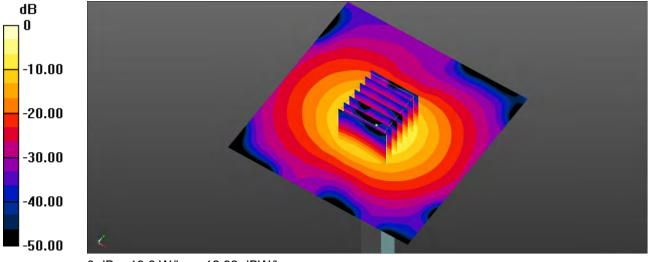
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN7647; ConvF(5.25, 5.25, 5.25) @ 5750 MHz; Calibrated: 2022/4/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1253; Calibrated: 2021/12/30
- Phantom: ELI; Type: QD OVA 002 AA; Serial: 1133
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

System Performance Check at 5750MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.7 W/kg

System Performance Check at 5750MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 68.64 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 35.9 W/kg

SAR(1 g) = 7.55 W/kg; SAR(10 g) = 2.07 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 59.9%

Maximum value of SAR (measured) = 19.6 W/kg

0 dB = 19.6 W/kg = 12.92 dBW/kg