

SAR Report

Applicant : ASUSTeK COMPUTER INC.

Applicant Address : 4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan

Product Type : Intel WiFi 6 AX201

Trade Name : Intel

Model Number : AX201D2W

Applicable Standard : ANSI/IEEE C95.1-1992 / IEEE Std. 1528-2013

47 CFR Part §2.1093

KDB 865664 D01 / KDB 865664 D02 KDB 447498 D01 / KDB 248227 D01

KDB 616217 D04

Received Date : Jan. 21, 2020

Test Period : Feb. 07 ~ Feb. 10, 2020

Issued Date : Mar. 20, 2020

Issued by

Approved By

(Mark Ďuan)

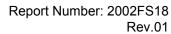
A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade District,

Taoyuan City 33465, Taiwan (R.O.C.)

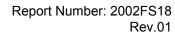
Tel: +886-3-2710188 / Fax: +886-3-2710190

<u>Taiwan Accreditation Foundation accreditation number: 1330</u>


Test Firm MRA designation number: TW0010

Note:

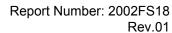
- 1. The test results are valid only for samples provided by customers and under the test conditions described in this report.
- 2. This report shall not be reproduced except in full, without the written approval of A Test Lab Technology Corporation.
- 3.The relevant information is provided by customers in this test report. According to the correctness, appropriateness or completeness of the information provided by the customer, if there is any doubt or error in the information which affects the validity of the test results, the laboratory does not take the responsibility.


Revision History

Rev.	Issued Date	Revisions	Revised By
00	Mar. 03, 2020	Initial Issue	Jennifer Liu
01	Mar. 20, 2020	Page 6 Revised Class II Permissive Change.	Jennifer Liu

Contents

1.	Gener	al Information	
	1.1	Reference Applicable Standard	4
	1.2	Test Site Environment	
		nary of Maximum Reported SAR Value	
		iption of Equipment under Test (EUT)	
4.	Introd	uction	10
	4.1	SAR Definition	
5.	SAR I	Measurement Setup	
	5.1	DASY E-Field Probe System	12
	5.1.1	E-Field Probe Specification	
	5.2	Data Acquisition Electronic (DAE) System	
	5.3	Robot	13
	5.4	Measurement Server	
	5.5	Device Holder	
	5.6	Oval Flat Phantom - ELI 5.0	
6.		e Simulating Liquids	
	6.1	The composition of the tissue simulating liquid	
	6.2	Liquid Parameters	
	6.3	Liquid Depth	
7.		Festing with RF Transmitters	
	7.1	WLAN RF Conducted Power	
	7.2	Conducted Power	
	7.3	Antenna location	
	7.4	Standalone SAR Test Exclusion Calculation	
	7.5	Simultaneous Transmitting Evaluate	
		Sum of 1-g SAR of all simultaneously transmitting	
_		SAR to peak location separation ratio (SPLSR)	
8.	•	m Verification and Validation	
	8.1	Symmetric Dipoles for System Verification	
^	8.2	Verification Summary	
		equipment List	
		urement Uncertainty	
TI.		urement Procedure	
		Spatial Peak SAR Evaluation	
		Volume Scan Procedures	
		Power Drift Monitoring	
12		Fest Results Summary	
14		Body SAR Measurement	
		SAR Variability Measurement	
		SAR Exposure Limit	
13		ences	
		A - System Performance Check	
	•	B - SAR Measurement Data	
	•	C - Calibration	
۷,۲	~ U. IUIX		

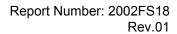

1. General Information

1.1 Reference Applicable Standard

Standard	Description	Version
ANSI/IEEE C95.1	American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 KHz to 100 GHz, New York.	1992
IEEE 1528	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques.	2013
47 CFR Part §2.1093	Radiofrequency radiation exposure evaluation: portable devices.	-
KDB 865664 D01	SAR measurement requirement for 100 MHz to 6 GHz.	v01r04
KDB 865664 D02	RF exposure compliance reporting and documentation considerations.	v01r02
KDB 447498 D01	RF exposure procedures and equipment authorization policies for mobile and portable devices	v06
KDB 248227 D01	SAR guidance for IEEE 802.11 (Wi-Fi) transmitters	v02r02
KDB 616217 D04	SAR evaluation considerations for laptop, notebook and tablet computers.	v01r02

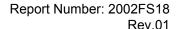
1.2 Test Site Environment

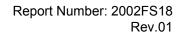
Items	Required (IEEE 1528-2013)	Actual		
Temperature (°C)	18-25	21-23		



2. Summary of Maximum Reported SAR Value

		Highest Reported		
Equipment Class	Mode	Body standalone SAR _{1 g} (W/kg)		
DTS	WLAN 2.4GHz Ant Main	0.92		
DIS	WLAN 2.4GHz Ant Aux	1.01		
U-NII	WLAN 5GHz Ant Main	1.10		
U-INII	WLAN 5GHz Ant Aux	0.80		
DSS	BluetoothAnt Aux	0.41		
	multaneous sion SAR	Highest Simultaneous Transmission 1g SAR (W/kg)		
At test position	bottom of laptop	1.51		


Note: The SAR limit (Head & Body: SAR_{1g} 1.6 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992.


3. Description of Equipment under Test (EUT)

Applicant	ASUSTeK COMPUTER INC. 4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan
Manufacture	ASUSTEK COMPUTER INC.
Manufacturer	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan
Product Type	Intel WiFi 6 AX201
Trade Name	Intel
Model Number	AX201D2W
FCC ID	MSQAX201D2
Class II Permissive Change	 (1) This is to request a Class II permissive change for FCC ID: MSQAX201D2, originally granted on 03/21/2019. The major change filed under this application is: Change #1: Additional chassis added, ASUSTeK, model number: UX393J, BX393J, UX393E, BX393E Models difference: All models are electrically identical, different model names are for marketing purpose. #2: Reduces WIFI output power through BIOS that cannot be changed by end user and SAR were evaluated accordingly #3: Adds new antennas that meet FCC Part 15 equivalent-type.
Host Information	Product Type: Notebook PC Trade Name: ASUS Model Name: UX393J, BX393J, UX393E, BX393E (All models are electrically identical, different model names are for marketing purpose.)

Operate Frequency Operate Modes (MHz) IEEE 802.11b / 802.11g 2412 - 2472 IEEE 802.11n 2.4 GHz 20 MHz 2412 - 2472 IEEE 802.11ax 2.4 GHz 20 MHz IEEE 802.11n 2.4 GHz 40 MHz 2422 - 2462 IEEE 802.11ax 2.4 GHz 40 MHz IEEE 802.11a U-NII Band I 5180 - 5240 IEEE 802.11a U-NII Band II-A 5260 - 5320 IEEE 802.11a U-NII Band II-C 5500 - 5720 IEEE 802.11a U-NII Band III 5745 - 5825 IEEE 802.11n 5 GHz 20 MHz U-NII Band I 5180 - 5240 IEEE 802.11ax 20 MHz U-NII Band I IEEE 802.11n 5 GHz 20 MHz U-NII Band II-A 5260 - 5320 IEEE 802.11ax 20 MHz U-NII Band II-A IEEE 802.11n 5 GHz 20 MHz U-NII Band II-C 5500 - 5720 IEEE 802.11ax 20 MHz U-NII Band II-C IEEE 802.11n 5 GHz 20 MHz U-NII Band III 5745 - 5825 IEEE 802.11ax 20 MHz U-NII Band III Frequency Range IEEE 802.11n 5 GHz 40 MHz U-NII Band I 5190 - 5230 IEEE 802.11ax 40 MHz U-NII Band I IEEE 802.11n 5 GHz 40 MHz U-NII Band II-A 5270 - 5310 IEEE 802.11ax 40 MHz U-NII Band II-A IEEE 802.11n 5 GHz 40 MHz U-NII Band II-C 5510 - 5710 IEEE 802.11ax 40 MHz U-NII Band II-C IEEE 802.11n 5 GHz 40 MHz U-NII Band III 5755 - 5795 IEEE 802.11ax 40 MHz U-NII Band III IEEE 802.11ac 80 MHz U-NII Band I 5210 IEEE 802.11ax 80 MHz U-NII Band I IEEE 802.11ac 80 MHz U-NII Band II-A 5290 IEEE 802.11ax 80 MHz U-NII Band II-A IEEE 802.11ac 80 MHz U-NII Band II-C 5530 - 5690 IEEE 802.11ax 80 MHz U-NII Band II-C IEEE 802.11ac 80 MHz U-NII Band III 5775 IEEE 802.11ax 80 MHz U-NII Band III IEEE 802.11ac 160 MHz UNII Band I + UNII Band II-A 5250 - 5750 IEEE 802.11ax 160 MHz UNII Band I + UNII Band II-A Bluetooth BR/EDR 2402 - 2480 Bluetooth LE 2402 - 2480

			NB M	lode	
	Operate Modes		wer Bm)	•	p power Bm)
		Main	AUX	Main	AUX
	IEEE 802.11b	11.46	11.24	11.50	11.50
	IEEE 802.11g	11.43	11.38	11.50	11.50
	IEEE 802.11n / ax 2.4 GHz 20 MHz	11.49	11.44	11.50	11.50
	IEEE 802.11n / ax 2.4 GHz 40 MHz	11.46	11.44	11.50	11.50
	IEEE 802.11a U-NII Band I	9.45	9.41	9.50	9.50
	IEEE 802.11a U-NII Band II-A	9.49	9.46	9.50	9.50
	IEEE 802.11a U-NII Band II-C	9.48	9.50	9.50	9.50
	IEEE 802.11a U-NII Band III	9.50	9.44	9.50	9.50
	IEEE 802.11n 5 GHz / ax 20 MHz U-NII Band I	9.49	9.46	9.50	9.50
	IEEE 802.11n 5 GHz / ax 20 MHz U-NII Band II-A	9.48	9.49	9.50	9.50
	IEEE 802.11n 5 GHz / ax 20 MHz U-NII Band II-C	9.50	9.46	9.50	9.50
Transmit Power	IEEE 802.11n 5 GHz / ax 20 MHz U-NII Band III	9.50	9.44	9.50	9.50
(conducted power)	IEEE 802.11n 5 GHz / ax 40 MHz U-NII Band I	9.49	9.41	9.50	9.50
	IEEE 802.11n 5 GHz / ax 40 MHz U-NII Band II-A	9.50	9.45	9.50	9.50
	IEEE 802.11n 5 GHz / ax 40 MHz U-NII Band II-C	9.47	9.49	9.50	9.50
	IEEE 802.11n 5 GHz / ax 40 MHz U-NII Band III	9.44	9.49	9.50	9.50
	IEEE 802.11ac / ax 80 MHz U-NII Band I	9.49	9.45	9.50	9.50
	IEEE 802.11ac / ax 80 MHz U-NII Band II-A	9.44	9.37	9.50	9.50
	IEEE 802.11ac / ax 80 MHz U-NII Band II-C	9.47	9.43	9.50	9.50
	IEEE 802.11ac / ax 80 MHz U-NII Band III	9.41	9.47	9.50	9.50
	IEEE 802.11ac / ax 160 MHz U-NII Band I+ U-NII Band II-A	9.48	9.42	9.50	9.50
	IEEE 802.11ac / ax 160 MHz U-NII Band II-C	9.43	9.46	9.50	9.50
	Bluetooth BR/EDR		7.80		8.00
	Bluetooth LE		6.54		7.00
Device Category	Portable Device				-
Application Type	Certification				

Note: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Rev.01

Antenna list:

Antenna Source	ANT	Manufacturer	Part No. (Vendor)	ASUS Part No.	Туре	Frequency	Max. Gain (dBi)
						2402 -2480	-3.16
						5150 - 5250	2.18
	Chain A	INPAQ	MDA-LB-01-010	14008-03960000	PIFA Antenna	5250 - 5350	2.17
					, antonna	5470 - 5725	2.14
1						5725 - 5850	2.25
'						2402 -2480	-3.12
	Chain B	INPAQ	MDA-LB-02-021	14008-03960200	PIFA Antenna	5150 - 5250	2.76
						5250 - 5350	2.76
						5470 - 5725	2.78
						5725 - 5850	2.78
		A Yageo	SZ16474	14008-03960100	PIFA Antenna	2402 -2480	-3.21
						5150 - 5250	1.84
	Chain A					5250 - 5350	1.84
						5470 - 5725	1.78
2						5725 - 5850	1.75
2						2402 -2480	-4.6
					DIEA	5150 - 5250	2.66
	Chain B	Yageo	SZ16471	14008-03960300	PIFA Antenna	5250 - 5350	2.66
						5470 - 5725	2.14
						5725 - 5850	2.61

Note:

- 1. Antenna Source 1 (INPAQ antenna) gain is worst case. We tested and recorded it in this report.
- 2. Antenna Source 1 (INPAQ antenna) and Antenna Source 2 (Yageo antenna) are the same type of antenna, only different in manufacturer.
- 3. The Chain A is connected to AUX port / Chain B is connected to Main port of module.

Rev.01

4. Introduction

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user. The test procedures, as described in American National Standards, Institute C95.1-1999 [1] were employed and they specify the maximum exposure limit of 1.6 mW/g as averaged over any 1 gram of tissue for portable devices being used within 20 cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

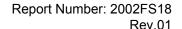
4.1 SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

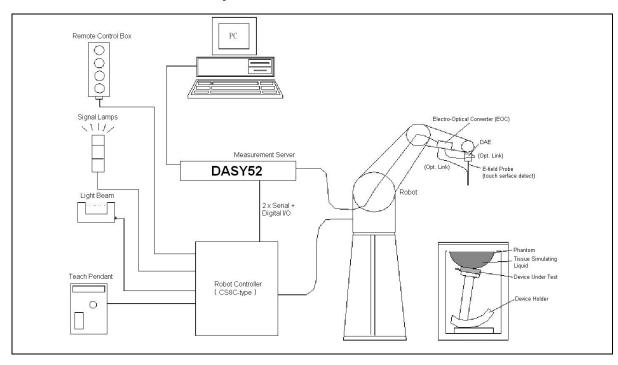
SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:

 σ = conductivity of the tissue (S/m)


 ρ = mass density of the tissue (kg/m3)

E = RMS electric field strength (V/m)

5. SAR Measurement Setup

The DASY52 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli TX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 5. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 6. A computer operating Windows 2000 or Windows XP.
- 7. DASY52 software.
- 8. Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 9. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. Validation dipole kits allowing validating the proper functioning of the system.

Rev.01

5.1 DASY E-Field Probe System

The SAR measurements were conducted with the dosimetric probe (manufactured by SPEAG), designed in the classical triangular configuration (3) and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

5.1.1 E-Field Probe Specification

Construction Symmetrical design with triangular core

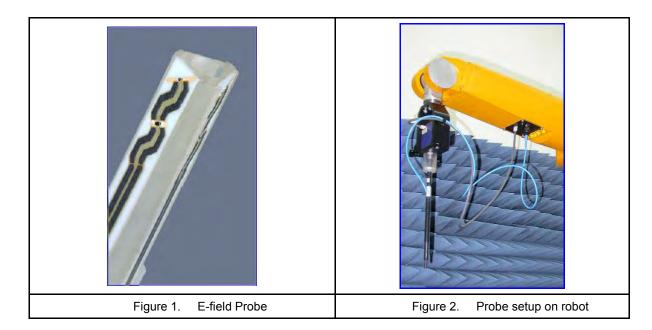
Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)


Directivity ± 0.3 dB in brain tissue (rotation around probe axis)

±0.5 dB in brain tissue (rotation normal probe axis)

Dimensions Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1 mm

Rev.01

5.2 Data Acquisition Electronic (DAE) System

Model: DAE3, DAE4

Construction: Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for

communication with DASY4/5 embedded system (fully remote controlled). Two step probe

touch detector for mechanical surface detection and emergency robot stop.

Measurement Range: -100 to +300 mV (16 bit resolution and two range settings: 4 mV, 400 mV)

Input Offset Voltage : $< 5 \mu V$ (with auto zero)

Input Bias Current: < 50 fA

Dimensions: 60 x 60 x 68 mm

5.3 Robot

Positioner: Stäubli Unimation Corp. Robot Model: TX90XL

Repeatability: ±0.02 mm

No. of Axis: 6

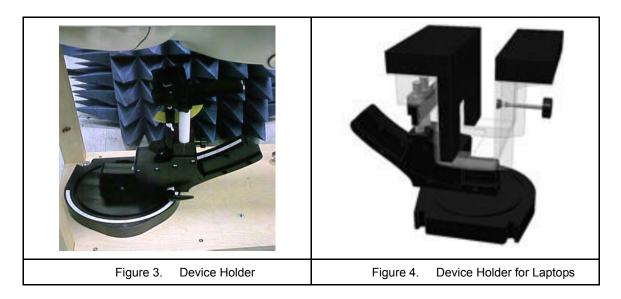
5.4 Measurement Server

Processor: PC/104 with a 400MHz intel ULV Celeron

I/O-board: Link to DAE4 (or DAE3)

16-bit A/D converter for surface detection system

Digital I/O interface Serial link to robot


Direct emergency stop output for robot

Rev.01

5.5 Device Holder

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

5.6 Oval Flat Phantom - ELI 5.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (Oval Flat) phantom defined in IEEE 1528-2013, CENELEC 50361 and IEC 62209-2. It enables the dosimetric evaluation of wireless portable device usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

measurement grids by mandally teaching three poil						
Shell Thickness	2 ±0.2 mm					
Filling Volume	Approx. 30 liters					
Dimensions	190×600×400 mm (H×L×W)					
Table 1. Spe	ecification of ELI 5.0					

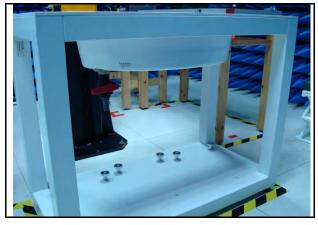


Figure 1. Oval Flat Phantom

Rev.01

6. Tissue Simulating Liquids

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	He	ad	Body						
(MHz)	εr	σ (S/m)	εr	σ (S/m)					
150	52.3	0.76	61.9	0.80					
300	45.3	0.87	58.2	0.92					
450	43.5	0.87	56.7	0.94					
835	41.5	0.90	55.2	0.97					
900	41.5	0.97	55.0	1.05					
915	41.5	0.98	55.0	1.06					
1450	40.5	1.20	54.0	1.30					
1610	40.3	1.29	53.8	1.40					
1800 - 2000	40.0	1.40	53.3	1.52					
2450	39.2	1.80	52.7	1.95					
3000	38.5	2.40	52.0	2.73					
5800	35.3	5.27	48.2	6.00					
	(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m 3)								

Table 2. Tissue dielectric parameters for head and body phantoms

6.1 The composition of the tissue simulating liquid

Ingredients	Frequency (MHz)										Frequency (GHz)			
(% by weight)	7!	50	835		1750		1900		2450		2600		5 GHz	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.30	41.45	52.40	54.50	40.20	54.90	40.40	62.70	73.20	60.30	71.40	65.5	78.6
Salt (NaCl)	1.47	1.42	1.45	1.50	0.17	0.49	0.18	0.50	0.50	0.10	0.60	0.20	0.00	0.00
Sugar	58.15	46.18	56.00	45.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bactericide	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.2	10.7
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40	0.00	0.00
Diethylene Glycol Mono-hexlether	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.3	10.7
Dielectric Constant	41.88	54.60	42.54	56.10	40.10	53.60	39.90	54.00	39.80	52.50	39.80	52.50	35.1~ 36.2	47.9~ 49.3
Conductivity (S/m)	0.90	0.97	0.91	0.95	1.39	1.49	1.42	1.45	1.88	1.78	1.88	1.78	4.45~ 5.48	5.07~ 6.23

6.2 Liquid Parameters

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an E5071B Network Analyzer.

Tissue Temp	Head / Body	Frequency (MHz)	Cond.	Perm.	target Cond.	target Perm.	σ (Delta)	εr (Delta)	Limit (%)	Date
(°C)	Dody	(1711 12)	σ	εr	σ	εr	(%)	(%)	(70)	
22.3	Head	2402 MHz	1.75	39.693	1.76	39.28	-0.42	1.05	±5	Feb. 10, 2020
22.3	Head	2412 MHz	1.76	39.644	1.77	39.27	-0.31	0.95	±5	Feb. 10, 2020
22.3	Head	2437 MHz	1.79	39.549	1.79	39.22	-0.02	0.84	±5	Feb. 10, 2020
22.3	Head	2450 MHz	1.80	39.501	1.80	39.20	0.06	0.77	±5	Feb. 10, 2020
22.3	Head	2462 MHz	1.81	39.453	1.81	39.18	0.02	0.70	±5	Feb. 10, 2020
22.3	Head	2480 MHz	1.83	39.384	1.83	39.16	0.08	0.57	±5	Feb. 10, 2020
22.1	Head	5250 MHz	4.54	35.952	4.71	35.95	-3.63	0.01	±5	Feb. 07, 2020
22.1	Head	5775 MHz	5.14	35.046	5.25	35.33	-2.02	-0.80	±5	Feb. 07, 2020
22.2	Head	5250 MHz	4.53	35.901	4.71	35.95	-3.84	-0.14	±5	Feb. 10, 2020
22.2	Head	5570 MHz	4.86	35.401	5.04	35.55	-3.59	-0.42	±5	Feb. 10, 2020
22.2	Head	5775 MHz	5.13	34.994	5.25	35.33	-2.23	-0.95	±5	Feb. 10, 2020

Note: SAR testing with IEC tissue parameters as an alternative option to FCC Head and body parameters.

Rev.01

6.3 Liquid Depth

According to KDB865664, the depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm. Which is shown in Figure 7 & 8.

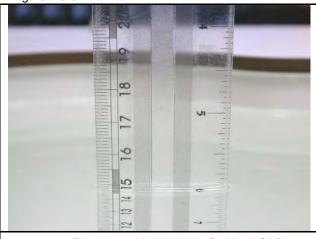
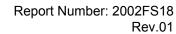


Figure 5. Liquid Height for Head SAR

Rev.01

7. SAR Testing with RF Transmitters

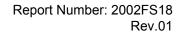

7.1 WLAN RF Conducted Power

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

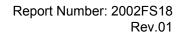
The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration
 and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations
 are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to
 measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the
 highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are
 tested.
 - > For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the
 reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest
 measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are
 considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that
 has the higher specified maximum output. If the highest reported SAR for the band with the highest specified
 power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the
 remaining bands independently for SAR.

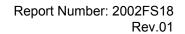
To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.



7.2 Conducted Power

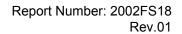

NB Mode Main (Chain B) & AUX (Chain A)

Band	Data Rate	СН	Frequency (MHz)		e Power Bm) AUX (Chain A)	
		1	2412.0	11.46	11.24	
		6	2437.0	11.34	11.18	
IEEE 802.11b	1M	11	2462.0	11.28	10.87	
		12	2467.0	11.42	11.36	
		13	2472.0	11.30	11.29	
		1	2412.0	11.43	11.38	
	6M	6	2437.0	11.39	11.31	
IEEE 802.11g		11	2462.0	11.35	11.28	
		12	2467.0	11.27	11.24	
		13	2472.0	1.46	1.41	
	6.5M	1	2412.0	11.49	11.44	
		6	2437.0	11.46	11.33	
IEEE 802.11n 2.4 GHz 20 MHz		11	2462.0	11.48	11.39	
		12	2467.0	11.35	11.27	
		13	2472.0	1.48	1.43	
		3	2422.0	11.43	11.44	
		6	2437.0	11.46	11.39	
IEEE 802.11n 2.4 GHz 40 MHz	13.5M	9	2452.0	11.38	11.44	
2 3.12 10 10112		10	2457.0	11.45	11.39	
		11	2462.0	4.87	4.83	

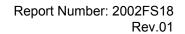


Average Power Frequency (dBm) Data Rate СН Band AUX Main (MHz) (Chain B) (Chain A) 5180.0 9.45 9.37 36 40 5200.0 9.38 9.41 44 5220.0 9.42 9.35 48 5240.0 9.35 9.37 52 5260.0 9.49 9.41 56 5280.0 9.32 9.39 9.37 60 5300.0 9.44 5320.0 9.38 9.46 64 100 5500.0 9.48 9.43 104 5520.0 9.41 9.38 9.37 9.33 5540.0 108 112 5560.0 9.34 9.40 IEEE 802.11a 6M 116 5580.0 9.37 9.46 120 5600.0 9.43 9.41 124 5620.0 9.31 9.41 5640.0 9.34 9.39 128 5660.0 9.30 9.44 132 136 5680.0 9.39 9.45 5700.0 9.42 9.47 140 144 5720.0 9.45 9.50 149 5745.0 9.50 9.34 153 5765.0 9.47 9.38 157 5785.0 9.43 9.44 161 5805.0 9.43 9.42 5825.0 9.45 9.39 165

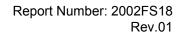
David	Data Rate	O.I.	Frequency		e Power Bm)
Band	Data Nate	СН	(MHz)	Main (Chain B)	AUX (Chain A)
		36	5180.0	9.45	9.46
		40	5200.0	9.49	9.36
		44	5220.0	9.43	9.40
		48	5240.0	9.48	9.41
		52	5260.0	9.46	9.46
		56	5280.0	9.48	9.49
		60	5300.0	9.45	9.47
		64	5320.0	9.41	9.41
	6.5M	100	5500.0	9.49	9.38
		104	5520.0	9.45	9.41
		108	5540.0	9.46	9.43
		112	5560.0	9.50	9.43
IEEE 802.11n 5 GHz 20 MHz		116	5580.0	9.48	9.41
0 01 12 20 1111 12		120	5600.0	9.45	9.44
		124	5620.0	9.48	9.46
		128	5640.0	9.48	9.42
		132	5660.0	9.44	9.40
		136	5680.0	9.41	9.38
		140	5700.0	9.43	9.42
		144	5720.0	9.48	9.41
		149	5745.0	9.50	9.44
		153	5765.0	9.47	9.43
		157	5785.0	9.49	9.42
		161	5805.0	9.45	9.41
		165	5825.0	9.41	9.39



Band	Dete Dete	CII	Frequency		e Power Bm)
Band	Data Rate	CH	(MHz)	Main (Chain B)	AUX (Chain A)
		38	5190.0	9.49	9.41
		46	5230.0	9.42	9.39
		54	5270	9.50	9.43
		62	5310	9.46	9.45
		102	5510	9.44	9.49
IEEE 802.11n	13.5M	110	5550	9.42	9.36
5 GHz 40 MHz		118	5590	9.47	9.42
		126	5630	9.43	9.40
		134	5670	9.45	9.39
		142	5710	9.46	9.45
		151	5755.0	9.44	9.49
		159	5795.0	9.41	9.39
		42	5210.0	9.49	9.45
		58	5290.0	9.44	9.37
IEEE 802.11ac	29.3M	106	5530.0	9.43	9.31
80 MHz	29.3101	122	5610.0	9.47	9.43
		138	5690.0	9.34	9.42
		155	5775.0	9.41	9.47
IEEE 802.11ac	44714	50	5250.0	9.48	9.42
160 MHz	117M	114	5570.0	9.43	9.46

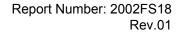

Rev.01

Dond	Data Data	СН	Frequency	-	e Power Bm)
Band	Data Rate	Сп	(MHz)	MAIN (Chain B)	AUX (Chain A)
		1	2412.0	11.45	11.39
	6.5M	6	2437.0	11.41	11.32
IEEE 802.11ax 2.4 GHz 20 MHz		11	2462.0	11.37	11.30
2. 1 31.12 23 111.12		12	2467.0	11.29	11.24
		13	2472.0	1.42	1.40
		3	2422.0	11.43	11.41
		6	2437.0	11.45	11.38
IEEE 802.11ax 2.4 GHz 40 MHz	13.5M	9	2452.0	11.36	11.34
		10	2457.0	11.34	11.39
		11	2462.0	4.81	4.76



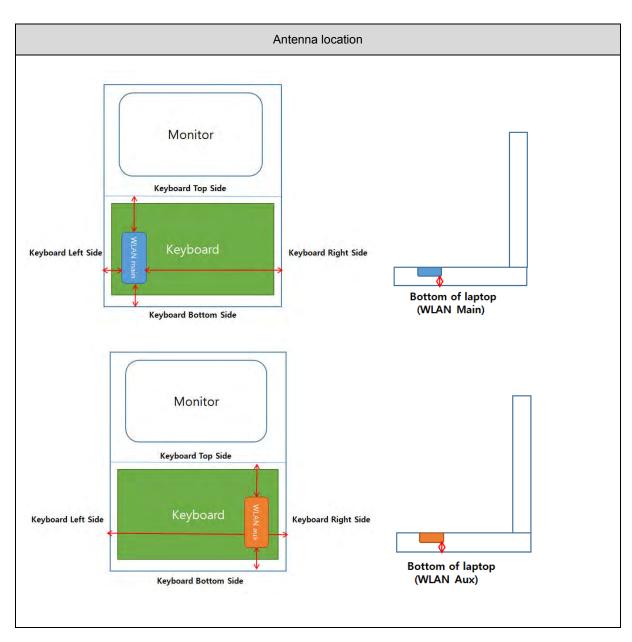
	MCS		Frequency		e Power Bm)
Band	Index	СН	(MHz)	Main (Chain B)	AUX (Chain A)
		36	5180.0	9.37	9.35
		40	5200.0	9.43	9.35
		44	5220.0	9.40	9.39
		48	5240.0	9.43	9.39
		52	5260.0	9.40	9.34
		56	5280.0	9.43	9.40
		60	5300.0	9.38	9.37
		64	5320.0	9.38	9.35
		100	5500.0	9.49	9.31
		104	5520.0	9.44	9.37
		108	5540.0	9.46	9.35
	6.5M	112	5560.0	9.32	9.39
IEEE 802.11ax 20 MHz		116	5580.0	9.41	9.40
20 101112		120	5600.0	9.42	9.38
		124	5620.0	9.44	9.42
		128	5640.0	9.41	9.39
		132	5660.0	9.40	9.35
		136	5680.0	9.38	9.37
		140	5700.0	9.37	9.40
		144	5720.0	9.43	9.39
		149	5745.0	9.45	9.42
		153	5765.0	9.43	9.40
		157	5785.0	9.45	9.40
		161	5805.0	9.40	9.36
		165	5825.0	9.37	9.36

	MCS		Frequency		Average Power (dBm)		
Band	Index	СН	(MHz)	Main (Chain B)	AUX (Chain A)		
		38	5190.0	9.45	9.37		
		46	5230.0	9.40	9.35		
		54	5270	9.48	9.42		
		62	5310	9.39	9.31		
		102	5510	9.42	9.35		
IEEE 802.11ax	40 FM	110	5550	9.38	9.31		
40 MHz	13.5M	118	5590	9.42	9.37		
		126	5630	9.41	9.35		
		134	5670	9.37	9.37		
		142	5710	9.40	9.40		
		151	5755.0	9.42	9.36		
		159	5795.0	9.40	9.35		
		42	5210.0	9.49	9.36		
		58	5290.0	9.42	9.35		
IEEE 802.11ax	00.014	106	5530.0	9.35	9.17		
80 MHz	29.3M	122	5610.0	9.45	9.35		
		138	5690.0	9.31	9.36		
		155	5775.0	9.07	9.38		
IEEE 802.11ax	44714	50	5250.0	9.36	9.38		
160 MHz	117M	114	5570.0	9.26	9.31		



D. J	QU.	Frequency	Ded at Torr	Average (dE	
Band	СН	(MHz)	Packet Type	Main (Chain B)	AUX (Chain A)
			DH1		7.77
	0	2402.0	DH3		7.78
			DH5		7.80
Bluetooth BR			DH1		7.18
	39	2441.0	DH3		7.21
GFSK			DH5		7.26
			DH1		7.05
	78	2480.0	DH3		7.08
			DH5		7.09
			2DH1		5.41
	0	2402.0	2DH3		5.43
			2DH5		5.46
Bluetooth EDR			2DH1		6.32
	39	2441.0	2DH3		6.36
π /4-DQPSK			2DH5		6.39
		2480.0	2DH1		5.78
	78		2DH3		5.80
			2DH5		5.83
			3DH1		5.44
	0	2402.0	3DH3		5.45
			3DH5		5.47
Bluetooth EDR			3DH1		6.39
	39	2441.0	3DH3		6.40
8DPSK			3DH5		6.41
			3DH1		5.79
	78	2480.0	3DH3		5.81
			3DH5		5.84

Rev.01


Donal	O.L.	Frequency	D and desidable	Average Power (dBm)		
Band	СН	(MHz)	Bandwidth	Main (Chain B)	AUX (Chain A)	
	0	2402.0			6.54	
	19	2440.0	1M		6.51	
	39	2480.0			6.48	
	0	2402.0			6.50	
	19	2440.0	2M		6.48	
Bluetooth LE	39	2480.0			6.45	
Bluetooth LE	0	2402.0			6.45	
	19	2440.0	C2		6.42	
	39	2480.0			6.40	
	0	2402.0			6.46	
	19	2440.0	C8		6.40	
	39	2480.0			6.42	

7.3 Antenna location

Ant	Antenna to user distance (mm)							
Ant	Bottom of laptop	Keyboard Left Side	Keyboard Right Side	Keyboard Top Side	Keyboard Bottom Side			
Ant-Main (Chain B)	2.2	5.14	290	148	41			
Ant-Aux (Chain A)	2.2	290	5.14	148	41			

Rev.01

7.4 Standalone SAR Test Exclusion Calculation

Note: We did not simplify any test configurations, except for following KDB 248227, so there was no provide results of the test exclusion in KDB 447498 D01.

7.5 Simultaneous Transmitting Evaluate

Simultaneous transmission configurations as below:

- Cilliantanio Car	minutalieous transmission configurations as below.										
	Band										
Condition	2.4GHz WLAN Ant-Main	2.4GHz WLAN Ant-Aux	5GHz WLAN Ant-Main	5GHz WLAN Ant-Aux	Bluetooth Ant-Aux						
1	V				V						
2	V	V									
3			V		V						
4			V	V							
5			V	V	V						

7.5.1 Sum of 1-g SAR of all simultaneously transmitting

When the sum of 1-g SAR of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration.

Sum of 1-g SAR of summary as below:

		o: : g o: :: t o: o	,							
_			Spacing		2.4 GHz WLAN Ant	Main (1)	Bluetooth Ant Aux ((3)	(1)+(3)	
	Phantom Position		(mm)		Band	SAR _{1g}	Band SAR_{1g} $\sum SAR_{1g}$ (W/Kg)		` ' ` '	Event
					(W/Kg			(W/Kg)		
	Body Mode									
	Flat	Bottom of laptop	0	N/A	IEEE 802.11	0.92	Bluetooth	0.41	1.33	<1.6

		Spacing		Spacing		2.4 GHz WLAN Ant Main (1)		2.4 GHz WLAN Ant Aux (2)		(1)+(2)	
Pł	Phantom Position	(mm)	ASSY	Band	SAR _{1 g} (W/Kg)	Band	SAR _{1 g} (W/Kg)	∑ SAR1g (W/Kg)	Event		
	Body Mode										
Flat	Bottom of laptop	0	N/A	IEEE 802.11	0.92	IEEE 802.11	1.01	1.93	>1.6		

Phantom Position		Spacing		5 GHz WLAN Ant Main (4)		Bluetooth Ant Aux ((3)	(4)+(3)		
		(mm)	ASSY	Band	SAR _{1 g} (W/Kg)	I Band	SAR _{1 g} (W/Kg)		Event	
	Body Mode									
Flat	Bottom of laptop	0	N/A	IEEE 802.11	1.10	Bluetooth	0.41	1.51	<1.6	

Rev.01

		Spacing		5 GHz WLAN Ant Main (4)		5 GHz WLAN Ant Au	x (5)	(4)+(5)	
Phantom Position		(mm)	ASSY	Band	SAR _{1g} (W/Kg)	l Band	SAR _{1 g} (W/Kg)	∑ SAR1g (W/Kg)	Event
	Body Mode								
Flat	Bottom of laptop	0	N/A	IEEE 802.11	1.10	IEEE 802.11	0.80	1.90	>1.6

		Spacing		5 GHz WLAN Ant Au		Bluetooth Ant Aux ((3)	(5)+(3)	
Pł	nantom Position	(mm)	ASSY	Band	SAR _{1 g} (W/Kg)	Band	SAR _{1 g} (W/Kg)		Event
	Body Mode								
Flat	Bottom of laptop	0	N/A	IEEE 802.11	0.80	Bluetooth	0.41	1.21	<1.6

Rev.01

7.5.2 SAR to peak location separation ratio (SPLSR)

When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The ratio is determined by $(SAR1 + SAR2)^{1.5}$, rounded to two decimal digits, and must be \leq 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Antenna	Index	Frequency (GHz)	Reported SAR1g (W/Kg)	∑ Reported SAR1g (W/Kg)	Antenna pair (mm)	Peak location separation ratio	
2.4 GHz Main	18	2.462	0.92	1.93	284.71	0.01	
2.4 GHz Aux	21	2.462	1.01	1.93	204.71	0.01	

Maxima and position w.r.t. Grid Reference Point	associated 1g averages
☐ Zoom Scan (C:\Users\dasy\Desktop\18_IEEE 802.11b	CH11_1M_Bottom of Laptop_0mm_Ant Main.da53:0/Flat)
Max. 1 at (-51.20, -143.80, -3.45) mm	0.92 W/kg (Power Scale Factor: 1.055117759)
☐ Zoom Scan (C:\Users\dasy\Desktop\21_IEEE 802.11b	CH11_1M_Bottom of Laptop_0mm_Ant Aux.da53:0/Flat)
Max. 2 at (-59.00, 140.80, -3.06) mm	1.01 W/kg (Power Scale Factor: 1.159580579)
Distances and Separation Ratios	
Max. 1 - Max. 2	Distance [mm]: 284.71 / Separation ratio [W/kg/mm]: 0.01

Antenna	Index	Frequency (GHz)	Reported SAR1g (W/Kg)	∑ Reported SAR1g (W/Kg)	Antenna pair (mm)	Peak location separation ratio	
5 GHz Main	2	5.57	1.10	1.90	275.19	0.01	
5 GHz Aux	5 5.57		0.80	1.90	270.19	0.01	

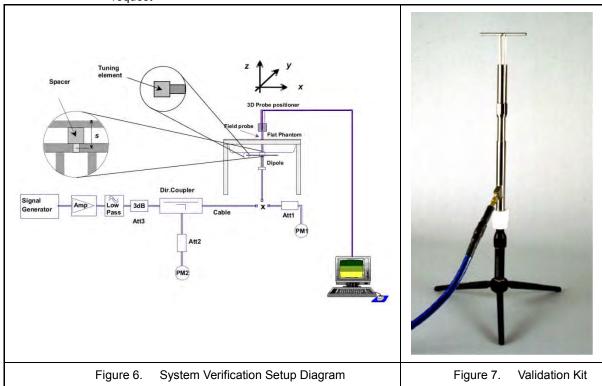
E	N	Maxima and position w.r.t. Grid Reference Point	associated 1g averages							
	E	☐ Zoom Scan (C:\Users\dasy\Desktop\2_IEEE 802.11ac 160 CH114_58.5M_Bottom of Laptop_0mm_Ant Main.da								
		Max. 1 at (-48.60, -137.80, -3.48) mm	1.10 W/kg (Power Scale Factor: 1.023362434)							
	E	Zoom Scan (C:\Users\dasy\Desktop\5_IEEE 802.11ac	ac 160 CH114_58.5M_Bottom of Laptop_0mm_Ant Aux.da5							
		Max. 2 at (-34.00, 137.00, -3.52) mm	0.80 W/kg (Power Scale Factor: 1.016317656)							
E		Distances and Separation Ratios								
	N	Max. 1 - Max. 2	Distance [mm]: 275.19 / Separation ratio [W/kg/mm]: 0.01							

Rev.01

8. System Verification and Validation

8.1 Symmetric Dipoles for System Verification

Construction Symmetrical dipole with I/4 balun enables measurement of feed point impedance with NWA

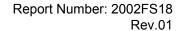

matched for use near flat phantoms filled with head simulating solutions Includes distance holder and tripod adaptor Calibration Calibrated SAR value for specified position and input

power at the flat phantom in head simulating solutions.

Return Loss > 20 dB at specified verification position

Options Dipoles for other frequencies or solutions and other calibration conditions are available upon

request



Rev.01

8.2 Verification Summary

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 10 %. The measured SAR will be normalized to 1 W input power. The verification was performed at 2450, 5250, 5600 and 5750 MHz.

Mixture	Fraguanay		Probe	Dipole	CAD.	Normalize to 1 Watt	1 W		Normalize to 1 Watt	1 W	Difference	Difference	
Mixture Type	Frequency (MHz)	Power	Model / Serial No.	Model / Serial No.	SAR _{1g} (W/Kg)	1 g (W/Kg)	Target SAR _{1 g} (W/Kg)	SAR _{10 g} (W/Kg)	10 T Wall 10 g (W/Kg)	Target SAR _{10 g} (W/Kg)	percentage 1 g	percentage 10 g	Date
Head	2450	250 mW	EX3DV4- SN3847	D2450V2 - SN712	12.7	50.8	52.10	5.95	23.8	24.00	-2.6%	-0.8%	Feb. 10, 2020
Head	5250	100 mW	EX3DV4- SN3847	D5250V2 - SN1021	7.39	73.9	76.10	2.03	20.3	21.60	-3.0%	-6.4%	Feb. 07, 2020
Head	5250	100 mW	EX3DV4- SN3847	D5250V2 - SN1021	7.44	74.4	76.10	2.04	20.4	21.60	-2.3%	-5.9%	Feb. 10, 2020
Head	5600	100 mW	EX3DV4- SN3847	D5600V2 - SN1021	8.32	83.2	81.00	2.3	23	22.70	2.6%	1.3%	Feb. 07, 2020
Head	5750	100 mW	EX3DV4- SN3847	D5750V2 - SN1021	7.92	79.2	76.10	2.16	21.6	21.30	3.9%	1.4%	Feb. 07, 2020
Head	5750	100 mW	EX3DV4- SN3847	D5750V2 - SN1021	7.78	77.8	76.10	2.12	21.2	21.30	2.2%	-0.5%	Feb. 10, 2020

9. Test Equipment List

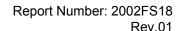
Testing Engineer: Kris Pan , Jason Tsao

Maria	None (Fortuna)	T (0.4 1.1	Os tal Novilos	Calibr	ation
Manufacturer	Name of Equipment	Type/Model	Serial Number	Cal. Date	Cal.Period
SPEAG	2450MHz System Validation Kit	D2450V2	712	2019/04/15	1 year
SPEAG	5GHz System Validation Kit	D5GHzV2	1021	2019/04/19	1 year
SPEAG	Dosimetric E-Field Probe	EX3DV4	3977	2019/08/30	1 year
SPEAG	Data Acquisition Electronics	DAE4	779	2019/11/29	1 year
SPEAG	Measurement Server	SE UMS 011 AA	1025	NC	R
SPEAG	Device Holder	N/A	N/A	NC	R
SPEAG	Phantom	ELI V5.0	1133	NC	R
SPEAG	Robot	Staubli TX90XL	F07/564ZA1/A/01	NCR	
SPEAG	Software	DASY52 V52.10 (3)	N/A	NCR	
SPEAG	Software	SEMCAD X V14.6.13(7474)	N/A	NCR	
SPEAG	Network Analyzer	DAKS_VNA R140	0010318	2019/05/03	1 year
SPEAG	Dielectric Probe Kit	DAKS-3.5	1101	2019/05/02	1 year
HILA	Digital Thermometer	TM-906A	1500033	2019/10/28	1 year
Agilent	Power Sensor	8481H	3318A20779	2019/06/11	1 year
Agilent	Power Meter	EDM Series E4418B	GB40206143	2019/06/11	1 year
Agilent	Signal Generator	E8257D	MY44320425	2019/03/05	1 year
Agilent	Dual Directional Coupler	778D	50334	NC	R
Woken	Dual Directional Coupler	0100AZ20200801O	11012409517	NC	R
Mini-Circuits	Power Amplifier	EMC014225P	980292	NC	R
Mini-Circuits	Power Amplifier	EMC2830P	980293	NCR	
Aisi	Attenuator	IEAT 3dB	N/A	NCR	

Table 1. Test Equipment List

10. Measurement Uncertainty

Decision Rule


- Uncertainty is not included.
- □ Uncertainty is included.

Report Number: 2002FS18 Rev.01

		ı					ı		
Item	Uncertainty Component	Uncertainty Value	Prob. Dist	Div.	<i>c_i</i> (1 g)	c _i (10 g)	Std. Unc. (1-g)	Std. Unc. (10-g)	$egin{array}{c} oldsymbol{v_i} \ oldsymbol{V_{eff}} \end{array}$
Meas	urement System								
u1	Probe Calibration (<i>k</i> =1)	±6.0 %	Normal	1	1	1	±6.0 %	±6.0 %	∞
u2	Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	0.7	±1.9 %	±1.9 %	∞
u3	Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	0.7	±3.9 %	±3.9 %	
u4	Boundary Effect	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
u5	Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	1	±2.7 %	±2.7 %	∞
u6	System Detection Limit	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
u7	Readout Electronics	±0.3 %	Normal	1	1	1	±0.3 %	±0.3 %	∞
u8	Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	8
u9	Integration Time	±1.9 %	Rectangular	$\sqrt{3}$	1	1	±1.1 %	±1.1 %	∞
u10	RF Ambient Conditions	±3.0 %	Rectangular	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
u11	RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
u12	Probe Positioner Mechanical Tolerance	±0.4 %	Rectangular	$\sqrt{3}$	1	1	±0.2 %	±0.2 %	∞
u13	Probe Positioning with respect to Phantom Shell	±2.9 %	Rectangular	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
u14	Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	±1.0 %	Rectangular	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	80
		Test	sample Relate	ed					
u15	Test sample Positioning	±2.9 %	Normal	1	1	1	±2.9 %	±2.9 %	89
u16	Device Holder Uncertainty	±3.6 %	Normal	1	1	1	±3.6 %	±3.6 %	5
u17	Output Power Variation - SAR drift measurement	±5.0 %	Rectangular	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
		Phantom a	and Tissue Par	amete	ers				
u18	Phantom Uncertainty (shape and thickness tolerances)	±4.0 %	Rectangular	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	∞
u19	Liquid Conductivity - deviation from target values	±5.0 %	Rectangular	$\sqrt{3}$	0.64	0.43	±1.8 %	±1.2 %	∞
u20	Liquid Conductivity - measurement uncertainty	±2.5 %	Normal	1	0.64	0.43	±1.6 %	±1.08 %	69
u21	Liquid Permittivity - deviation from target values	±5.0 %	Rectangular	$\sqrt{3}$	0.6	0.49	±1.7 %	±1.4 %	∞
u22	Liquid Permittivity - measurement uncertainty	±2.5 %	Normal	1	0.6	0.49	±1.5 %	±1.23 %	69
	Combined standard uncerta	inty	RSS				±10.94 %	±10.71 %	380
	Expanded uncertainty (95 % CONFIDENCE LEVE	EL)	k=2				±21.88 %	±21.41 %	
	Table 2 Uncer	4-:-4 . D d4			000 14		-		

Uncertainty Budget for frequency range 300 MHz to 3 GHz Table 2.

Vi Uncertainty Prob. Std. Unc. Std. Unc. Ci Item **Uncertainty Component** Div. or Value Dist (1g)(10 g)(1-g)(10-g) $V_{\it eff}$ Measurement System Probe Calibration (k=1) ±6.5 % Normal 1 1 1 ±6.5 % ±6.5 % u1 $\sqrt{3}$ ±4.7 % ±1.9 % ±1.9 % u2 Axial Isotropy Rectangular 0.7 0.7 $\sqrt{3}$ ±9.6 % ±3.9 % ±3.9 % u3 Hemispherical Isotropy Rectangular 0.7 0.7 $\sqrt{3}$ ±2.0 % ±1.2 % ±1.2 % u4 Boundary Effect Rectangular 1 1 ∞ $\sqrt{3}$ ±4.7 % ±2.7 % ±2.7 % u5 Linearity Rectangular 1 1 ∞ $\sqrt{3}$ u6 System Detection Limit ±1.0 % Rectangular 1 1 ±0.6 % ±0.6 % ∞ ±0.0 % ±0.0 % ±0.0 % 1 1 u7 Readout Electronics Normal 1 ∞ ±0.8 % ±0.5 % $\sqrt{3}$ ±0.5 % 1 u8 Response Time Rectangular 1 ∞ ±2.8 % $\sqrt{3}$ ±2.8 % ±2.8 % 1 Integration Time Rectangular 1 ∞ u9 $\sqrt{3}$ +3.0 % 1 ±1.7 % +1.7 % u10 RF Ambient Conditions Rectangular 1 ∞ RF Ambient Reflections ±3.0 % $\sqrt{3}$ 1 1 ±1.7 % ±1.7 % u11 Rectangular ∞ Probe Positioner Mechanical ±0.7 % $\sqrt{3}$ ±0.7 % ±0.7 % u12 Rectangular 1 1 Tolerance Probe Positioning with respect $\sqrt{3}$ ±9.9 % 1 1 ±5.7 % ±5.7 % ∞ u13 Rectangular to Phantom Shell Extrapolation, interpolation and ±3.0 % ±1.7 % ±1.7 % u14 integration Algorithms for Max. $\sqrt{3}$ Rectangular 1 1 ∞ SAR Evaluation Test sample Related ±2.9 % ±2.9 % ±2.9 % 1 u15 Test sample Positioning Normal 1 1 89 ±3.6 % ±3.6 % ±3.6 % u16 Device Holder Uncertainty Normal 1 1 1 5 Output Power Variation -±5.0 % $\sqrt{3}$ ±2.9 % ±2.9 % u17 Rectangular 1 1 ∞ SAR drift measurement Phantom and Tissue Parameters Phantom Uncertainty ±4.0 % ±2.3 % ±2.3 % $\sqrt{3}$ u18 (shape and thickness Rectangular 1 1 ∞ tolerances) Liquid Conductivity -±5.0 % $\sqrt{3}$ ±1.8 % ±1.2 % u19 Rectangular 0.64 0.43 deviation from target values Liquid Conductivity -±2.5 % u20 Normal 1 0.64 0.43 ±1.6 % ±1.08 % 69 measurement uncertainty Liquid Permittivity -±5.0 % $\sqrt{3}$ ±1.7 % ±1.4 % u21 Rectangular 0.6 0.49 ∞ deviation from target values Liquid Permittivity -±2.5 % Normal 1 0.6 0.49 ±1.5 % ±1.23 % 69 u22 measurement uncertainty Combined standard uncertainty **RSS** ±12.68 % ±12.48 % 700 Expanded uncertainty k=2 ±25.37 % ±24.97 % (95 % CONFIDENCE LEVEL)

Table 3. Uncertainty Budget for frequency range 3 GHz to 6 GHz

Rev.01

11. Measurement Procedure

The measurement procedures are as follows:

- 1. For WLAN function, engineering testing software installed on DUTs can provide continuous transmitting signal.
- 2. Measure output power through RF cable and power meter
- 3. Set scan area, grid size and other setting on the DASY software
- 4. Find out the largest SAR result on these testing positions of each band
- 5. Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- 1. Power reference measurement
- 2. Area scan
- 3. Zoom scan
- 4. Power drift measurement

11.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1 g and 10 g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1 g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages

- 1. Extraction of the measured data (grid and values) from the Zoom Scan
- 2. Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. Generation of a high-resolution mesh within the measured volume
- 4. Interpolation of all measured values form the measurement grid to the high-resolution grid
- 5. Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. Calculation of the averaged SAR within masses of 1 g and 10 g

Rev.01

11.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures points and step size follow as below. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

Grid Type	Frequ	iency	Step size (mm)		X*Y*Z	(Cube size			Step size)	
			Χ	Υ	Z	(Point)	Χ	Υ	Z	Χ	Υ	Z
	≦ 3 GHz	≦2 GHz	≤8	≤ 8	≤ 5	5*5*7	32	32	30	8	8	5
uniform arid		2G-3G	≤ 5	≤ 5	≤ 5	7*7*7	30	30	30	5	5	5
uniform grid		3 – 4 GHz	≤ 5	≤ 5	≤ 4	7*7*8	30	30	28	5	5	4
	3 – 6 GHz	4 – 5 GHz	≤ 4	≤ 4	≤ 3	8*8*10	28	28	27	4	4	3
		5 – 6 GHz	≤ 4	≤ 4	≤ 1.4	8*8*12	24	24	22	4	4	1.4

(Our measure settings are refer KDB Publication 865664 D01v01r04)

11.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1 g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

11.4 Power Drift Monitoring

All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5 %, the SAR will be retested.

12. SAR Test Results Summary

12.1 Body SAR Measurement

						Body SAR (I	NPAQ) IC						
						Measureme	nt Results						
Index	Band	Mode	Fred	quency MHz	Data Rate	Test Position	Spacing (mm)	SAR _{1 g} (W/Kg)	Burst Avg Power	Max tune-up	Duty Cycle	Reported SAR _{1 g}	Note
	WLAN 2.4 GHz	802.11b	1	2412.0	1 Mbps	Bottom of laptop	0	0.828	11.46	11.50	99.7	0.84	Ant-Main (ChainB)
	WLAN 2.4 GHz	802.11b	6	2437.0	1 Mbps	Bottom of laptop	0	0.780	11.34	11.50	99.7	0.81	Ant-Main (ChainB)
#18	WLAN 2.4 GHz	802.11b	11	2462.0	1 Mbps	Bottom of laptop	0	0.867	11.28	11.50	99.7	0.92	Ant-Main (ChainB)
	WLAN 2.4 GHz	802.11b	1	2412.0	1 Mbps	Bottom of laptop	0	0.833	11.24	11.50	99.7	0.89	Ant-Aux (ChainA)
	WLAN 2.4 GHz	802.11b	6	2437.0	1 Mbps	Bottom of laptop	0	0.853	11.18	11.50	99.7	0.92	Ant-Aux (ChainA)
#21	WLAN 2.4 GHz	802.11b	11	2462.0	1 Mbps	Bottom of laptop	0	0.872	10.87	11.50	99.7	1.01	Ant-Aux (ChainA)
#24	Bluetooth		0	2402.0	1-DH5	Bottom of laptop	0	0.304	7.80	8.0	78.0	0.41	Ant-Aux (ChainA)
	Bluetooth		39	2441.0	1-DH5	Bottom of laptop	0	0.242	7.26	8.0	78.0	0.37	Ant-Aux (ChainA)
	Bluetooth		78	2480.0	1-DH5	Bottom of laptop	0	0.251	7.09	8.0	78.0	0.40	Ant-Aux (ChainA)
#1	WLAN 5 GHz	802.11ac 160 MHz	50	5250.0	58.5 Mbps	Bottom of laptop	0	0.942	9.48	9.5	99.3	0.95	Ant-Main (ChainB)
#2	WLAN 5 GHz	802.11ac 160 MHz	114	5570.0	58.5 Mbps	Bottom of laptop	0	1.070	9.43	9.5	99.3	1.10	Ant-Main (ChainB)
#3	WLAN 5 GHz	802.11ac 80 MHz	155	5775.0	29.3 Mbps	Bottom of laptop	0	0.960	9.41	9.5	99.3	0.99	Ant-Main (ChainB)
#4	WLAN 5 GHz	802.11ac 160 MHz	50	5250.0	58.5 Mbps	Bottom of laptop	0	0.685	9.42	9.5	99.3	0.70	Ant-Aux (ChainA)
#5	WLAN 5 GHz	802.11ac 160 MHz	114	5570.0	58.5 Mbps	Bottom of laptop	0	0.791	9.46	9.5	99.3	0.80	Ant-Aux (ChainA)
#6	WLAN 5 GHz	802.11ac 80 MHz	155	5775.0	29.3 Mbps	Bottom of laptop	0	0.663	9.47	9.5	99.3	0.67	Ant-Aux (ChainA)

	Body SAR (Yageo) IC												
	Measurement Results												
Index	Band	Mode	Freq Ch.	uency MHz	Data Rate	Test Position	Spacing (mm)	SAR _{1 g} (W/Kg)	Burst Avg Power	Max tune-up	Duty Cycle %	Reported SAR _{1 g}	Note
#11	WLAN 5 GHz	802.11ac 160 MHz	114	5570.0	58.5 Mbps	Bottom of laptop	0	0.920	9.43	9.5	99.3	0.94	Ant-Main (ChainB)
#14	WLAN 2.4 GHz	802.11b	11	2462.0	1 Mbps	Bottom of laptop	0	0.833	10.87	11.50	99.7	0.97	Ant-Aux (ChainA)

Rev.01

12.2 SAR Variability Measurement

	Measurement Results										
la dese	Index Dand M		Frequency		Data	Test	Spacing	Note	Original	First	First
Index	Band	Mode	Ch.	MHz	Rate	Position	(mm)	Note	SAR _{1 g} (W/Kg	SAR _{1g} (W/Kg)	Ratio SAR 1 _g
#27	WLAN 2.4 GHz	802.11b	11	2462.0	1 Mbps	Bottom of laptop	0	original #21_once	0.872	0.877	1.01
#29	WLAN 5 GHz	802.11ac 160 MHz	114	5570.0	58.5 Mbps	Bottom of laptop	0	original #2_once	1.070	1.010	1.06

Note:

- 1. As per KDB 248227 D01, SAR testing are not required for 802.11g/n/ax channels when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2W/kg.
- 2. When the reported SAR of the highest measured maximum output power channel is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS, otherwise, SAR is required using the next highest measured output power channel for 802.11b DSSS.
- 3. When the highest reported SAR for the initial test configuration, according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 4. SAR for the initial test configuration is measured using the highest maximum output power channel, when the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 5. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.
- 6. When multiple transmission modes (802.11a/g/n/ac/ax) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, lowest order 802.11 mode is selected (i.e. a, g, n, ac then ax).
- 7. The largest channel bandwidth configuration is selected among the multiple configurations in a frequency band with the same specified maximum output power.

Rev.01

12.3 SAR Exposure Limit

Human Exposure	Population Uncontrolled Exposure (W/kg)	Occupational Controlled Exposure (W/kg)
Spatial Peak SAR* (head or Body)	1.60	8.00
Spatial Peak SAR** (Whole Body)	0.08	0.40
Spatial Peak SAR*** (Hands / Feet / Ankle / Wrist)	4.00	20.00

Table 4. Safety Limits for Controlled / Uncontrolled Environment Exposure

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / **Controlled Environments**: are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

Rev.01

13. References

- [1] Std. C95.1-1999, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Pokovi^c, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Pokovi ^c, T. Schmid, and N. Kuster, "E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10KHz-300GHz, Jan. 1995.
- [11] IEEE Std 1528™-2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques

Rev.01

Appendix A - System Performance Check

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/10

System Performance Check at 2450MHz 20200210 Head

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:712

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.801$ S/m; $\epsilon_r = 39.501$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

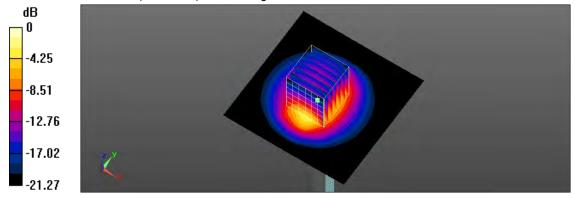
DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.65, 7.65, 7.65) @ 2450 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

System Performance Check at 2450MHz/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 20.9 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 114.7 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.95 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 50.4%

Maximum value of SAR (measured) = 20.7 W/kg

0 dB = 20.7 W/kg = 13.16 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/7

System Performance Check at 5250MHz 20200207 Head

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1021

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.539 S/m; ϵ_r = 35.952; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

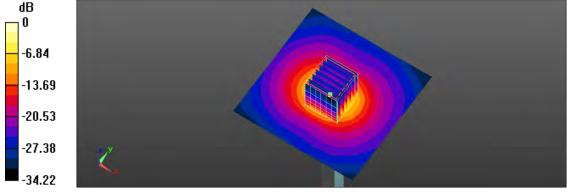
DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(5.57, 5.57, 5.57) @ 5250 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

System Performance Check at 5250MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.3 W/kg

System Performance Check at 5250MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.18 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.03 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 65.6%

Maximum value of SAR (measured) = 18.6 W/kg

0 dB = 18.6 W/kg = 12.70 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/10

System Performance Check at 5250MHz_20200210_Head

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1021

Communication System: UID 0, CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.529 S/m; ϵ_r = 35.901; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

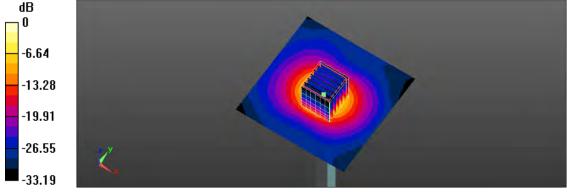
DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(5.57, 5.57, 5.57) @ 5250 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

System Performance Check at 5250MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.4 W/kg

System Performance Check at 5250MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.64 V/m; Power Drift = -0.17 dB


Peak SAR (extrapolated) = 29.41 W/kg

SAR(1 g) = 7.44 W/kg; SAR(10 g) = 2.04 W/kg

Smallest distance from peaks to all points 3 dB below = 7.1 mm

Ratio of SAR at M2 to SAR at M1 = 64.7%

Maximum value of SAR (measured) = 18.73 W/kg

0 dB = 18.73 W/kg = 12.72 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/7

System Performance Check at 5600MHz 20200207 Head

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1021

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 4.901 S/m; ϵ_r = 35.335; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

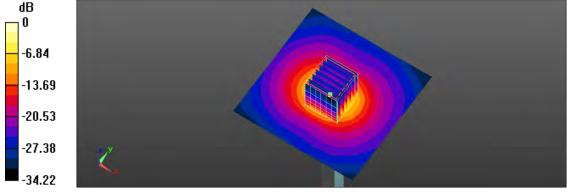
DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(4.81, 4.81, 4.81) @ 5600 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

System Performance Check at 5600MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.4 W/kg

System Performance Check at 5600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.28 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 35.0 W/kg

SAR(1 g) = 8.32 W/kg; SAR(10 g) = 2.3 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 63.4%

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/7

System Performance Check at 5750MHz 20200207 Head

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1021

Communication System: UID 0, CW (0); Frequency: 5750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; σ = 5.165 S/m; ϵ_r = 35.012; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

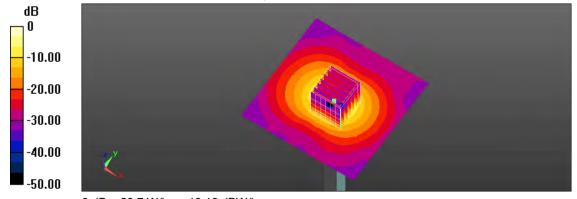
DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(5.06, 5.06, 5.06) @ 5750 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

System Performance Check at 5750MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.4 W/kg

System Performance Check at 5750MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.53 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.16 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 62.4%

Maximum value of SAR (measured) = 20.7 W/kg

0 dB = 20.7 W/kg = 13.16 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/10

System Performance Check at 5750MHz 20200210 Head

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1021

Communication System: UID 0, CW (0); Frequency: 5750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; σ = 5.155 S/m; ϵ_r = 34.961; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

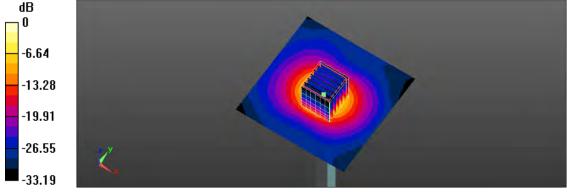
DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(5.06, 5.06, 5.06) @ 5750 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

System Performance Check at 5750MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.1 W/kg

System Performance Check at 5750MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.32 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 33.99 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.12 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 62.1%

Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.08 dBW/kg

Rev.01

Appendix B - SAR Measurement Data

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/10

18_IEEE 802.11b CH11_1M_Bottom of Laptop_0mm_Ant Main

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.813$ S/m; $\epsilon_r = 39.453$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

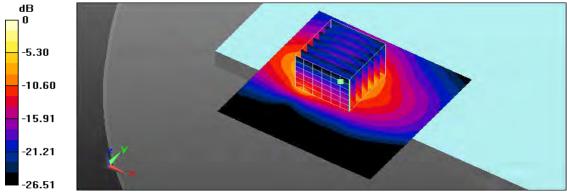
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.65, 7.65, 7.65) @ 2462 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.76 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.36 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 2.64 W/kg

SAR(1 g) = 0.867 W/kg; SAR(10 g) = 0.320 W/kg

Smallest distance from peaks to all points 3 dB below = 5 mm

Ratio of SAR at M2 to SAR at M1 = 36.9%

Maximum value of SAR (measured) = 1.81 W/kg

0 dB = 1.81 W/kg = 2.58 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/10

21_IEEE 802.11b CH11_1M_Bottom of Laptop_0mm_Ant Aux

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.813$ S/m; $\epsilon_r = 39.453$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

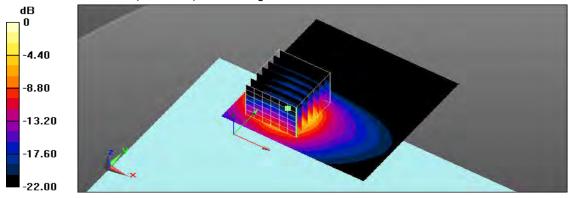
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.65, 7.65, 7.65) @ 2462 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.71 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.35 V/m; Power Drift = 0.17 dB


Peak SAR (extrapolated) = 2.81 W/kg

SAR(1 g) = 0.872 W/kg; SAR(10 g) = 0.319 W/kg

Smallest distance from peaks to all points 3 dB below = 5.3 mm

Ratio of SAR at M2 to SAR at M1 = 29.2%

Maximum value of SAR (measured) = 1.82 W/kg

0 dB = 1.82 W/kg = 2.60 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/10

24_Bluetooth CH0_Bottom of Laptop_0mm_Ant Aux

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, Bluetooth 3.0 (0); Frequency: 2402 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2402 MHz; $\sigma = 1.75$ S/m; $\epsilon_r = 39.693$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

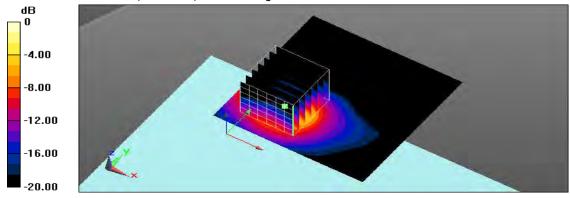
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.65, 7.65, 7.65) @ 2402 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.554 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.37 V/m; Power Drift = 0.19 dB


Peak SAR (extrapolated) = 0.961 W/kg

SAR(1 g) = 0.304 W/kg; SAR(10 g) = 0.111 W/kg

Smallest distance from peaks to all points 3 dB below = 5.1 mm

Ratio of SAR at M2 to SAR at M1 = 30.9%

Maximum value of SAR (measured) = 0.610 W/kg

0 dB = 0.610 W/kg = -2.15 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/10

1_IEEE 802.11ac 160 CH50_58.5M_Bottom of Laptop_0mm_Ant Main

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5250 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; σ = 4.529 S/m; ε_r = 35.901; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

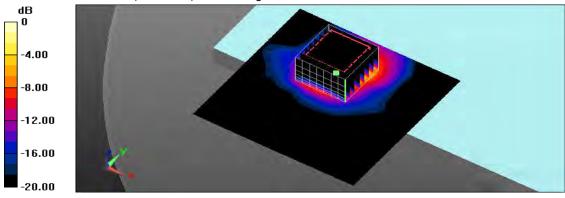
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(5.57, 5.57, 5.57) @ 5250 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.45 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 19.74 V/m; Power Drift = -0.13 dB


Peak SAR (extrapolated) = 4.66 W/kg

SAR(1 g) = 0.942 W/kg; SAR(10 g) = 0.297 W/kg

Smallest distance from peaks to all points 3 dB below = 5.7 mm

Ratio of SAR at M2 to SAR at M1 = 59.3%

Maximum value of SAR (measured) = 2.55 W/kg

0 dB = 2.55 W/kg = 4.07 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/7

2 IEEE 802.11ac 160 CH114 58.5M Bottom of Laptop 0mm Ant Main

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5570 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5570 MHz; σ = 4.868 S/m; ε_r = 35.452; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

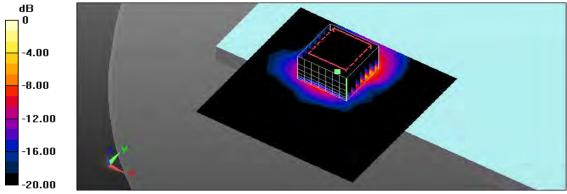
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(4.81, 4.81, 4.81) @ 5570 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.86 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 20.01 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 6.03 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.313 W/kg

Smallest distance from peaks to all points 3 dB below = 5.8 mm

Ratio of SAR at M2 to SAR at M1 = 56.9%

Maximum value of SAR (measured) = 2.95 W/kg

0 dB = 2.95 W/kg = 4.70 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/10

3_IEEE 802.11ac 80 CH155_29.3M_Bottom of Laptop_0mm_Ant Main

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT80 (0); Frequency: 5775 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5775 MHz; σ = 5.128 S/m; ε_r = 34.994; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

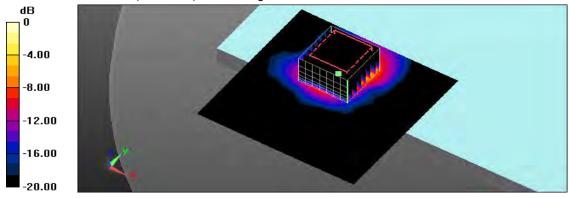
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(5.06, 5.06, 5.06) @ 5775 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.71 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 18.65 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 5.50 W/kg

SAR(1 g) = 0.960 W/kg; SAR(10 g) = 0.274 W/kg

Smallest distance from peaks to all points 3 dB below = 5.7 mm

Ratio of SAR at M2 to SAR at M1 = 51%

Maximum value of SAR (measured) = 2.70 W/kg

0 dB = 2.70 W/kg = 4.31 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/7

4_IEEE 802.11ac 160 CH50_58.5M_Bottom of Laptop_0mm_Ant Aux

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5250 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; σ = 4.539 S/m; ϵ_r = 35.952; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

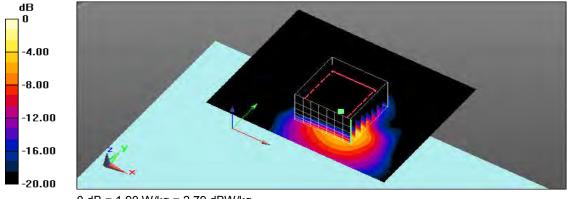
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(5.57, 5.57, 5.57) @ 5250 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (91x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.07 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 8.752 V/m; Power Drift = 0.13 dB


Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 0.685 W/kg; SAR(10 g) = 0.206 W/kg

Smallest distance from peaks to all points 3 dB below = 5.4 mm

Ratio of SAR at M2 to SAR at M1 = 58.9%

Maximum value of SAR (measured) = 1.90 W/kg

0 dB = 1.90 W/kg = 2.79 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/7

5 IEEE 802.11ac 160 CH114 58.5M Bottom of Laptop 0mm Ant Aux

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5570 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5570 MHz; σ = 4.868 S/m; ε_r = 35.452; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

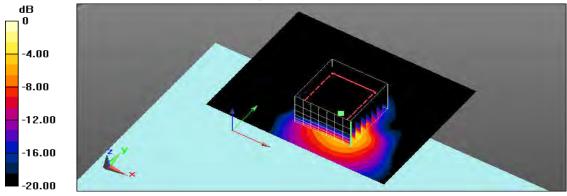
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(4.81, 4.81, 4.81) @ 5570 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (91x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.09 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 11.24 V/m; Power Drift = 0.12 dB


Peak SAR (extrapolated) = 3.84 W/kg

SAR(1 g) = 0.791 W/kg; SAR(10 g) = 0.257 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 58.5%

Maximum value of SAR (measured) = 2.11 W/kg

0 dB = 2.11 W/kg = 3.24 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/7

6_IEEE 802.11ac 80 CH155_29.3M_Bottom of Laptop_0mm_Ant Aux

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT80 (0); Frequency: 5775 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5775 MHz; σ = 5.139 S/m; ε_r = 35.046; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

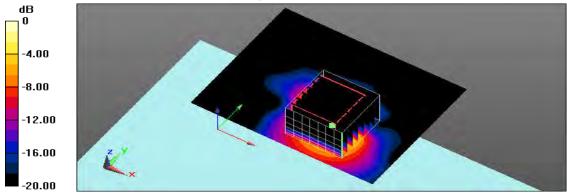
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(5.06, 5.06, 5.06) @ 5775 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (91x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.73 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 10.13 V/m; Power Drift = 0.13 dB


Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 0.663 W/kg; SAR(10 g) = 0.205 W/kg

Smallest distance from peaks to all points 3 dB below = 5.7 mm

Ratio of SAR at M2 to SAR at M1 = 56.5%

Maximum value of SAR (measured) = 1.78 W/kg

0 dB = 1.78 W/kg = 2.50 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/7

11 IEEE 802.11ac 160 CH114 58.5M Bottom of Laptop 0mm Ant Main (Yageo)

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, IEEE 802.11ac(5GHz)VHT160 (0); Frequency: 5570 MHz;Duty Cycle: 1:1

Medium parameters used: f = 5570 MHz; σ = 4.868 S/m; ε_r = 35.452; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

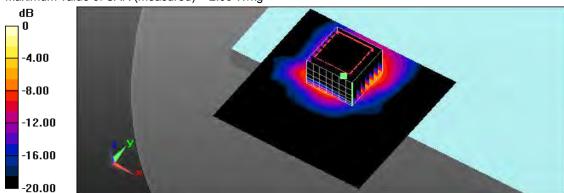
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(4.81, 4.81, 4.81) @ 5570 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 2.64 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 16.55 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 4.76 W/kg

SAR(1 g) = 0.920 W/kg; SAR(10 g) = 0.280 W/kg

Smallest distance from peaks to all points 3 dB below = 5.7 mm

Ratio of SAR at M2 to SAR at M1 = 57.4%

Maximum value of SAR (measured) = 2.39 W/kg

0 dB = 2.39 W/kg = 3.78 dBW/kg

Rev.01

Test Laboratory: A Test Lab Techno Corp.

Date: 2020/2/10

14_IEEE 802.11b CH11_1M_Bottom of Laptop_0mm_Ant Aux (Yageo)

DUT: AX201D2W; Type:Intel WiFi 6 AX201

Communication System: UID 0, IEEE 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.813$ S/m; $\epsilon_r = 39.453$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5.2 Configuration:

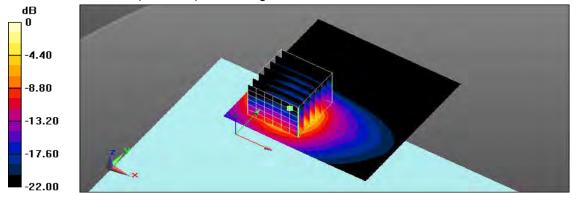
- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(7.65, 7.65, 7.65) @ 2462 MHz; Calibrated: 2019/8/30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2019/8/22
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474)

Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.63 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.31 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 2.68 W/kg

SAR(1 g) = 0.833 W/kg; SAR(10 g) = 0.305 W/kg

Smallest distance from peaks to all points 3 dB below = 5.3 mm

Ratio of SAR at M2 to SAR at M1 = 29.2%

Maximum value of SAR (measured) = 1.74 W/kg

0 dB = 1.74 W/kg = 2.40 dBW/kg

Rev.01

Appendix C - Calibration

All of the instruments Calibration information are listed below.

Dipole _ D2450V2 SN: 712

Dipole _ D5GHzV2 SN: 1021

Probe _ EX3DV4 SN: 3977

DAE _ DAE4 SN: 779

Rev.01

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

ATL

Certificate No:

Z19-60129

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 712

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

April 15, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Power sensor NRP8S	104291	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Jan-20
DAE4	SN 1331	06-Feb-19(SPEAG,No.DAE4-1331_Feb19)	Feb-20
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	长1
Reviewed by:	Lin Hao	SAR Test Engineer	THE 76
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: April 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60129

Page 1 of 8

Rev.01

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

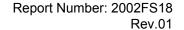
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook


Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60129

Page 2 of 8

In Collaboration with

S P E A G
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	13.1 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 18.8 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition		
SAR measured	250 mW input power	6.02 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 18.7 % (k=2)	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

Tresult With Body ToL				
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition			
SAR measured	250 mW input power	12.7 W/kg		
SAR for nominal Body TSL parameters	normalized to 1W	50.5 W/kg ± 18.8 % (k=2)		
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition			
SAR measured	250 mW input power	5.88 W/kg		
SAR for nominal Body TSL parameters	normalized to 1W	23.5 W/kg ± 18.7 % (k=2)		

Certificate No: Z19-60129

Page 3 of 8

Rev.01

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.4Ω+ 3.38 jΩ
Return Loss	- 27.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9Ω+ 5.55 jΩ
Return Loss	- 24.4dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.022 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z19-60129

Page 4 of 8

Report Number: 2002FS18 Rev.01

Date: 04.15.2019

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

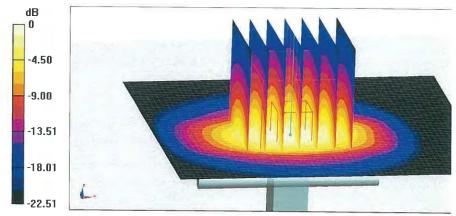
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 712

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 40.35; ρ = 1000 kg/m3

Phantom section: Right Section

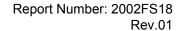
DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.62, 7.62, 7.62) @ 2450 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.05 V/m; Power Drift = -0.01 dB

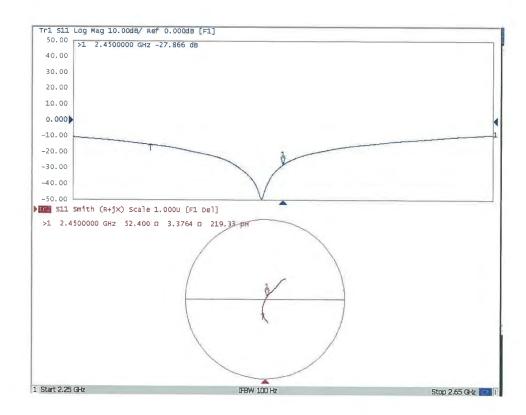
Peak SAR (extrapolated) = 28.1 W/kg


SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.02 W/kg

Maximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg

Certificate No: Z19-60129 Page 5 of 8



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60129 Page 6 of 8

Report Number: 2002FS18 Rev.01

Date: 04.15.2019

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

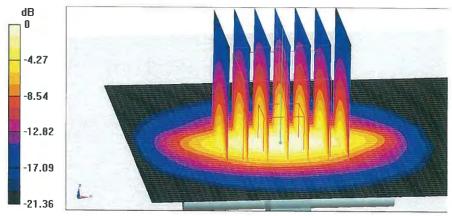
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 712

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.005$ S/m; $\epsilon_r = 54.25$; $\rho = 1000$ kg/m3

Phantom section: Center Section

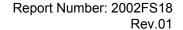
DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.79, 7.79, 7.79) @ 2450 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.06 V/m; Power Drift = 0.00 dB

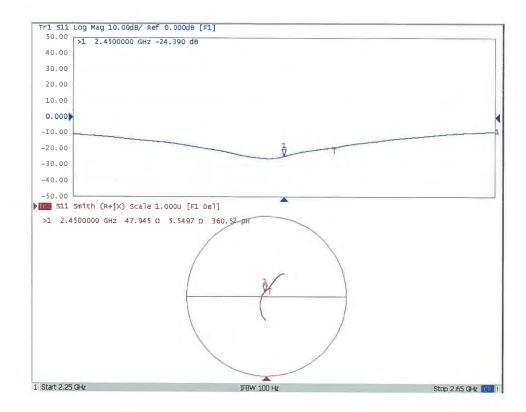
Peak SAR (extrapolated) = 26.5 W/kg

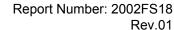

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.88 W/kg

Maximum value of SAR (measured) = 21.1 W/kg

0 dB = 21.1 W/kg = 13.24 dBW/kg

Certificate No: Z19-60129 Page 7 of 8





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z19-60129 Page 8 of 8

In Collaboration with

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

ATL

Certificate No:

Z19-60131

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1021

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

April 19, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
Power sensor NRP8S	104291	20-Aug-18 (CTTL, No.J18X06862)	Aug-19
ReferenceProbe EX3DV4	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18/2)	Aug-19
DAE4	SN 1331	06-Feb-19(SPEAG,No.DAE4-1331_Feb19)	Feb-20
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-19 (CTTL, No.J19X00336)	Jan-20
NetworkAnalyzerE5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan-20
	I		

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	21
Reviewed by:	Lin Hao	SAR Test Engineer	TAT 38
Approved by:	Qi Dianyuan	SAR Project Leader	201

Issued: April 25, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60131

Page 1 of 14

Catl

Report Number: 2002FS18

Rev.01

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60131

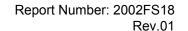
Rev.01

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuratio

SAOT system configuration, as far a	s not given on page 1.	
DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	


Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.1 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.6 W/kg ± 24.2 % (k=2)

Certificate No: Z19-60131

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Head TSL parameters at 5600 MHz

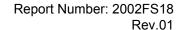
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.92 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		7000

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz


The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.07 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

Troodic With Fload TOE at 3730 WILL		
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.1 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 24.2 % (k=2)

Certificate No: Z19-60131 Page 4 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.3 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5250 MHz

Tree are trees.		
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.4 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.9 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

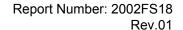
SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 24.2 % (k=2)

Certificate No: Z19-60131 Page 5 of 14

Rev.01

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn


Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.7 ± 6 %	6.11 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 24.2 % (k=2)

Certificate No: Z19-60131 Page 6 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	51.9Ω - 4.22jΩ
Return Loss	- 26.9dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	58.4Ω - 0.27jΩ
Return Loss	- 22.2dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	56.7Ω + 1.19jΩ
Return Loss	- 23.9dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	52.3Ω - 2.82jΩ
Return Loss	- 28.9dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.7Ω + 1.14jΩ
Return Loss	- 21.8dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	57.5Ω + 1.49jΩ
Return Loss	- 23.0dB

Certificate No: Z19-60131

Rev.01

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

General Antenna Parameters and Design

Electrical Delay (one direction)	1.064 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z19-60131

Report Number: 2002FS18 Rev.01

Date: 04.17.2019

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1021

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.576 S/m; ϵ r = 34.9; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.923 S/m; ϵ r = 34.46; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.066 S/m; ϵ r = 34.4; ρ = 1000 kg/m3.

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(5.02, 5.02, 5.02) @ 5250 MHz; Calibrated: 8/27/2018, ConvF(4.41, 4.41, 4.41) @ 5600 MHz; Calibrated: 8/27/2018, ConvF(4.47, 4.47, 4.47) @ 5750 MHz; Calibrated: 8/27/2018,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.41 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.18 W/kgMaximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.17 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 38.8 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.29 W/kgMaximum value of SAR (measured) = 21.0 W/kg

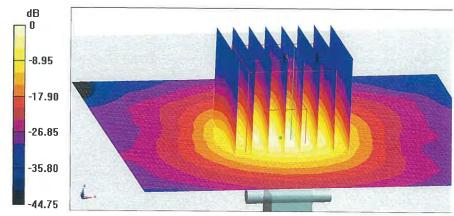
Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

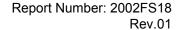
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.86 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 38.0 W/kg

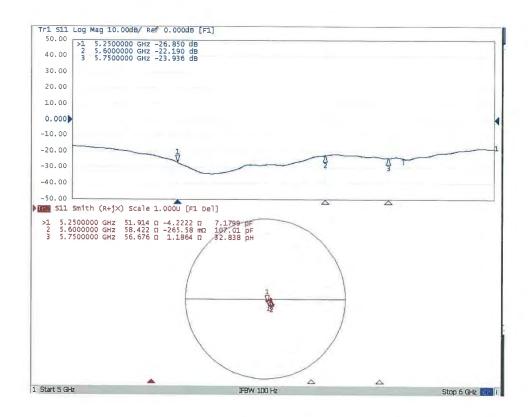
SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.15 W/kgMaximum value of SAR (measured) = 19.2 W/kg


Certificate No: Z19-60131 Page 9 of 14


Rev.01

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

0 dB = 19.2 W/kg = 12.83 dBW/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60131 Page 11 of 14

Report Number: 2002FS18 Rev.01

Date: 04 19 2019

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1021

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 5.492 S/m; ε_r = 50.32; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.937 S/m; ϵ_r = 49.85; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 6.109 S/m; ϵ_r = 49.74; ρ = 1000 kg/m3,

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(4.54, 4.54, 4.54) @ 5250 MHz; Calibrated: 8/27/2018, ConvF(4, 4, 4) @ 5600 MHz; Calibrated: 8/27/2018, ConvF(3.98. 3.98, 3.98) @ 5750 MHz; Calibrated: 8/27/2018,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.99 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.09 W/kgMaximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan.

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.86 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.16 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

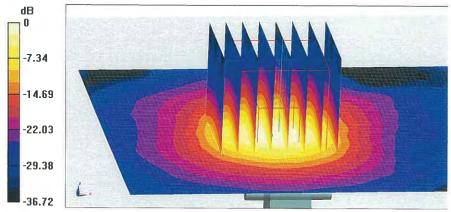
Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

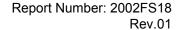
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.96 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 35.0 W/kg

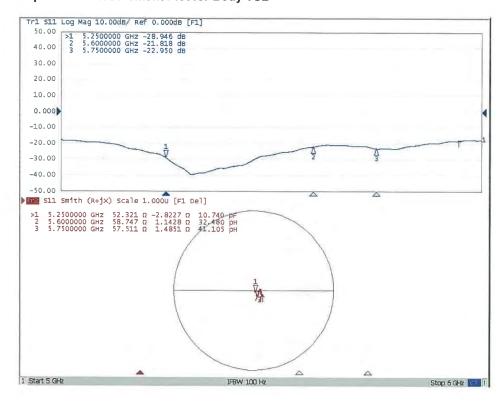
SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kgMaximum value of SAR (measured) = 18.5 W/kg

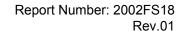

Certificate No: Z19-60131 Page 12 of 14


Rev.01

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

0 dB = 18.5 W/kg = 12.67 dBW/kg





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Client

In Collaboration with

S D C A G

CALIBRATION LABORATORY

Certificate No: Z19-60275

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3977

Calibration Procedure(s) FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Cambration Procedures for Dosimetric E-field F

Calibration date: August 30, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 \pm 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Power sensor NRP-Z91	101547	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Power sensor NRP-Z91	101548	18-Jun-19 (CTTL, No.J19X05125)	Jun-20
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 7307	24-May-19(SPEAG,No.EX3-7307_May19)	May-20
DAE4	SN 1331	06-Feb-19(SPEAG, No.DAE4-1331_Feb19)	Feb -20
DAE4	SN 917	07-Dec-18(SPEAG, No.DAE4-917_Dec18)	Dec -19
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	18-Jun-19 (CTTL, No.J19X05127)	Jun-20
Network Analyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan -20
	I	F C	

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	2-6
Reviewed by:	Lin Hao	SAR Test Engineer	林格
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: August 31, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60275 Page 1 of 11

Rev.01

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

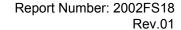
TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis


Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)". July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z19-60275 Page 2 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Probe EX3DV4

SN: 3977

Calibrated: August 30, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z19-60275 Page 3 of 11

Rev.01

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3977

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.53	0.58	0.51	±10.0%
DCP(mV) ^B	102.2	101.8	102.5	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc ^E
	System Name		dB	dBõV		dB	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	182.0	±2.4%
		Υ	0.0	0.0	1.0		194.2	7
		Z	0.0	0.0	1.0		182.6	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60275

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

EUncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Rev.01

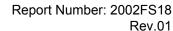
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3977

Calibration Parameter Determined in Head Tissue Simulating Media


f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.19	10.19	10.19	0.40	0.80	±12.1%
835	41.5	0.90	9.79	9.79	9.79	0.16	1.32	±12.1%
900	41.5	0.97	9.74	9.74	9.74	0.18	1.33	±12.1%
1750	40.1	1.37	8.47	8.47	8.47	0.22	1.05	±12.1%
1900	40.0	1.40	8.24	8.24	8.24	0.25	1.04	±12.1%
2000	40.0	1.40	8.31	8.31	8.31	0.21	1.05	±12.1%
2450	39.2	1.80	7.65	7.65	7.65	0.62	0.70	±12.1%
2600	39.0	1.96	7.43	7.43	7.43	0.53	0.80	±12.1%
5250	35.9	4.71	5.57	5.57	5.57	0.50	1.15	±13.3%
5600	35.5	5.07	4.81	4.81	4.81	0.50	1.30	±13.3%
5750	35.4	5.22	5.06	5.06	5.06	0.50	1.30	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60275

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

 $^{^{}G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

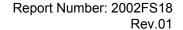
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3977

Calibration Parameter Determined in Body Tissue Simulating Media

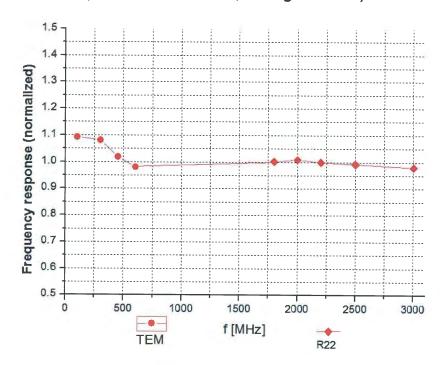

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.20	10.20	10.20	0.16	1.48	±12.1%
835	55.2	0.97	9.83	9.83	9.83	0.21	1.29	±12.1%
900	55.0	1.05	9.80	9.80	9.80	0.24	1.14	±12.1%
1750	53.4	1.49	8.18	8.18	8.18	0.21	1.10	±12.1%
1900	53.3	1.52	7.89	7.89	7.89	0.23	1.09	±12.1%
2000	53.3	1.52	7.91	7.91	7.91	0.20	1.18	±12.1%
2450	52.7	1.95	7.69	7.69	7.69	0.64	0.76	±12.1%
2600	52.5	2.16	7.34	7.34	7.34	0.54	0.83	±12.1%
5250	48.9	5.36	5.00	5.00	5.00	0.50	1.20	±13.3%
5600	48.5	5.77	4.38	4.38	4.38	0.50	1.30	±13.3%
5750	48.3	5.94	4.46	4.46	4.46	0.50	1.40	±13.3%

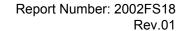
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60275 Page 6 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

 $^{^{}G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

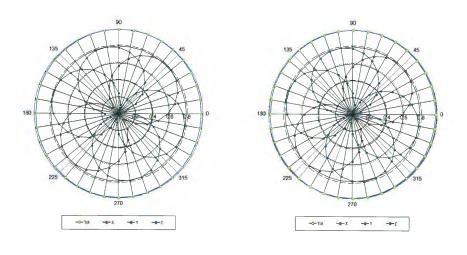


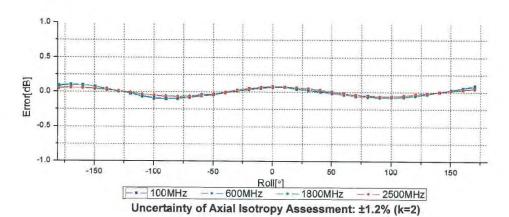

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

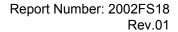
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z19-60275 Page 7 of 11



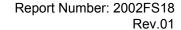


Receiving Pattern (Φ), θ =0°


f=600 MHz, TEM

f=1800 MHz, R22

Certificate No: Z19-60275 Page 8 of 11

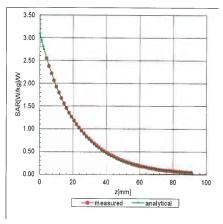


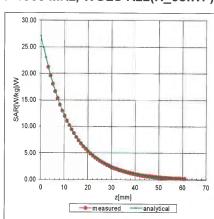
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) 10° 10⁵ Input Signal[µV] 104 10 10² 10¹ 10-2 10° 10 10 10² 10³ SAR[mW/cm3] not compensated --- compensated Error[dB] -2 SAR[mW/cm³] 10-2 not compensated compensated

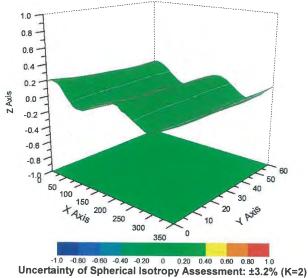
Uncertainty of Linearity Assessment: ±0.9% (k=2)
Certificate No: Z19-60275

Page 9 of 11

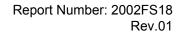

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com


Http://www.chinattl.cn Http://www.chinattl.cn

Conversion Factor Assessment


f=750 MHz, WGLS R9(H_convF)

f=1900 MHz, WGLS R22(H_convF)



Deviation from Isotropy in Liquid

Certificate No: Z19-60275 Page 10 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3977

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	27.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Rev.01

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client ATL (Auden)

Certificate No: DAE4-779_Nov19

Accreditation No.: SCS 0108

	ERTIFICATE		707-10
Object	DAE4 - SD 000 D	04 BM - SN: 779	
Calibration procedure(s)	QA CAL-06.v29 Calibration proces	dure for the data acquisition elec	tronics (DAE)
Calibration date:	November 29, 20	19	
		nal standards, which realize the physical uni bbability are given on the following pages an	
		representative facility: environment temperature (22 \pm 3)°C	
	FE critical for calibration)		
Calibration Equipment used (M&T	L Childai for Calibration)		
Calibration Equipment used (M&T Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	2)	Cal Date (Certificate No.) 03-Sep-19 (No:25949)	Scheduled Calibration Sep-20
Primary Standards Keithley Multimeter Type 2001	ID # SN: 0810278	03-Sep-19 (No:25949)	Sep-20
Primary Standards	ID # SN: 0810278	03-Sep-19 (No:25949) Check Date (in house)	Sep-20 Scheduled Check
Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID # SN: 0810278 ID # SE UWS 053 AA 1001	03-Sep-19 (No:25949)	Sep-20
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	03-Sep-19 (No:25949) Check Date (in house) 07-Jan-19 (in house check)	Sep-20 Scheduled Check In house check: Jan-20
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	03-Sep-19 (No:25949) Check Date (in house) 07-Jan-19 (in house check)	Sep-20 Scheduled Check In house check: Jan-20 In house check: Jan-20
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID# SN: 0810278 ID# SE UWS 053 AA 1001 SE UMS 006 AA 1002	03-Sep-19 (No:25949) Check Date (in house) 07-Jan-19 (in house check) 07-Jan-19 (in house check)	Sep-20 Scheduled Check In house check: Jan-20 In house check: Jan-20
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name	03-Sep-19 (No:25949) Check Date (in house) 07-Jan-19 (in house check) 07-Jan-19 (in house check)	Sep-20 Scheduled Check In house check: Jan-20 In house check: Jan-20

Certificate No: DAE4-779_Nov19

Page 1 of 5

Rev.01

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

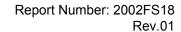
Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-779_Nov19

Page 2 of 5

Rev.01


DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: $1LSB = 6.1 \mu V$, full range = $-100...+300 \ mV$
Low Range: 1LSB = 61 nV, full range = $-100...+300 \ mV$
DASY measurement parameters: Auto Zero Time: $3 \sec$; Measuring time: $3 \sec$

Calibration Factors	Х	Υ	Z
High Range	404.527 ± 0.02% (k=2)	403.769 ± 0.02% (k=2)	403.988 ± 0.02% (k=2)
Low Range	3.97165 ± 1.50% (k=2)	3.98100 ± 1.50% (k=2)	3.99627 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	233.0 ° ± 1 °

Certificate No: DAE4-779_Nov19

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	200036.99	0.85	0.00
Channel X	+ Input	20007.02	1.21	0.01
Channel X	- Input	-20003.80	2.20	-0.01
Channel Y	+ Input	200037.82	1.95	0.00
Channel Y	+ Input	20005.28	-0.38	-0.00
Channel Y	- Input	-20004.26	1.91	-0.01
Channel Z	+ Input	200035.48	-0.16	-0.00
Channel Z	+ Input	20006.67	1.09	0.01
Channel Z	- Input	-20004.22	2.00	-0.01

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2001.61	0.29	0.01
Channel X	+ Input	200.85	-0.40	-0.20
Channel X	- Input	-199.04	-0.38	0.19
Channel Y	+ Input	2002.24	1.07	0.05
Channel Y	+ Input	199.39	-1.64	-0.81
Channel Y	- Input	-199.36	-0.53	0.26
Channel Z	+ Input	2001.65	0.42	0.02
Channel Z	+ Input	200.80	-0.22	-0.11
Channel Z	- Input	-200.15	-1.34	0.67

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.33	-5.00
	- 200	5.02	3.31
Channel Y	200	15.12	14.18
	- 200	-16.14	-16.91
Channel Z	200	3.47	3.28
	- 200	-5.28	-5.22

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-1.38	-3.57
Channel Y	200	10.71	-	-0.67
Channel Z	200	7.53	8.36	-

Certificate No: DAE4-779_Nov19

Page 4 of 5

Rev.01

4. AD-Converter Values with inputs shorted DASY measurement parameters; Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15593	13061
Channel Y	15851	16662
Channel Z	16207	16263

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.89	-2.31	0.36	0.54
Channel Y	-1.14	-3.53	0.14	0.65
Channel Z	-0.90	-2.16	0.62	0.47

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Tower Consumption (Typical values for information)						
Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)			
Supply (+ Vcc)	+0.01	+6	+14			
Supply (- Vcc)	-0.01	-8	-9			

Certificate No: DAE4-779_Nov19 Page 5 of 5

Rev.01

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

TN_EH190306AE DAE4.docx

07.03.2019