

INTERTEK TESTING SERVICES

1.2 Related Submittal(s) Grants

This is an Application for Certification of a cordless telephone system. Two transmitters are included in this Application. This specific report details the emission characteristics of each transmitter. The receivers are subject to the verification authorization process, in accordance with 15.101(b). A verification report has been prepared for the receiver sections of each device. The device is also subject to Part 68 Registration.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **"Justification Section"** of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

INTERTEK TESTING SERVICES

EXHIBIT 2
SYSTEM TEST CONFIGURATION

INTERTEK TESTING SERVICES

2.0 System Test Configuration

2.1 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions. The handset was powered by a fully charged battery.

For the measurements, the EUT is attached to a cardboard box and placed on the wooden turntable. If the base unit attaches to peripherals, they are connected and operational (as typical as possible). The handset is remotely located as far from the antenna and the base as possible to ensure full power transmission from the base. Else, the base is wired to transmit full power without modulation.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Detector function is in peak mode. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater. All emissions greater than 20 dB μ V/m are recorded.

Radiated emission measurement were performed from 30 MHz to tenth harmonics.

2.2 EUT Exercising Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

For emissions testing, the units were setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

INTERTEK TESTING SERVICES

2.3 Support Equipment List and Description

The FCC ID's for all equipment, plus descriptions of all cables used in the tested system (included inserted cards, which have grants) are:

HARDWARE:

The unit was operated standalone. An AC adapter (provided with the unit) was used to power the device. Its description is listed below.

- (1) AC adapter with two meter unshielded power cord permanently affixed.

CABLES:

- (1) Telecommunication cable with RJ11C connectors (1m, unshielded), terminated

OTHERS:

There are no special accessories necessary for compliance of this product.

INTERTEK TESTING SERVICES

2.4 Equipment Modification

Any modifications installed previous to testing by May International Ltd. will be incorporated in each production model sold/leased in the United States.

No modifications were installed by ETL Division, Intertek Testing Services Hong Kong Ltd.

All the items listed under section 2.0 of this report are confirmed by:

Confirmed by:

*C. K. Lam
Assistant Manager
Intertek Testing Services
Agent for May International Ltd.*

 _____ Signature

June 5, 1992 _____ Date

INTERTEK TESTING SERVICES

EXHIBIT 3
EMISSION RESULTS

INTERTEK TESTING SERVICES

3.0 Emission Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

INTERTEK TESTING SERVICES

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$
 RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$
 CF = Cable Attenuation Factor in dB
 AF = Antenna Factor in dB
 AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:-

$$FS = RR + LF$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$
 RR = RA - AG in $\text{dB}\mu\text{V}$
 LF = CF + AF in dB

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$$\begin{array}{ll} RA = 52.0 \text{ dB}\mu\text{V}/\text{m} & RR = 23.0 \text{ dB}\mu\text{V} \\ AF = 7.4 \text{ dB} & LF = 9.0 \text{ dB} \\ CF = 1.6 \text{ dB} & \\ AG = 29.0 \text{ dB} & \\ FS = RR + LF & \\ FS = 23 + 9 = 32 \text{ dB}\mu\text{V}/\text{m} & \end{array}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(32 \text{ dB}\mu\text{V}/\text{m})/20] = 39.8 \mu\text{V}/\text{m}$$

INTERTEK TESTING SERVICES

3.3 Radiated Emission Data - Base Unit

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Judgement : Passed by 7.7 dB

TEST PERSONNEL:

Tester Signature

Kenneth H. M. Lam, Engineer
Typed/Printed Name

June 4, 1898
Date

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : TX

Table 1, Base unit

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
V	44.000	28.3	10	16	22.3	40	-17.7
V	48.000	26.3	11	16	21.3	40	-18.7
V	52.000	28.4	11	16	23.4	40	-16.6
V	60.000	28.1	10	16	22.1	40	-17.9
V	72.000	30.4	7	16	21.4	40	-18.6
H	80.000	33.4	6	16	23.4	40	-16.6
H	108.000	26.5	13	16	23.5	43.5	-20.0
H	120.000	27.1	13	16	24.1	43.5	-19.4
H	124.000	25.5	13	16	22.5	43.5	-21.0

NOTES: 1. Peak Detector data

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.
5. The above data is the worst case among the transmit, stand-by and charging.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Kenneth H. M. Lam

FCC ID: MS5192

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : TX

Table 2, Base unit

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
V	904.902	64.3	32.0	16	80.3	94	-13.7
V	1809.801	40.2	26.5	34	32.7	54	-21.3
V	*2714.714	48.1	29.1	34	43.2	54	-10.8

NOTES: 1. Peak Detector data

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.
 - * Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Kenneth H. M. Lam

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : TX

Table 3, Base unit

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
V	905.601	65.4	32.0	16	81.4	94	-12.6
V	1811.204	42.0	26.5	34	34.5	54	-19.5
V	*2716.804	51.2	29.1	34	46.3	54	-7.7

NOTES: 1. Peak Detector data

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.

3. Negative value in the margin column shows emission below limit.

4. Horn antenna and average detector are used for the emission over 1000MHz.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Kenneth H. M. Lam

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : TX

Table 4, Base unit

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
V	906.301	66.5	32.0	16	82.5	94	-11.5
V	1812.604	41.1	26.5	34	33.6	54	-20.4
V	*2718.906	50.6	29.1	34	45.7	54	-8.3

NOTES: 1. Peak Detector data

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.

3. Negative value in the margin column shows emission below limit.

4. Horn antenna and average detector are used for the emission over 1000MHz.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

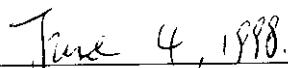
Test Engineer: Kenneth H. M. Lam

INTERTEK TESTING SERVICES

3.5 Radiated Emission Data - Handset

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

Judgement : Passed by 3.7 dB


TEST PERSONNEL:

Tester Signature

Kenneth H. M. Lam, Engineer

Typed/Printed Name

Date

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : TX

Table 5, Handset

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
V	925.603	61.2	33.0	16	78.2	94	-15.8
V	1851.206	39.8	26.5	34	32.3	54	-21.7
V	*2776.809	42.2	29.1	34	37.3	54	-16.7
H	*3702.411	50.9	32.8	34	49.7	54	-4.3
H	4628.016	39.2	34.0	34	39.2	54	-14.8

NOTES: 1. Peak Detector data

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Kenneth H. M. Lam

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : TX

Table 6, Handset

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
V	925.803	62.0	33.0	16	79.0	94	-15.0
V	1851.605	38.1	26.5	34	30.6	54	-23.4
V	*2777.408	44.3	29.1	34	39.4	54	-14.6
H	*3703.21	51.5	32.8	34	50.3	54	-3.7
H	4629.012	38.2	34.0	34	38.2	54	-15.8

NOTES: 1. Peak Detector data

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Kenneth H. M. Lam

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : TX

Table 7, Handset

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
V	927.002	62.1	33.0	16	79.1	94	-14.9
V	1854.004	40.0	26.5	34	32.5	54	-21.5
V	*2781.002	43.5	29.1	34	38.6	54	-15.4
H	*3708.009	50.4	32.8	34	49.2	54	-4.8
H	4635.011	39.1	34.0	34	39.1	54	-14.9

NOTES: 1. Peak Detector data

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

* Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Kenneth H. M. Lam

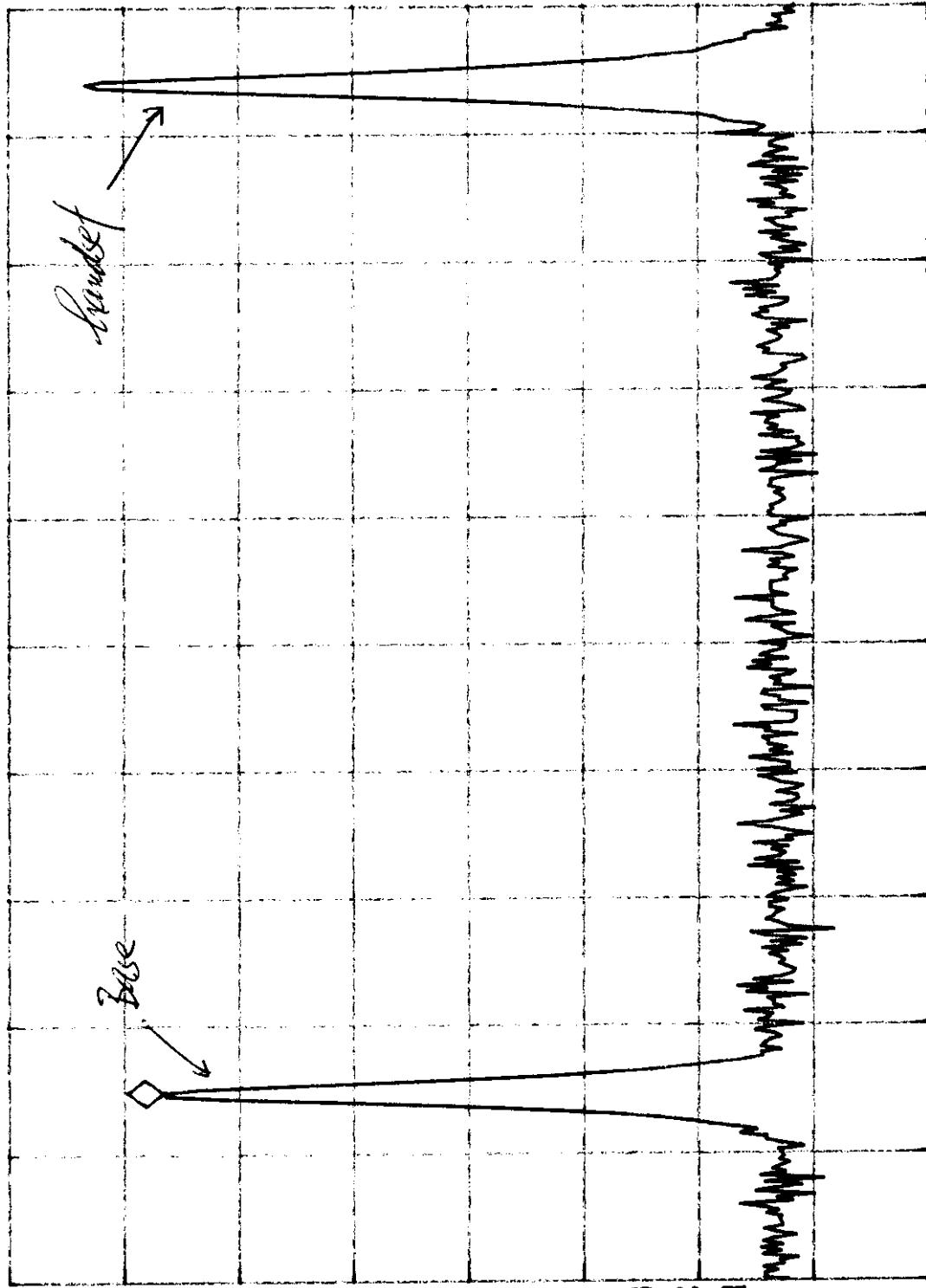
INTERTEK TESTING SERVICES

3.6 Radiated Emission on the bandedge

From the following plot, it shows that the fundamental emission is confined in the specified band. And there are shows that the emissions are at least 50 dB below the carrier level at band edge (902 and 928 MHz). It meet the requirement of section 15.249(c).

INTERTEK TESTING SERVICES

Emission Plot -Base


10

REF 97.0 dB μ V AT 10 dB

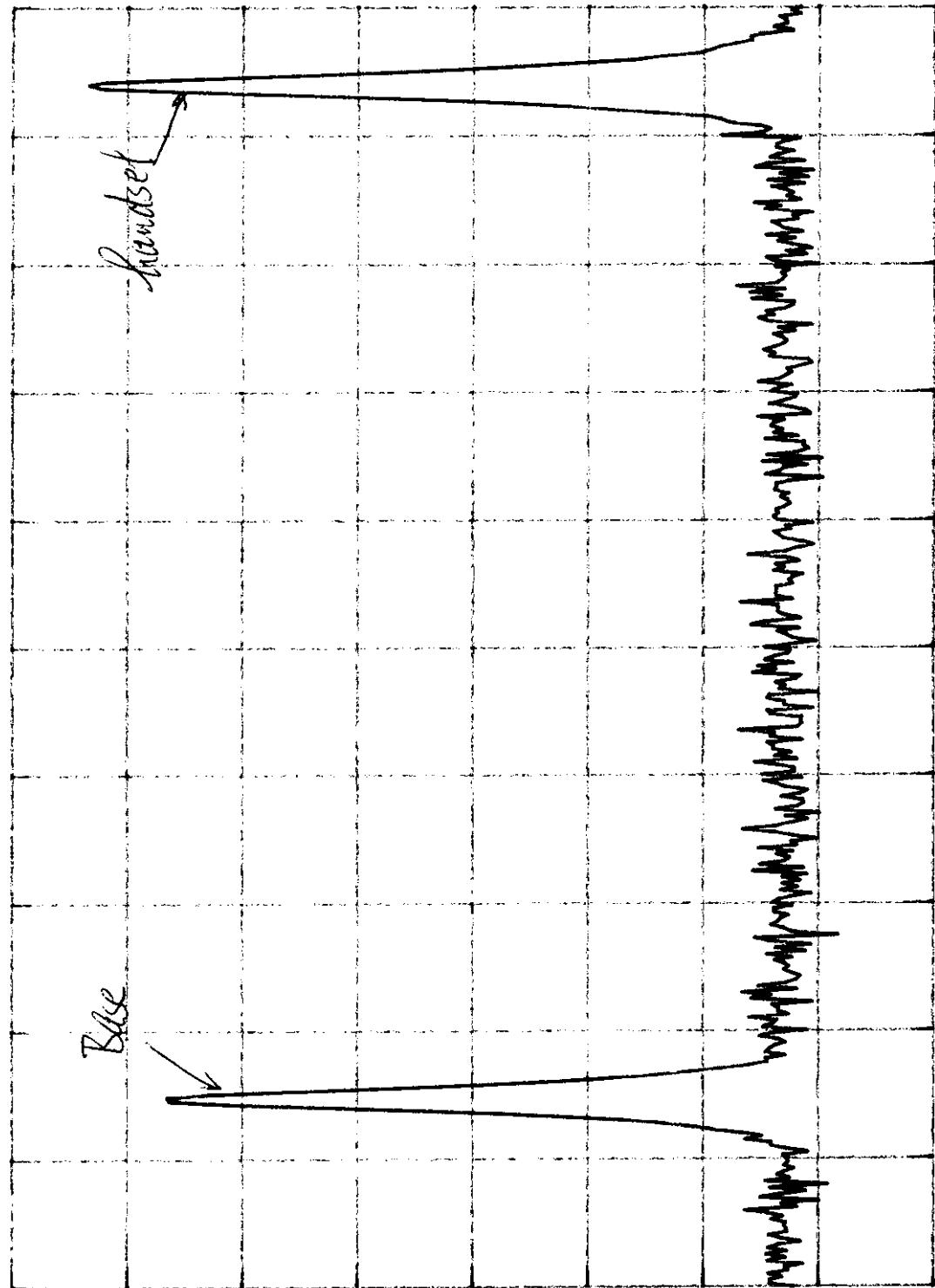
PEAK

LOG
10
dB/

MKA 905.84 MHz
83.51 dB μ V

VA SB
SC FC
CORR

START 902.00 MHz
#RES BW 100 kHz
#VBW 3 MHz


STOP 928.00 MHz
SWP 20.0 msec

Emission Plot - Handset

47

REF 97.0 dB μ V AT 10 dB

PEAK
LOG
10
dB/

START 902.00 MHz
#RES BW 100 kHz
STOP 928.00 MHz
SWP 20.0 msec

INTERTEK TESTING SERVICES

3.8 Line Conducted Emission Configuration Data

The data on the following pages list the significant emission frequencies, the limit, and the margin of compliance.

Judgement : Passed by 16.3 dB

* All readings are peak unless stated otherwise.

TEST PERSONNEL:

Tester Signature

Kenneth H. M. Lam, Engineer
Typed/Printed Name

June 4, 1998
Date

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : TX

Graph 1, Base Unit

Conducted Emissions

ITS Intertek Testing Services

ETL Testing Laboratories

Report No. 4802502

Tx

Tested by: Bond, Robert J. (Intertek)

Scan Monitoring: Range

... Frequency: 100.000000 MHz
Start: Stop: Step: 10.000000 MHz 10.000000 MHz 1.000000 MHz
100.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 1100.0 1200.0 1300.0 1400.0 1500.0 1600.0 1700.0 1800.0 1900.0 2000.0 2100.0 2200.0 2300.0 2400.0 2500.0 2600.0 2700.0 2800.0 2900.0 3000.0 3100.0 3200.0 3300.0 3400.0 3500.0 3600.0 3700.0 3800.0 3900.0 4000.0 4100.0 4200.0 4300.0 4400.0 4500.0 4600.0 4700.0 4800.0 4900.0 5000.0 5100.0 5200.0 5300.0 5400.0 5500.0 5600.0 5700.0 5800.0 5900.0 6000.0 6100.0 6200.0 6300.0 6400.0 6500.0 6600.0 6700.0 6800.0 6900.0 7000.0 7100.0 7200.0 7300.0 7400.0 7500.0 7600.0 7700.0 7800.0 7900.0 8000.0 8100.0 8200.0 8300.0 8400.0 8500.0 8600.0 8700.0 8800.0 8900.0 9000.0 9100.0 9200.0 9300.0 9400.0 9500.0 9600.0 9700.0 9800.0 9900.0 10000.0

Transmitter No.: 10000
Start: Stop: Step: 10.000000 MHz 10.000000 MHz 1.000000 MHz
100.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 1100.0 1200.0 1300.0 1400.0 1500.0 1600.0 1700.0 1800.0 1900.0 2000.0 2100.0 2200.0 2300.0 2400.0 2500.0 2600.0 2700.0 2800.0 2900.0 3000.0 3100.0 3200.0 3300.0 3400.0 3500.0 3600.0 3700.0 3800.0 3900.0 4000.0 4100.0 4200.0 4300.0 4400.0 4500.0 4600.0 4700.0 4800.0 4900.0 5000.0 5100.0 5200.0 5300.0 5400.0 5500.0 5600.0 5700.0 5800.0 5900.0 6000.0 6100.0 6200.0 6300.0 6400.0 6500.0 6600.0 6700.0 6800.0 6900.0 7000.0 7100.0 7200.0 7300.0 7400.0 7500.0 7600.0 7700.0 7800.0 7900.0 8000.0 8100.0 8200.0 8300.0 8400.0 8500.0 8600.0 8700.0 8800.0 8900.0 9000.0 9100.0 9200.0 9300.0 9400.0 9500.0 9600.0 9700.0 9800.0 9900.0 10000.0

100.0

90

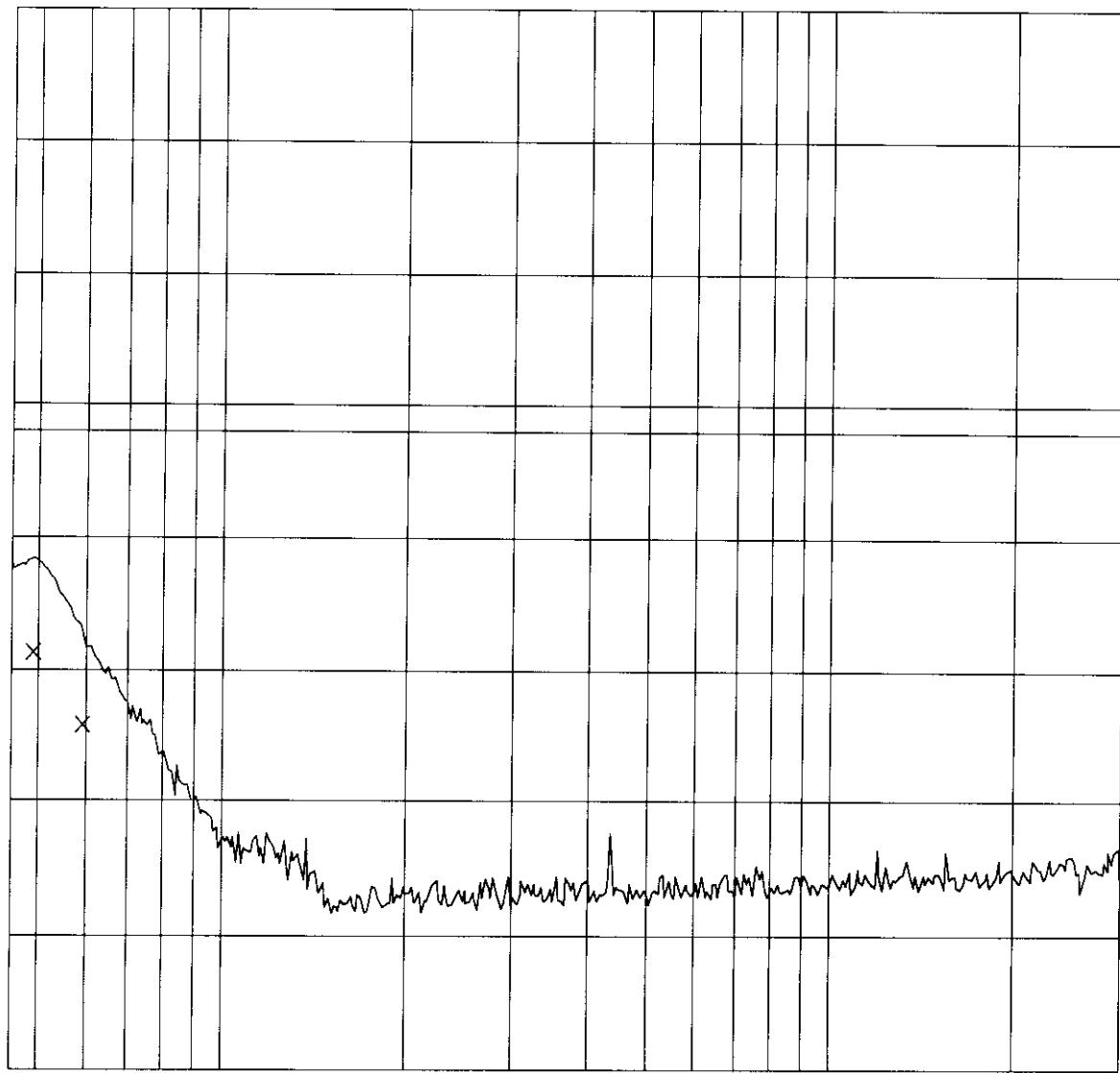
80

70

60

50

40


30

20

10

0

100.000000

PAGE 1

Ctrl. No.: N/A

FCC ID: MS5192

INTERTEK TESTING SERVICES

Company: May International Ltd
Model: Mato 915B
Mode : TX

Date of Test: 28 May, 1998

Table 8, Base Unit

Conducted Emissions

ITS Intertek Testing Services

ETL Testing Laboratories

Report No.: 9802502

TX

Tested By:Hong, Report No.:9802502

Scan Settings (1 Range)

Frequencies			Receiver Settings					
Start	Stop	Step	IF BW	Detector	M-Time	Atten	Preamp	OpRge
450k	80M	5k	10k	PK	20ms	AUTO	LN OFF	60dB

Final Measurement Results:

Frequency	QP Level	QP Limit
MHz	dBuV	dBuV
0.49000	31.2	48.0
0.59000	25.7	48.0

* limit exceeded

Ctrl. No.: N/A

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : Charging

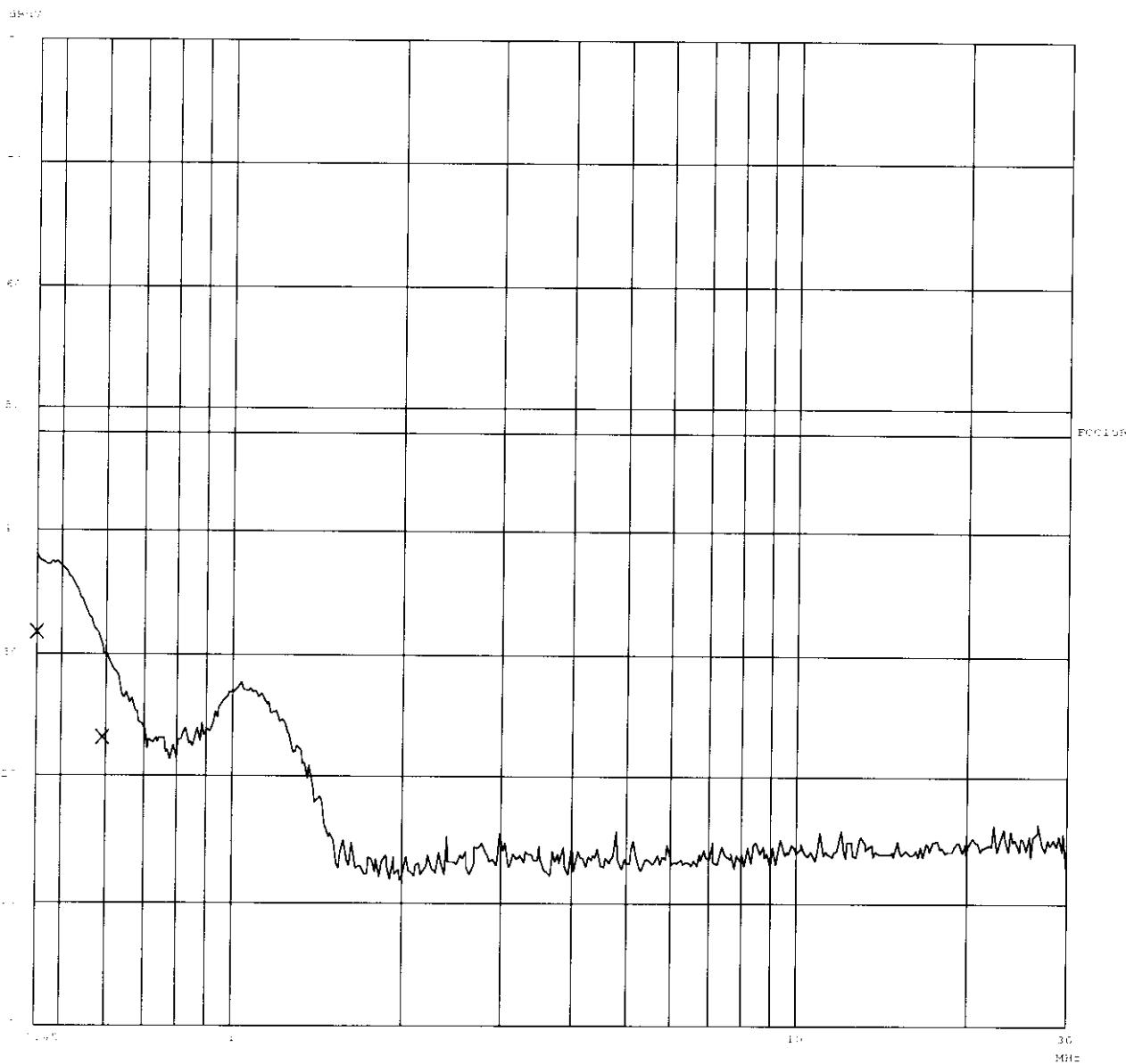
Graph 2, Base Unit

Conducted Emissions

ITS Intertek Testing Services

ETL Testing Laboratories

Charging


Report No.: 8802502

Product: Telephone Equipment Model: MS5192
Serial number: 2 Pages

Antenna: Fiberglass whip
Transmitter: 1F PW Detectors: 4 Tilted Allen Pre-Amp: 0.01dB
Filter: 3.04 Step: 1.8 FM: 0.01000000000000001 Gain: 0.0000000000000001

Initial Measurements w/ QPSK
Mean Output: 0.0000000000000001
Peak Output: 0.0000000000000001
Max Margin: 0.0000000000000001

Transducer	Hz	Step	Name
1	0.0000000000000001	0.0000000000000001	0.0000000000000001

Ctrl. No.: N/A

FCC ID: MS5192

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : Charging

Table 9, Base Unit

Conducted Emissions

ITS Intertek Testing Services

ETL Testing Laboratories

Charging

Report No.: 9802502

Tested By: Hong, Report No.: 9802502

Scan Settings (1 Range)

Frequencies			Receiver Settings						
Start	Stop	Step	IF BW	Detector	M-Time	Atten	Preamp	OpRge	
450k	30M	5k	10k	PK	20ms	AUTO	LN	OFF	60dB

Final Measurement Results:

Frequency	QP Level	QP Limit
MHz	dBuV	dBuV
0.45000	31.7	48.0
0.59000	23.2	48.0

* limit exceeded

Ctrl. No.: N/A

FCC ID: MS5192

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : Stand by

Graph 3, Base Unit

Conducted Emissions

ITS Intertek Testing Services

ETL Testing Laboratories

Stand-by

Report No.: 7802502

Tested by: Hong, Report No.: 7802502
Date: 07/20/2002

Tested for: Emergency Power Supply
Model: 100-1000W
Serial: 100-1000W
Power Settings: 100W, 200W, 300W, 400W, 500W, 600W, 700W, 800W, 900W, 1000W

Transistor No.	Start	Stop	Date
1	0	10	07/20/2002
2	0	10	07/20/2002
3	0	10	07/20/2002
4	0	10	07/20/2002
5	0	10	07/20/2002
6	0	10	07/20/2002
7	0	10	07/20/2002
8	0	10	07/20/2002
9	0	10	07/20/2002
10	0	10	07/20/2002
11	0	10	07/20/2002
12	0	10	07/20/2002
13	0	10	07/20/2002
14	0	10	07/20/2002
15	0	10	07/20/2002
16	0	10	07/20/2002
17	0	10	07/20/2002
18	0	10	07/20/2002
19	0	10	07/20/2002
20	0	10	07/20/2002
21	0	10	07/20/2002
22	0	10	07/20/2002
23	0	10	07/20/2002
24	0	10	07/20/2002
25	0	10	07/20/2002
26	0	10	07/20/2002
27	0	10	07/20/2002
28	0	10	07/20/2002
29	0	10	07/20/2002
30	0	10	07/20/2002
31	0	10	07/20/2002
32	0	10	07/20/2002
33	0	10	07/20/2002
34	0	10	07/20/2002
35	0	10	07/20/2002
36	0	10	07/20/2002
37	0	10	07/20/2002
38	0	10	07/20/2002
39	0	10	07/20/2002
40	0	10	07/20/2002
41	0	10	07/20/2002
42	0	10	07/20/2002
43	0	10	07/20/2002
44	0	10	07/20/2002
45	0	10	07/20/2002
46	0	10	07/20/2002
47	0	10	07/20/2002
48	0	10	07/20/2002
49	0	10	07/20/2002
50	0	10	07/20/2002
51	0	10	07/20/2002
52	0	10	07/20/2002
53	0	10	07/20/2002
54	0	10	07/20/2002
55	0	10	07/20/2002
56	0	10	07/20/2002
57	0	10	07/20/2002
58	0	10	07/20/2002
59	0	10	07/20/2002
60	0	10	07/20/2002
61	0	10	07/20/2002
62	0	10	07/20/2002
63	0	10	07/20/2002
64	0	10	07/20/2002
65	0	10	07/20/2002
66	0	10	07/20/2002
67	0	10	07/20/2002
68	0	10	07/20/2002
69	0	10	07/20/2002
70	0	10	07/20/2002
71	0	10	07/20/2002
72	0	10	07/20/2002
73	0	10	07/20/2002
74	0	10	07/20/2002
75	0	10	07/20/2002
76	0	10	07/20/2002
77	0	10	07/20/2002
78	0	10	07/20/2002
79	0	10	07/20/2002
80	0	10	07/20/2002
81	0	10	07/20/2002
82	0	10	07/20/2002
83	0	10	07/20/2002
84	0	10	07/20/2002
85	0	10	07/20/2002
86	0	10	07/20/2002
87	0	10	07/20/2002
88	0	10	07/20/2002
89	0	10	07/20/2002
90	0	10	07/20/2002
91	0	10	07/20/2002
92	0	10	07/20/2002
93	0	10	07/20/2002
94	0	10	07/20/2002
95	0	10	07/20/2002
96	0	10	07/20/2002
97	0	10	07/20/2002
98	0	10	07/20/2002
99	0	10	07/20/2002
100	0	10	07/20/2002
101	0	10	07/20/2002
102	0	10	07/20/2002
103	0	10	07/20/2002
104	0	10	07/20/2002
105	0	10	07/20/2002
106	0	10	07/20/2002
107	0	10	07/20/2002
108	0	10	07/20/2002
109	0	10	07/20/2002
110	0	10	07/20/2002
111	0	10	07/20/2002
112	0	10	07/20/2002
113	0	10	07/20/2002
114	0	10	07/20/2002
115	0	10	07/20/2002
116	0	10	07/20/2002
117	0	10	07/20/2002
118	0	10	07/20/2002
119	0	10	07/20/2002
120	0	10	07/20/2002
121	0	10	07/20/2002
122	0	10	07/20/2002
123	0	10	07/20/2002
124	0	10	07/20/2002
125	0	10	07/20/2002
126	0	10	07/20/2002
127	0	10	07/20/2002
128	0	10	07/20/2002
129	0	10	07/20/2002
130	0	10	07/20/2002
131	0	10	07/20/2002
132	0	10	07/20/2002
133	0	10	07/20/2002
134	0	10	07/20/2002
135	0	10	07/20/2002
136	0	10	07/20/2002
137	0	10	07/20/2002
138	0	10	07/20/2002
139	0	10	07/20/2002
140	0	10	07/20/2002
141	0	10	07/20/2002
142	0	10	07/20/2002
143	0	10	07/20/2002
144	0	10	07/20/2002
145	0	10	07/20/2002
146	0	10	07/20/2002
147	0	10	07/20/2002
148	0	10	07/20/2002
149	0	10	07/20/2002
150	0	10	07/20/2002
151	0	10	07/20/2002
152	0	10	07/20/2002
153	0	10	07/20/2002
154	0	10	07/20/2002
155	0	10	07/20/2002
156	0	10	07/20/2002
157	0	10	07/20/2002
158	0	10	07/20/2002
159	0	10	07/20/2002
160	0	10	07/20/2002
161	0	10	07/20/2002
162	0	10	07/20/2002
163	0	10	07/20/2002
164	0	10	07/20/2002
165	0	10	07/20/2002
166	0	10	07/20/2002
167	0	10	07/20/2002
168	0	10	07/20/2002
169	0	10	07/20/2002
170	0	10	07/20/2002
171	0	10	07/20/2002
172	0	10	07/20/2002
173	0	10	07/20/2002
174	0	10	07/20/2002
175	0	10	07/20/2002
176	0	10	07/20/2002
177	0	10	07/20/2002
178	0	10	07/20/2002
179	0	10	07/20/2002
180	0	10	07/20/2002
181	0	10	07/20/2002
182	0	10	07/20/2002
183	0	10	07/20/2002
184	0	10	07/20/2002
185	0	10	07/20/2002
186	0	10	07/20/2002
187	0	10	07/20/2002
188	0	10	07/20/2002
189	0	10	07/20/2002
190	0	10	07/20/2002
191	0	10	07/20/2002
192	0	10	07/20/2002
193	0	10	07/20/2002
194	0	10	07/20/2002
195	0	10	07/20/2002
196	0	10	07/20/2002
197	0	10	07/20/2002
198	0	10	07/20/2002
199	0	10	07/20/2002
200	0	10	07/20/2002
201	0	10	07/20/2002
202	0	10	07/20/2002
203	0	10	07/20/2002
204	0	10	07/20/2002
205	0	10	07/20/2002
206	0	10	07/20/2002
207	0	10	07/20/2002
208	0	10	07/20/2002
209	0	10	07/20/2002
210	0	10	07/20/2002
211	0	10	07/20/2002
212	0	10	07/20/2002
213	0	10	07/20/2002
214	0	10	07/20/2002
215	0	10	07/20/2002
216	0	10	07/20/2002
217	0	10	07/20/2002
218	0	10	07/20/2002
219	0	10	07/20/2002
220	0	10	07/20/2002
221	0	10	07/20/2002
222	0	10	07/20/2002
223	0	10	07/20/2002
224	0	10	07/20/2002
225	0	10	07/20/2002
226	0	10	07/20/2002
227	0	10	07/20/2002
228	0	10	07/20/2002
229	0	10	07/20/2002
230	0	10	07/20/2002
231	0	10	07/20/2002
232	0	10	07/20/2002
233	0	10	07/20/2002
234	0	10	07/20/2002
235	0	10	07/20/2002
236	0	10	07/20/2002
237	0	10	07/20/2002
238	0	10	07/20/2002
239	0	10	07/20/2002
240	0	10	07/20/2002
241	0	10	07/20/2002
242	0	10	07/20/2002
243	0	10	07/20/2002
244	0	10	07/20/2002
245	0	10	07/20/2002
246	0	10	07/20/2002
247	0	10	07/20/2002
248	0	10	07/20/2002
249	0	10	07/20/2002
250	0	10	07/20/2002
251	0	10	07/20/2002
252	0	10	07/20/2002
253	0	10	07/20/2002
254	0	10	07/20/2002
255	0	10	07/20/2002
256	0	10	07/20/2002
257	0	10	07/20/2002
258	0	10	07/20/2002
259	0	10	07/20/2002
260	0	10	07/20/2002
261	0	10	07/20/2002
262	0	10	07/20/2002
263	0	10	07/20/2002
264	0	10	07/20/2002
265	0	10	07/20/2002
266	0	10	07/20/2002
267	0	10	07/20/2002
268	0	10	07/20/2002
269	0	10	07/20/2002
270	0	10	07/20/2002
271	0	10	07/20/2002
272	0	10	07/20/2002
273	0	10	07/20/2002
274	0	10	07/20/2002
275	0	10	07/20/2002
276	0	10	07/20/2002
277	0	10	07/20/2002
278	0	10	07/20

INTERTEK TESTING SERVICES

Company: May International Ltd.

Date of Test: 28 May, 1998

Model: Mato 915B

Mode : Stand by

Table 10, Base Unit

Conducted Emissions

ITS Intertek Testing Services

ETL Testing Laboratories

Stand-by

Report No.: 9802502

Tested By: Hong, Report No.: 9802502

Scan Settings (1 Range)

Frequencies			Receiver Settings					
Start	Stop	Step	IF BW	Detector	M-Time	Atten	Preamp	OpRge
450k	30M	5k	10k	PK	20ms	AUTO	LN	OFF
60dB								

Final Measurement Results:

Frequency	QP Level	QP Limit
MHz	dBuV	dBuV
0.49000	29.7	48.0
0.59500	24.1	48.0

* limit exceeded

Ctrl. No.: N/A

FCC ID: MS5192

INTERTEK TESTING SERVICES

EXHIBIT 4
EQUIPMENT PHOTOGRAPHS

INTERTEK TESTING SERVICES

4.0 Equipment Photographs

Photographs of the tested EUT are attached.

INTERTEK TESTING SERVICES

EXHIBIT 8
SECURITY CODE INFORMATION

INTERTEK TESTING SERVICES

8.0 Security code information

The following page lists the security code information.

SECURITY CODE INFORMATION

CODE FORMAT

1. SECURITY AND COMMAND

START 1-BIT	SYNC 1-BIT	FIRST HALF SECURITY 8-BIT	COMMAND 8-BIT	SECOND HALF SECURITY 8-BIT	STOP 1-BIT
4ms	X	8ms	X	MAX. 48ms	MAX. 4.8ms
C				X	X

2. SECURITY AND DIGIT

START 1-BIT	SYNC 1-BIT	SECURITY 8-BIT	COMMAND 8-BIT	STOP 1-BIT
X	X	X	X	X
B				X

3. Automatic 16-bit Security Code

The cordless phone will generate 16-bit digital security coding to prohibit unauthorized use by the other cordless handset. The 16-bit security code altogether allows 64K possible combinations.

The security code is generated randomly and is transmitted to the receiving unit (either from handset to base or vice versa) along with every command code to eliminate virtually false ringing, false paging, etc. The command code will be ignored by the receiving unit if the received security code does not match with the current valid security code stored in the receiving unit.

Only 8-bit security code will be transmitted together with the digit codes, eg. 1,2,3,...,*#.

1	1	2	2	3	3	4	4	5	5	6	6
D											

D											
C											

B											
A											

REVISED RECORD			
REV. NO.		APPROVED	DATE

COMPANY: MAY INTERNATIONAL LTD.			
TITLE: MAY MIV 800MHz 15 CHANNEL CORDLESS PHONE			
MODEL: MAYO M.V.			
MANUFACTURER: MAY INTERNATIONAL LTD.			
DATE: 13/2/97			
CHIEF ENGINEER: MAYO M.V.			
DESIGNER: MAYO M.V.			
DATA ENTRY: MAYO M.V.			
CODE: SC98			
TEST: MAYO M.V.			
RELEASED: MAYO M.V.			
SCALE: 1:1			