

SAR Test Report

Product Name: Eee PC

Model No. : Eee PC 1015T

FCC ID : MSQ15TNE785

IC ID : 3568A-15TNE785

Applicant: ASUSTEK COMPUTER INC.

Address: 4FL., NO.150, Li-Te Rd., Peitou, Taipei, Taiwan, R. O. C

Date of Receipt: Aug. 19, 2010

Date of Test : Aug. 19, 2010 ~ Aug. 22, 2010

Issued Date : Aug. 23, 2010

Report No. : 108S013R-HPUS-P03V01

Report Version: V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of Quie Tek Corporation.

Test Report Certification

Issued Date: Aug. 23, 2010

Report No: 108S013R-HPUS-P03V01

QuieTek

Product Name Eee PC

Applicant ASUSTEK COMPUTER INC.

Address 4FL., NO.150, Li-Te Rd., Peitou, Taipei, Taiwan, R. O. C

Manufacturer PROTEK (Shanghai) Limited

NO.3768 Xiu Yan Rd.Kang Qiao Town, PuDong Dist, Address

Shang Hai

FCC ID MSQ15TNE785

IC 3568A-15TNE785

Model No. Eee PC 1015T

Trade Name **ASUS EUT Voltage** 19Vdc

FCC OET65 Supplement C June 2001 Applicable Standard

IEEE Std. 1528-2003,

47CFR § 2.1093, RSS102 Issue 4

Test Result Max. SAR Measurement (1g)

0.026 W/kg

Performed Location Suzhou EMC laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng

Hi-Tech Development Zone, Suzhou, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392, IC Lab Code: 4075B

Documented By

(Engineering ADM: Alice Ni)

Tested By

Marlinchen

(Engineering Supervisor: Marlin Chen)

Approved By

(Engineering Manager: Dream Cao)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited by the following accreditation Bodies in compliance with ISO 17025, EN 45001 and Guide 25:

Taiwan R.O.C. : BSMI, NCC, TAF

Germany : TUV Rheinland

Norway : Nemko, DNV USA : FCC, NVLAP

Japan : VCCI

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://tw.quietek.com/modules/myalbum/

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C.

LinKou Testing Laboratory:

Suzhou Testing Laboratory:

TABLE OF CONTENTS

Descr	ription	Page
1. Ge	eneral Information	6
1.1.	EUT Description	6
1.2.	Test Environment	6
2. SA	AR Measurement System	7
2.1.	DASY5 System Description	7
2.1	1.1. Applications	8
2.	1.2. Area Scans	8
2.1	1.3. Zoom Scan (Cube Scan Averaging)	8
2.1	1.4. Uncertainty of Inter-/Extrapolation and Averaging	8
2.2.		
	2.1. Isotropic E-Field Probe Specification	
2.3.	Boundary Detection Unit and Probe Mounting Device	
2.4.	DATA Acquisition Electronics (DAE) and Measurement Server	
2.5.	Robot	
2.6.	Light Beam Unit	
2.7.	Device Holder	
2.8.	SAM Twin Phantom	
3. Tis	ssue Simulating Liquid	13
3.1.	The composition of the tissue simulating liquid	13
3.2.	Tissue Calibration Result	13
3.3.	Tissue Dielectric Parameters for Head and Body Phantoms	14
4. SA	AR Measurement Procedure	15
4.1.	SAR System Validation	15
4.1	1.1. Validation Dipoles	15
4.1	1.2. Validation Result	15
4.2.	SAR Measurement Procedure	16
5. SA	AR Exposure Limits	17
6. Te	st Equipment List	18
7. Me	easurement Uncertainty	19
8. Co	onducted Power Measurement	20
9. Te	st Results	21

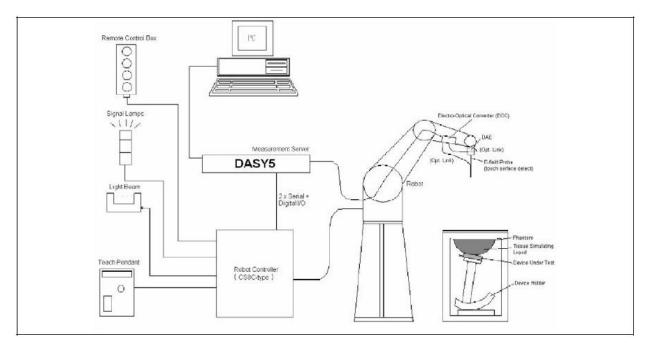
9.1. SAR Te	est Results Summary	21
Appendix A. SA	AR System Validation Data	22
Appendix B. SA	AR measurement Data	23
Appendix D. Pro	obe Calibration Data	30
Appendix E. Dip	pole Calibration Data	41

1. General Information

1.1. EUT Description

Product Name	Eee PC
FCC ID	MSQ15TNE785
IC	3568A-15TNE785
Trade Name	Asus
Model No.	Eee PC 1015T
Wireless Module Name	AW-NE785H
Frequency Range	802.11b/g/n(20MHz): 2412~2462MHz
	802.11n(40MHz): 2422~2452MHz
Number of Channel	802.11b/g/n(20MHz): 11
	802.11n(40MHz): 7
Type of Modulation	DSSS/OFDM
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Delivery	1*Tx + 1*Rx
Antenna Type	PIFA
Peak Antenna Gain	1.63dBi for 2.4GHz band
Max. Output Power	21.56dBm
(Conducted)	
Max. Output Power	23.02dBm
(Radiated)	

1.2. Test Environment


Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.3± 2
Humidity (%RH)	30-70	52

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

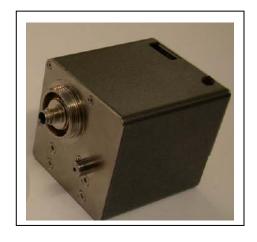
SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4		
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)		
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	/	
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm		
Application	High precision dosimetric measurements in any (e.g., very strong gradient fields). Only procompliance testing for frequencies up to 6 GHz will 30%.	bbe which enables	

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.



2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	900MHz	1800MHz	2450MHz	2450MHz
(% Weight)	Head	Head	Head	Body
Water			46.7	73.2
Salt			0.00	0.04
Sugar			0.00	0.00
HEC			0.00	0.00
Preventol			0.00	0.00
DGBE			53.3	26.7

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

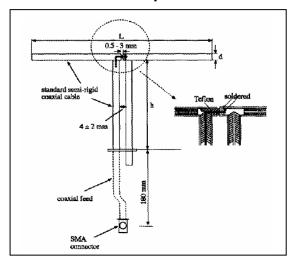
Head Tissue Simulant Measurement					
Frequency	Description	Dielectric Pa	arameters	Tissue Temp.	
[MHz]	Description	ε _r	σ [s/m]	[°C]	
	Reference result	39.20	1.80	N/A	
2450MHz	± 5% window	37.24 to 41.16	1.71 to 1.89	IN/A	
				•	

Body Tissue Simulant Measurement					
Frequency	Description	Dielectric P	arameters	Tissue Temp.	
[MHz]	Description	8 _r	σ [s/m]	[°C]	
	Reference result	52.7	1.95	N/A	
2450MHz	± 5% window	50.07 to 55.34	1.85 to 2.05	IN/A	
	23-Aug-10	52.7	1.98	20.1	
2412 MHz	Low channel	52.8	1.93	20.1	
2437 MHz	Mid channel	52.7	1.96	20.1	
2462 MHz	High channel	52.6	2.00	20.1	

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Во	dy
(MHz)	٤r	σ (S/m)	€ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00


(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

4.1.2. Validation Result

System Perfo	System Performance Check at 2450MHz						
Validation Kit	Validation Kit: ASL-D-2450-S-2						
Frequency [MHz] Description SAR [w/kg] SAR [w/kg] Tissue Temp							
2450 MHz	Reference result ± 10% window	51.6 46.44 to 56.76	24.2 21.78 to 26.62	N/A			
	23-Aug-10	53.2	23.84	20.1			
Note: All SAR values are normalized to 1W forward power.							

4.2. SAR Measurement Procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Instrument	Manufacturer Model No.		Serial No.	Last	Next
				Calibration	Calibration
Stäubli Robot TX60L	Stäubli	TX60L	TX60L F10/5C90A1/A/01		only once
Controller	Stäubli	SP1	S-0034	Mar. 2010	only once
DASY5 Reference Dipole 2450MHz	Speag	D2450V2	839	Mar. 2010	Mar. 2012
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A	N/A
Data	Speag	DAE4	1220	Mar. 2010	Mar. 2011
Acquisition Electronic					
E-Field Probe	Speag	EX3DV4	3710	Mar. 2010	Mar. 2011
SAR Software	Speag	DASY5	V5.2 Build 162	N/A	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-28	N/A	N/A
Directional Coupler	Agilent	778D	20160	N/A	N/A
Universal Radio	R&S	CMU 200	117088	Jul. 2010	Jul. 2011
Communication Tester					
Vector Network	Agilent	E5071C	MY48367267	Mar. 2010	Mar. 2011
Signal Generator	Agilent	E4438C	MY49070163	Apr. 2010	Apr. 2011
Power Meter	Anritsu	ML2495A	0905006	Jan. 2010	Jan. 2011
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	Jan. 2010	Jan. 2011

7. Measurement Uncertainty

DASY5 Uncertainty									
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)	
	value	Dist.		1g	10g	Unc.	Unc.	Veff	
						(1g)	(10g)		
Measurement System		•	•	•	•	•		•	
Probe Calibration	±5.5%	N	1	1	1	±5.5%	±5.5%	∞	
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞	
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞	
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞	
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞	
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞	
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞	
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞	
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞	
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞	
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞	
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞	
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞	
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞	
Test Sample Related		•	•	•	•	•		•	
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145	
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5	
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞	
Phantom and Setup									
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞	
Liquid Conductivity	±5.0%	R	6	0.64	0.43	±1.8%	±1.2%	∞	
(target)	±3.0 /6	K	√3	0.04	0.43	±1.076	±1.2/0	~	
Liquid Conductivity	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞	
(meas.)	12.570	IN	<u> </u>	0.04	0.43	11.070	11.170		
Liquid Permittivity	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞	
(target)		<u> </u>	ΑÀ	0.0	0.40	21.1 /0	±1.∓70		
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞	
(meas.)	070		•	0.0	0.10	_ 1.5 /6	/ 0		
Combined Std. Uncertain	nty					±10.7%	±10.5%	387	
Expanded STD Uncertain	inty					±21.5%	±21.0%		

8. Conducted Power Measurement

Test Mode	Channel No.	Frequency	Conducted Power	
		(MHz)	(dBm)	
	01	2412	20.89	
802.11b	06	2437	19.98	
	11	2462	19.20	
	01	2412	18.34	
802.11g	06	2437	21.05	
	11	2462	17.48	
	01	2412	17.63	
802.11n(20M)	06	2437	21.56	
	11	2462	17.74	
	03	2422	11.87	
802.11n(40M)	06	2437	21.37	
	09	2452	14.26	

9. Test Results

9.1. SAR Test Results Summary

SAR MEASUREMENT									
Ambient Ten	nperature (°C)	: 21.4 ±2		Relative Hun	nidity (%): 5	5			
Liquid Temperature (°C): 20.1 ±2 Depth of Liquid (cm):>15									
Product: Eee PC									
Test Mode: 8	Test Mode: 802.11b								
Test	Antenna	Frequ	Conducted	SAR 1g	Limit				
Position Body	Position	Channel	MHz	Power (dBm)	(W/kg)	(W/kg)			
Bottom	Fixed	6	2437	19.98	0.024	1.6			
Test Mode: 8	Test Mode: 802.11g								
Bottom	Fixed	1	2412	18.34	0.025	1.6			
Bottom	Fixed	6	2437	21.05	0.026	1.6			
Bottom	Fixed	11	2462	17.48	0.026	1.6			
Test Mode: 8	02.11n (20M)								
Bottom	Fixed	6	2437	21.56	0.026	1.6			
Test Mode: 8	Test Mode: 802.11n (40M)								
Bottom	Fixed	6	2437	21.37	0.025	1.6			

Appendix A. SAR System Validation Data

Date/Time: 23-Aug-2010

Test Laboratory: QuieTek Lab

SystemPerformanceCheck-D2450 Body

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1: 1;

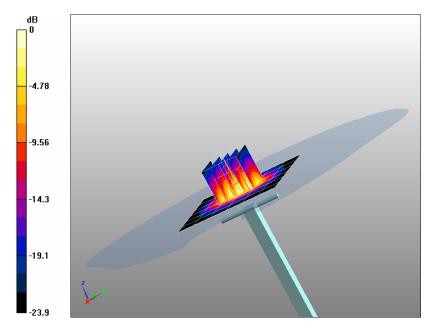
Medium parameters used: f = 2450 MHz; $\sigma = 1.88$ mho/m; $\epsilon r = 38.2$; $\rho = 1000$ kg/m3. Phantom section: Flat

Section. Ambient temperature ($^{\circ}$): 21.4, Liquid temperature ($^{\circ}$): 20.1. Input power = 250mW.

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(6.96, 6.96, 6.96); Calibrated: 05/03/2010

• Sensor-Surface: 2mm (Mechanical Surface Detection)


Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM1; Type: SAM; Serial: TP1561

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

SAM1 System Performance Check at Frequencies at 2450 MHz/d=10mm, Pin=xx mW, dist=2.0mm (EX-Probe) 3/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 15.3 mW/g

SAM1 System Performance Check at Frequencies at 2450 MHz/d=10mm, Pin=xx mW, dist=2.0mm (EX-Probe) 3/Zoom Scan (7x7x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 106.5 V/m; Power Drift = 0.00896 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 13.3 mW/g; SAR(10 g) = 5.96 mW/g Maximum value of SAR (measured) = 20.8 mW/g

0 dB = 20.8 mW/g

Appendix B. SAR measurement Data

Date/Time: 23-Aug-2010

Test Laboratory: QuieTek Lab

802.11b 2437MHz

DUT: Eee PC; Type: Eee PC 1015T

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1;

Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 2.03$ mho/m; $\epsilon r = 53.4$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

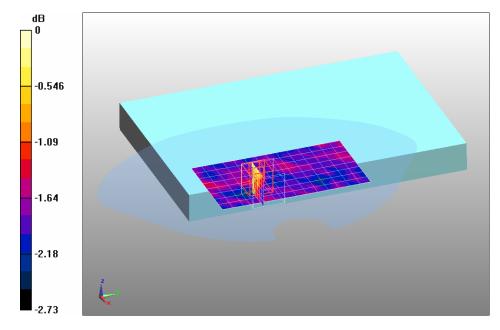
Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/Notebook/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.020 mW/g

Configuration/Notebook/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.78 V/m; Power Drift = 0.037 dB Peak SAR (extrapolated) = 0.027 W/kg

SAR(1 g) = 0.024 mW/g; SAR(10 g) = 0.022 mW/g Maximum value of SAR (measured) = 0.027 mW/g

0 dB = 0.027 mW/g

Test Laboratory: QuieTek Lab

802.11g 2412MHz

DUT: Eee PC; Type: Eee PC 1015T

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 2.01$ mho/m; $\epsilon = 53.5$; $\rho = 1000$

kg/m3; Phantom section: Flat Section

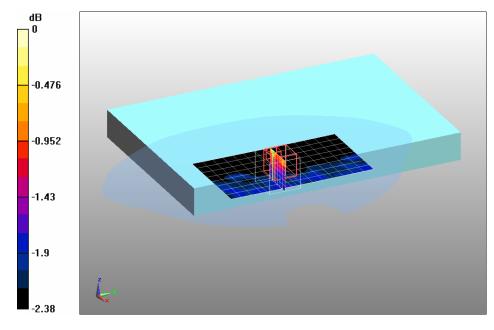
Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010


Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Notebook/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.020 mW/g

Configuration/Notebook/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.98 V/m; Power Drift = -0.101 dB Peak SAR (extrapolated) = 0.029 W/kg

SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.022 mW/g Maximum value of SAR (measured) = 0.029 mW/g

0 dB = 0.029 mW/g

Test Laboratory: QuieTek Lab

802.11g 2437MHz

DUT: Eee PC; Type: Eee PC 1015T

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1;

Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 2.03$ mho/m; $\epsilon r = 53.4$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

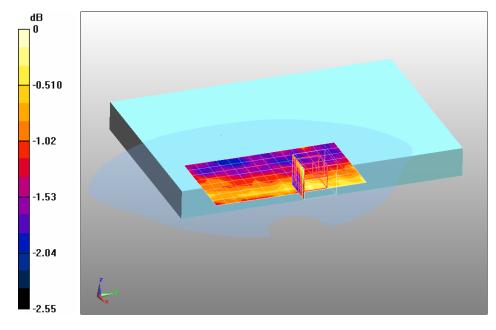
Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/Notebook/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.027 mW/g

Configuration/Notebook/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.17 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.029 W/kg

SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.023 mW/g Maximum value of SAR (measured) = 0.029 mW/g

0 dB = 0.029 mW/g

Test Laboratory: QuieTek Lab

802.11g 2462MHz

DUT: Eee PC; Type: Eee PC 1015T

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:1;

Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.05$ mho/m; $\epsilon r = 53.2$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

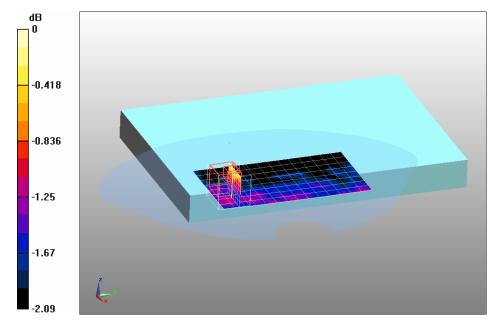
Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/Notebook/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.022 mW/g

Configuration/Notebook/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.97 V/m; Power Drift = -0.087 dB Peak SAR (extrapolated) = 0.029 W/kg

SAR(1 g) = 0.026 \text{ mW/g}; SAR(10 g) = 0.023 \text{ mW/g} Maximum value of SAR (measured) = 0.029 mW/g

0 dB = 0.029 mW/g

Test Laboratory: QuieTek Lab

802.11n (20) 2437MHz

DUT: Eee PC; Type: Eee PC 1015T

Communication System: CW; Communication System Band: Wi-Fi (2412-2462MHz); Duty Cycle: 1:8.3;

Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 2.03$ mho/m; $\epsilon r = 53.4$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

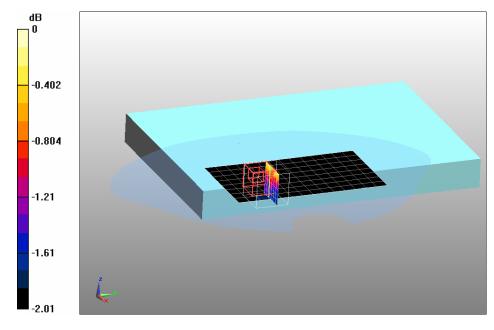
Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

• Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/Notebook/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.019 mW/g

Configuration/Notebook/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.95 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 0.031 W/kg

SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.024 mW/g Maximum value of SAR (measured) = 0.029 mW/g

0 dB = 0.029 mW/g

Test Laboratory: QuieTek Lab

802.11n (40) 2437MHz

DUT: Eee PC; Type: Eee PC 1015T

Communication System: CW; Communication System Band: Wi-Fi(2412-2462MHz); Duty Cycle: 1:8.3;

Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 2.03$ mho/m; $\epsilon r = 53.4$; $\rho = 1000$ kg/m3;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

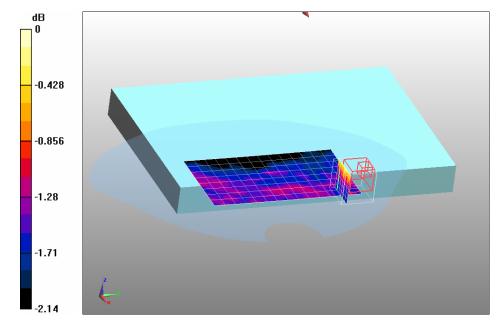
Probe: EX3DV4 - SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 09/03/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

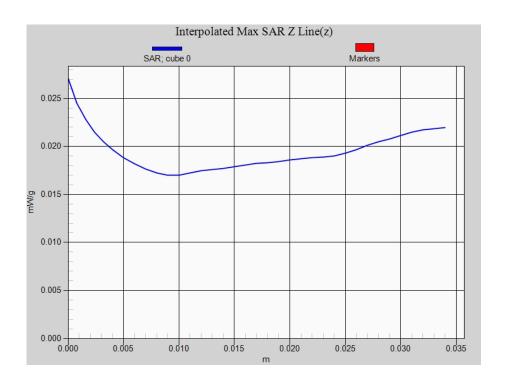
Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/Notebook/Area Scan (9x15x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.022 mW/g

Configuration/Notebook/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.96 V/m; Power Drift = 0.045 dB Peak SAR (extrapolated) = 0.028 W/kg


SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.022 mW/g Maximum value of SAR (measured) = 0.028 mW/g

0 dB = 0.028 mW/g

802.11g EUT Bottom, Z-Axis Plot

Appendix D. Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3710_Mar10

Accreditation No.: SCS 108

Quietek (Auden) Client **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3710 QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date March 5, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Primary Standards ID# Scheduled Calibration GB41293874 Power meter E4419B 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Apr-10 Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Apr-10 SN: S5054 (3c) Reference 3 dB Attenuator 31-Mar-09 (No. 217-01026) Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013 Dec09) Dec-10 DAE4 SN: 660 29-Sep-09 (No. DAE4-660_Sep09) Sep-10 Secondary Standards Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Function Signature Calibrated by: Katja Pokovic Technical Manager Niels Kuster Approved by: Quality Manager Issued: March 5, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3710_Mar10

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- i) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3710_Mar10 Page 2 of 11

Probe EX3DV4

SN:3710

Manufactured: Calibrated:

July 21, 2009 March 5, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3710_Mar10

Page 3 of 11

DASY - Parameters of Probe: EX3DV4 SN:3710

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.48	0.58	0.60	± 10.1%
DCP (mV) ^B	90.8	94.4	91.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300	± 1.5%
			Y	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of NormX,Y,Z do not affect the E^-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value

DASY - Parameters of Probe: EX3DV4 SN:3710

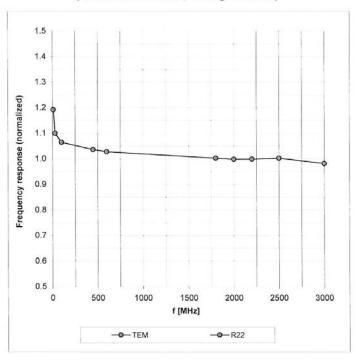
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	\pm 50 / \pm 100	$41.5 \pm 5\%$	$0.90 \pm 5\%$	8.83	8.83	8.83	0.68	0.64 ± 11.0%
900	± 50 / ± 100	41.5 ± 5%	$0.97 \pm 5\%$	8.73	8.73	8.73	0.83	0.58 ± 11.0%
1810	±50/±100	40.0 ± 5%	1.40 ± 5%	7.69	7.69	7.69	0.62	0.63 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	$1.40 \pm 5\%$	7.35	7.35	7.35	0.70	0.60 ± 11.0%
2450	± 50 / ± 100	$39.2 \pm 5\%$	1.80 ± 5%	6.96	6.96	6.96	0.46	0.75 ± 11.0%
2600	$\pm 50 / \pm 100$	$39.0 \pm 5\%$	1.96 ± 5%	6.88	6.88	6.88	0.31	0.92 ± 11.0%
3500	$\pm 50 / \pm 100$	$37.9 \pm 5\%$	2.91 ± 5%	6.64	6.64	6.64	0.33	1.18 ± 13.1%
5200	± 50 / ± 100	$36.0 \pm 5\%$	$4.66 \pm 5\%$	4.92	4.92	4.92	0.40	1.90 ± 13.1%
5300	$\pm 50 / \pm 100$	35.9 ± 5%	$4.76 \pm 5\%$	4.60	4.60	4.60	0.40	1.90 ± 13.1%
5500	$\pm 50 / \pm 100$	35.6 ± 5%	$4.96 \pm 5\%$	4.42	4.42	4.42	0.50	1.90 ± 13.1%
5600	$\pm 50 / \pm 100$	$35.5 \pm 5\%$	$5.07 \pm 5\%$	4.42	4.42	4.42	0.40	1.90 ± 13.1%
5800	± 50 / ± 100	$35.3 \pm 5\%$	5.27 ± 5%	4.26	4.26	4.26	0.50	1.90 ± 13.1%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

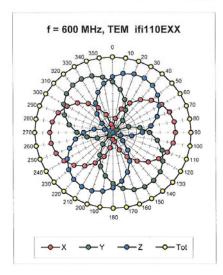
DASY - Parameters of Probe: EX3DV4 SN:3710

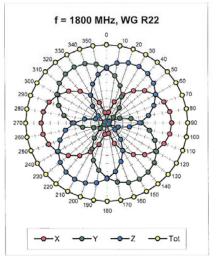
Calibration Parameter Determined in Body Tissue Simulating Media

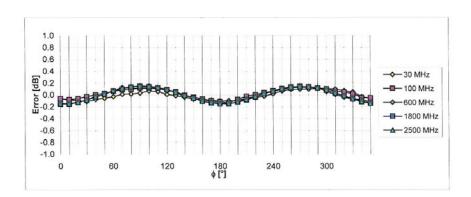

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	$0.97 \pm 5\%$	8.95	8.95	8.95	0.84	0.62 ± 11.0%
900	± 50 / ± 100	$55.0 \pm 5\%$	$1.05 \pm 5\%$	8.80	8.80	8.80	0.65	0.69 ± 11.0%
1810	± 50 / ± 100	$53.3 \pm 5\%$	1.52 ± 5%	7.71	7.71	7.71	0.57	0.72 ± 11.0%
1950	± 50 / ± 100	$53.3 \pm 5\%$	1.52 ± 5%	7.45	7.45	7.45	0.38	0.87 ± 11.0%
2450	± 50 / ± 100	$52.7 \pm 5\%$	$1.95 \pm 5\%$	7.00	7.00	7.00	0.32	0.95 ± 11.0%
2600	± 50 / ± 100	$52.5\pm5\%$	$2.16 \pm 5\%$	6.90	6.90	6.90	0.47	0.79 ± 11.0%
3500	± 50 / ± 100	$51.3 \pm 5\%$	$3.31 \pm 5\%$	6.19	6.19	6.19	0.31	1.44 ± 13.1%
5200	± 50 / ± 100	$49.0 \pm 5\%$	5.30 ± 5%	4.13	4.13	4.13	0.50	1.90 ± 13.1%
5300	± 50 / ± 100	$48.5 \pm 5\%$	$5.42\pm5\%$	3.91	3.91	3.91	0.55	1.90 ± 13.1%
5500	\pm 50 / \pm 100	$48.6\pm5\%$	$5.65\pm5\%$	3.81	3.81	3.81	0.55	1.90 ± 13.1%
5600	\pm 50 / \pm 100	$48.5 \pm 5\%$	$5.77 \pm 5\%$	3.58	3.58	3.58	0.60	1.90 ± 13.1%
5800	\pm 50 / \pm 100	$48.2\pm5\%$	6.00 ± 5%	3.97	3.97	3.97	0.60	1.90 ± 13.1%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

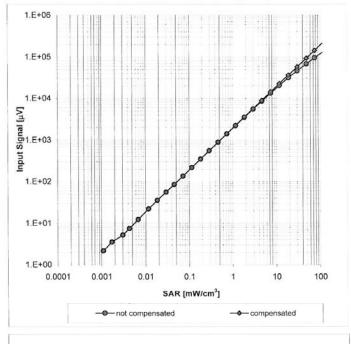

(TEM-Cell:ifi110 EXX, Waveguide: R22)

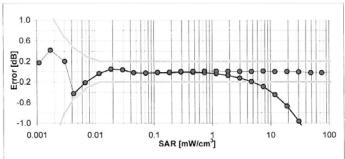



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

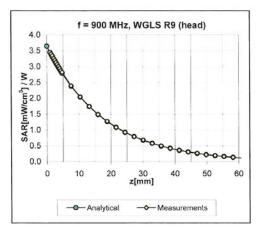
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

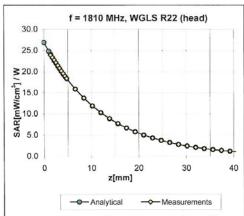

Certificate No: EX3-3710_Mar10


Page 8 of 11

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3710_Mar10

Page 9 of 11

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3710_Mar10

Page 10 of 11

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3710_Mar10

Appendix E. Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Quietek (Auden) Certificate No: D2450V2-839_Mar10

CALIBRATION CERTIFICATE Object D2450V2 - SN: 839 QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits Calibration date: March 12, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-09 (No. 217-01086) Oct-10 Power sensor HP 8481A 06-Oct-09 (No. 217-01086) Oct-10 US37292783 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 SN: 5047.2 / 06327 Type-N mismatch combination 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205_Jun09) Jun-10 DAE4 SN: 601 02-Mar-10 (No. DAE4-601_Mar10) Mar-11 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 100005 RF generator R&S SMT-06 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-09) In house check: Oct-10 Function Laboratory Technician Calibrated by: Mike Meili Approved by: Katja Pokovic Technical Manager Issued: March 18, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-839_Mar10

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-839_Mar10 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 mW / g
SAR normalized	normalized to 1W	24.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-839_Mar10 Page 3 of 9

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	22/2
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-839_Mar10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω - 0.6 jΩ	
Return Loss	- 29.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.0 Ω + 0.9 j Ω
Return Loss	- 40.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.134 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 20, 2009

DASY5 Validation Report for Head TSL

Date/Time: 12.03.2010 13:24:52

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

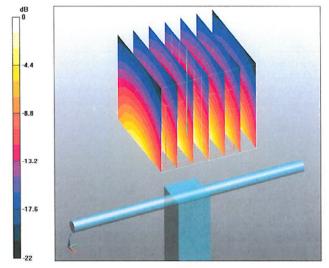
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009

· Sensor-Surface: 3mm (Mechanical Surface Detection)

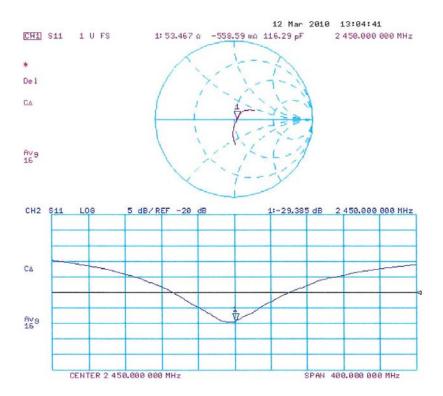
Electronics: DAE4 Sn601; Calibrated: 02.03.2010


Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.1 V/m; Power Drift = 0.060 dB Peak SAR (extrapolated) = 26.5 W/kg


SAR(1 g) = 13 mW/g; SAR(10 g) = 6.11 mW/gMaximum value of SAR (measured) = 16.5 mW/g

0 dB = 16.5 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 12.03.2010 15:25:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 54.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

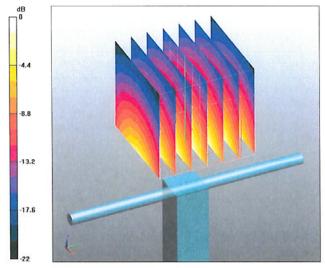
Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009

· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

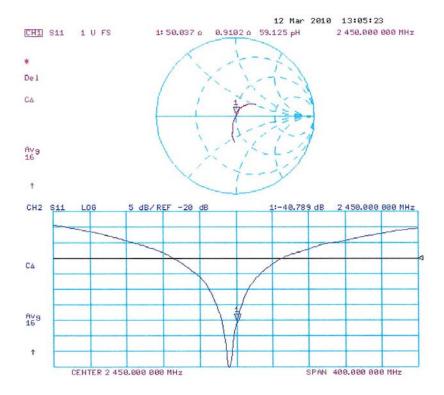
Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57


Body/d=10mm, Pin250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.9 V/m; Power Drift = -0.0047 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.06 mW/g


Maximum value of SAR (measured) = 17.2 mW/g

0 dB = 17.2 mW/g

Impedance Measurement Plot for Body TSL

