

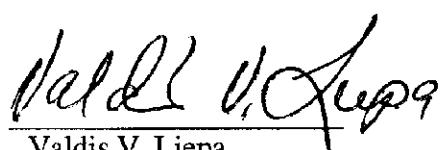
The University of Michigan
Radiation Laboratory
3228 EECS Building
Ann Arbor, MI 48109-2122
Tel: (734) 647-0500

**Measured Radio Frequency Emissions
From**

**Schrader Remote Tire Pressure Monitoring Transmitter
Model: MRXTG224AM01**

Report No. 415031-116
March 14, 2002

Copyright © 2002


For:
Schrader Electronics Limited
11 Technology Park, Belfast Road
Antrim BT41 1QS
Northern Ireland
PO: 10409

Contact:
Jim Newport
E-mail: jnewport@schrader.co.uk
Tel: 011-44-2894-48-2066
Fax: 011-44-1849-46-8440

Measurements made by:

Valdis V. Liepa

Tests supervised by:
Report approved by:

Valdis V. Liepa
Research Scientist

Summary

Tests for compliance with FCC Regulations, subject to Part 15, Subpart C, and with RSS-210 of Industry Canada were performed on the Schrader Remote Tire Pressure Monitoring Transmitter. This device is subject to Rules and Regulations as a low power (data) transmitter. As a Digital Device it is exempt, but such measurements we routinely perform to assess the transmitters's overall emissions.

The Sensor was tested "in free space", i.e., without a tire and off the rim. In testing performed on January 25 and March 13, 2002, the device tested in the worst case met the limits for radiated emissions by 7.3 dB (see p. 6). Besides harmonics there were no other significant spurious emissions found.

No conductive emission tests were made, since the transmitter is powered by a 3 V internal lithium battery.

1. Introduction

Schrader Remote Tire Pressure Monitoring Transmitter, Model: MRXTG224AM01, was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210, Issue 5, dated February 14, 1998. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057).

2. Test Procedure and Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests.

Table 2.1. Test equipment.

Test Instrument	Eqpt Used	Manufacturer/Model
Spectrum Analyzer (0.1-1500 MHz)		Hewlett-Packard, 182T/8558B
Spectrum Analyzer (9kHz-22GHz)	X	Hewlett-Packard 8593A SN: 3107A01358
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8593E, SN: 3412A01131
Spectrum Analyzer (9kHz-26GHz)		Hewlett-Packard 8563E, SN: 3310A01174
Spectrum Analyzer (9kHz-40GHz)		Hewlett-Packard 8564E, SN: 3745A01031
Power Meter		Hewlett-Packard, 432A
Power Meter		Anritsu, ML4803A/MP
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179
Harmonic Mixer (140-220 GHz)		Pacific Millimiter Prod., GMA, SN: 26
S-Band Std. Gain Horn		S/A, Model SGH-2.6
C-Band Std. Gain Horn		University of Michigan, NRL design
XN-Band Std. Gain Horn		University of Michigan, NRL design
X-Band Std. Gain Horn		S/A, Model 12-8.2
X-band horn (8.2- 12.4 GHz)		Narda 640
X-band horn (8.2- 12.4 GHz)		Scientific Atlanta , 12-8.2, SN: 730
K-band horn (18-26.5 GHz)		FXR, Inc., K638KF
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A
U-band horn (40-60 GHz)		Custom Microwave, HO19
W-band horn(75-110 GHz)		Custom Microwave, HO10
G-band horn (140-220 GHz)		Custom Microwave, HO5R
Bicone Antenna (30-250 MHz)	X	University of Michigan, RLBC-1
Bicone Antenna (200-1000 MHz)	X	University of Michigan, RLBC-2
Dipole Antenna Set (30-1000 MHz)	X	University of Michigan, RLDP-1,-2,-3
Dipole Antenna Set (30-1000 MHz)		EMCO 2131C, SN: 992
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223
Active Loop Antenna (30 Hz-50 MHz)		EMCO 6502, SN:2855
Ridge-horn Antenna (300-5000 MHz)		University of Michigan
Amplifier (5-1000 MHz)	X	Avantek, A11-1, A25-1S
Amplifier (5-4500 MHz)	X	Avantek
Amplifier (4.5-13 GHz)		Avantek, AFT-12665
Amplifier (6-16 GHz)		Trek
Amplifier (16-26 GHz)		Avantek
LISN (50 μ H)		University of Michigan
Signal Generator (0.1-2060 MHz)		Hewlett-Packard, 8657B
Signal Generator (0.01-20 GHz)		Hewlett-Packard

3. Configuration and Identification of Device Under Test

The DUT is a 3.5 x 7.0 x 1.5 cm size (including valve stem) potted tire pressure sensor/transmitter that mounts on a rim inside the tire. When the vehicle is in motion it transmits the tire pressure information to the receiver in the vehicle. The transmission consists of eight PWM words repeated typically every 30 seconds. The 315 MHz carrier is generated by a SAW stabilized oscillator. The coding is performed by an ASIC timed by a 32.768 kHz crystal oscillator.

The DUT was designed and manufactured by Schrader Electronics Limited, 11 Technology Park, Belfast Road, Antrim BT41 1QS, Northern Ireland. It is identified as:

Schrader Remote Tire Pressure Monitoring Transmitter
Model: MRXTG224AM01
PN: 40700CD000
SN: FCC020125
FCC ID: MRXTG224AM01
CANADA: 25461021812

Two devices were provided. These were: (1) modified for CW emission that was used for emission measurements, and (2) standard for bandwidth measurements.

3.1 EMI Relevant Modifications

There were no modifications made to the DUT by this laboratory.

4. Emission Limits

4.1 Radiated Emission Limits

The DUT tested falls under the category of an Intentional Radiators and the Digital Devices. For FCC it is subject to Subpart C, Section 15.231; Subpart B, Section 15.109; and Subpart A, Section 15.33. For Industry Canada it is subject to RSS-210, Sections 6.1 and 6.3. The applicable testing frequencies with corresponding emission limits are given in Tables 4.1 and 4.2 below. As a digital device, the DUT is considered a Class B device.

Table 4.1 Radiated Emission Limits (FCC: 15.231(e); IC: RSS-210; 6.1, 6.3, Table 4).
Data transmission.

Frequency (MHz)	Fundamental		Spurious**	
	Ave. E _{lim} (3m) (μ V/m)	dB (μ V/m)	Ave. E _{lim} (3m) (μ V/m)	dB (μ V/m)
260-470	1500-5000*		150-500	
315	2418	67.7	241.8	47.7

* Linear interpolation, formula: $E = -2833.2 + 16.67*f$ (MHz)

** Measure up to tenth harmonic; 120 kHz BW up to 1 GHz, 1 MHz BW above 1 GHz

Table 4.2. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 6.2.2(r)).
Digital (Class B).

Freq. (MHz)	E_{lim} (3m) μ V/m	E_{lim} dB(μ V/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Quasi-Peak readings apply to 1000 MHz (120 kHz BW)
Average readings apply above 1000 MHz (1 MHz BW)

4.2 Conductive Emission Limits

The conductive emission limits and tests do not apply here, since the DUT is powered by a 3 V internal lithium battery.

5. Radiated Emission Tests and Results

5.1 Anechoic Chamber Measurements

To familiarize with the radiated emission behavior of the DUT, the DUT was first studied and measured in a semi-shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

In the chamber we studied and recorded all the emissions using a ridged horn antenna up to 3.15 GHz. The measurements made in the chamber below 1 GHz are used for pre-test evaluation only. The measurements made above 1 GHz are also used in pre-test evaluation and in final compliance assessment. We note that for the horn antenna, the antenna pattern is more directive and hence the measurement is essentially that of free space (no ground reflection). In the chamber we also recorded the spectrum and modulation characteristics of the carrier. These data are presented in subsequent sections. We also note that in scanning from 30 MHz to 3.15 GHz, there were no other significant spurious emissions observed.

5.2 Outdoor Measurements

After the chamber measurements, the emissions were re-measured on the outdoor 3-meter site at fundamental and harmonics up to 1 GHz using tuned dipoles and/or the high frequency bicone.

Photographs in Appendix (at end of this report) show the DUT on the open in site table (OATS).

5.3 Computations and Results

To convert the dBm measured on the spectrum analyzer to dB(μ V/m), we use expression

$$E_3(\text{dB}\mu\text{V/m}) = 107 + P_R + K_A - K_G + K_E$$

where P_R = power recorded on spectrum analyzer, dB, measured at 3m
 K_A = antenna factor, dB/m
 K_G = pre-amplifier gain, including cable loss, dB
 K_E = pulse operation correction factor, dB (see 6.1)

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that the DUT meets the limits by 7.3 dB at fundamental and by 10.8 dB at harmonics.

6. Other Measurements and Computations

6.1 Correction For Pulse Operation

The transmitter is activated by rotation of the wheel and transmits approximately once every minute. The transmission consists of words of 101.25 ms period. In a word there is a 2.175 ms lead-in pulse, followed by five 0.400 ms wide sync pulses, and then followed by 34 narrow and wide data pulses (assume all wide for the worst case). See Figure 6.1. For such case, the averaging factor is

$$K_E = (1 \times 2.175 + (5 + 34) \times 0.400) \text{ ms} / 101.25 \text{ ms} = 0.163 \text{ or } -15.8 \text{ dB}$$

6.2 Emission Spectrum

Using the ridge-horn antenna and DUT placed in its aperture, emission spectrum was recorded and is shown in Figure 6.2.

6.3 Bandwidth of the Emission Spectrum

The measured spectrum of the signal is shown in Figure 6.3. The allowed (-20 dB) bandwidth is 0.25% of 315.0 MHz, or 786 kHz, and from the plot we see that the -20 dB bandwidth is 53.0 kHz, and the center frequency is 315.02 MHz.

6.4 Effect of Supply Voltage Variation

The DUT has been designed to be powered by a single 3 V battery. For this test, the battery was paralleled by a laboratory variable power supply and relative power radiated was measured at the fundamental as the voltage was varied from 2.0 to 4.0 volts. The emission variation is shown in Figure 6.4.

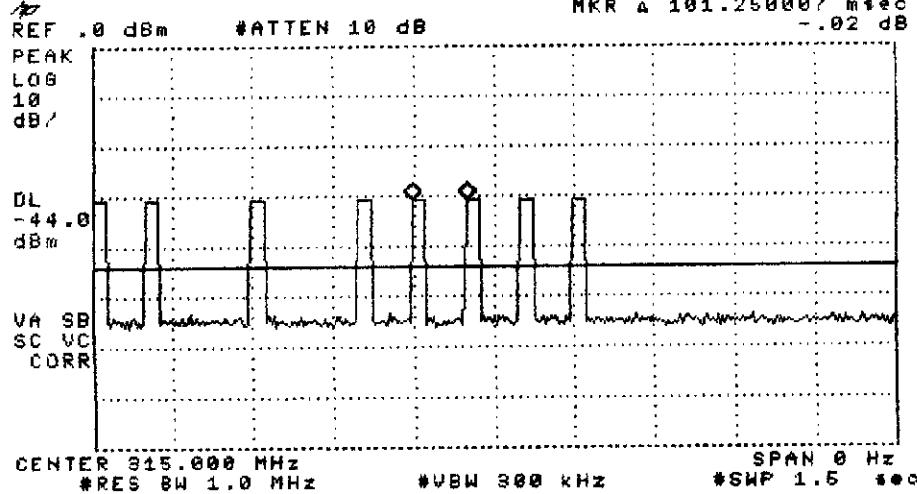
6.5 Input Voltage and Current at Battery Terminals

$$V = 3.0 \text{ V}$$

$$I = 20.0 \text{ mA (CW)}$$

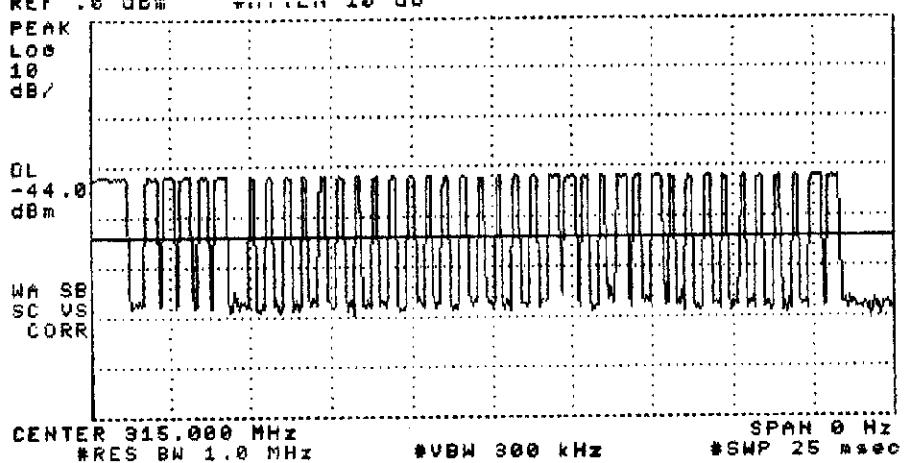
The University of Michigan
Radiation Laboratory
3228 EECS Building
Ann Arbor, Michigan 48109-2122
(734) 647-0500

Table 5.1 Highest Emissions Measured


#	Radiated Emission - RF							Schrader/Newport, AM TX; FCC/IC			
	Freq. MHz	Ant. Used	Ant. Pol.	Pr dBm	Det. Used	Ka dB/m	Kg dB	E3* dB μ V/m	E3lim dB μ V/m	Pass dB	Comments
1	315.0	Dip	H	-28.0	Pk	18.9	21.7	60.4	67.7	7.3	flat
2	315.0	Dip	V	-33.1	Pk	18.9	21.7	55.3	67.7	12.4	end
3	630.0	Dip	H	-65.0	Pk	25.2	18.3	33.1	47.7	14.6	flat
4	630.0	Dip	V	-64.7	Pk	25.2	18.3	33.4	47.7	14.3	end
5	945.0	Dip	H	-74.4	Pk	28.9	15.9	29.8	47.7	17.9	end
6	945.0	Dip	V	-75.8	Pk	28.9	15.9	28.4	47.7	19.3	side
7	1260.0	Horn	H	-48.7	Pk	20.4	28.1	34.8	47.7	12.9	side
8	1575.0	Horn	H	-54.9	Pk	21.4	28.2	29.5	47.7	18.2	side
9	1890.0	Horn	H	-48.3	Pk	22.1	28.1	36.9	47.7	10.8	side
10	2205.0	Horn	H	-60.9	Pk	22.9	27.0	26.2	47.7	21.5	side
11	2520.0	Horn	H	-60.7	Pk	24.0	26.6	27.9	47.7	19.8	end
12	2835.0	Horn	H	-59.9	Pk	24.9	25.4	30.8	47.7	16.9	end
13	3150.0	Horn	H	-65.7	Pk	25.2	24.8	25.9	47.7	21.8	side
14											
15											
16											
17											
18		*includes -15.8 dB duty factor									
19											
20											
21											
22											
23											
24											
25											
26											
27											

Conducted Emissions							
#	Freq. MHz	Line Side	Det. Used	Vtest dB μ V	Vlim dB μ V	Pass dB	Comments
1							
2	Not applicable						
3							
4							
5							
6							
7							

Meas. 1/25/02; U of Mich.


15:44:30 MAR 13, 2002

MKR A 101.250007 msec
-.02 dB

15:46:33 MAR 13, 2002

REF .0 dBm #ATTEN 10 dB

15:51:10 MAR 13, 2002

MKR A 400.000 usec
-.39 dB

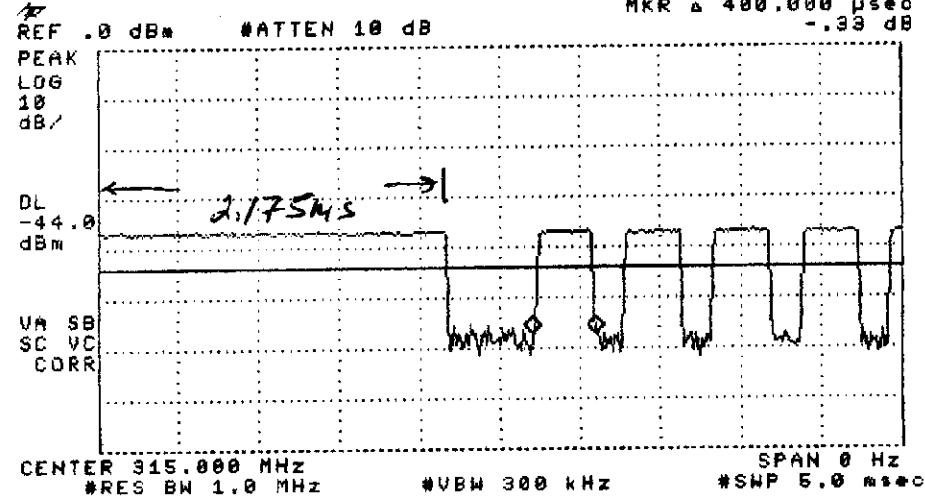


Figure 6.1. Transmissions modulation characteristics: (top) transmission repetition, (center) transmission pulses, (bottom) pulse width.

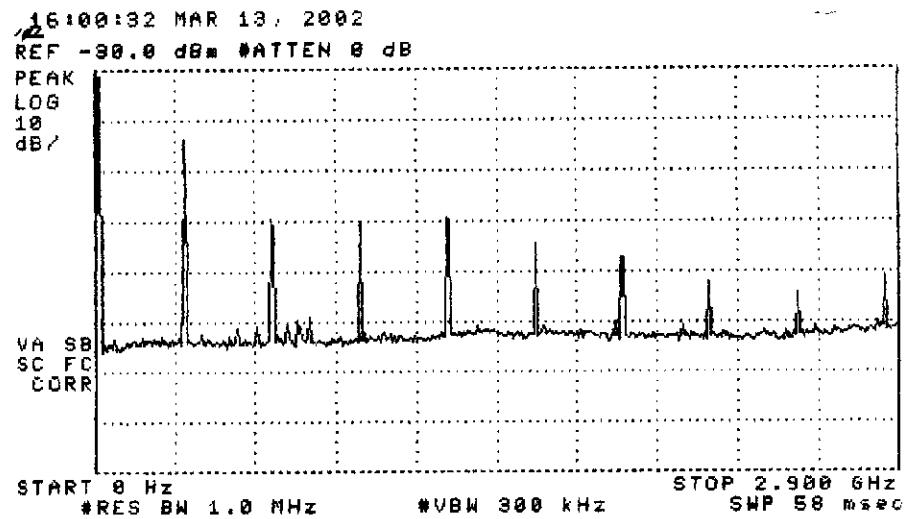


Figure 6.2. Emission spectrum of the DUT in free space (CW emission). The amplitudes are only indicative (not calibrated).

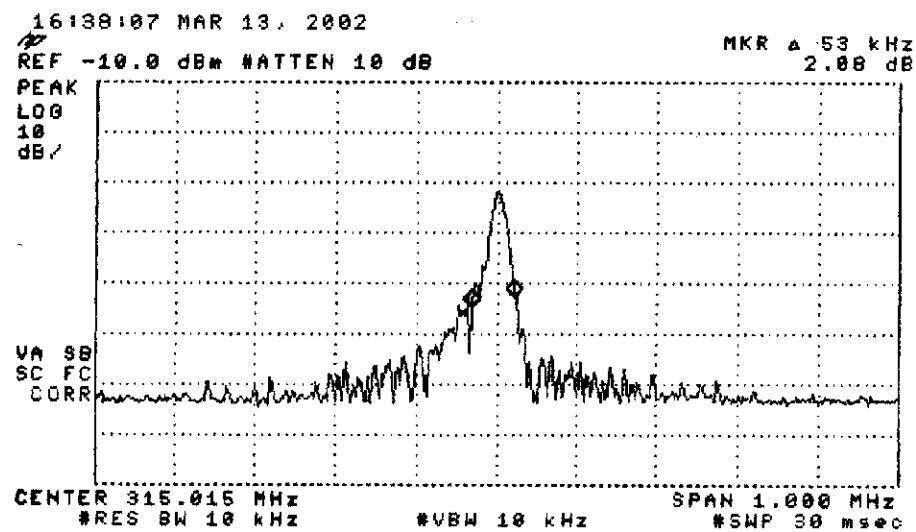


Figure 6.3. Measured bandwidth of the DUT (repeated pulsed emission).

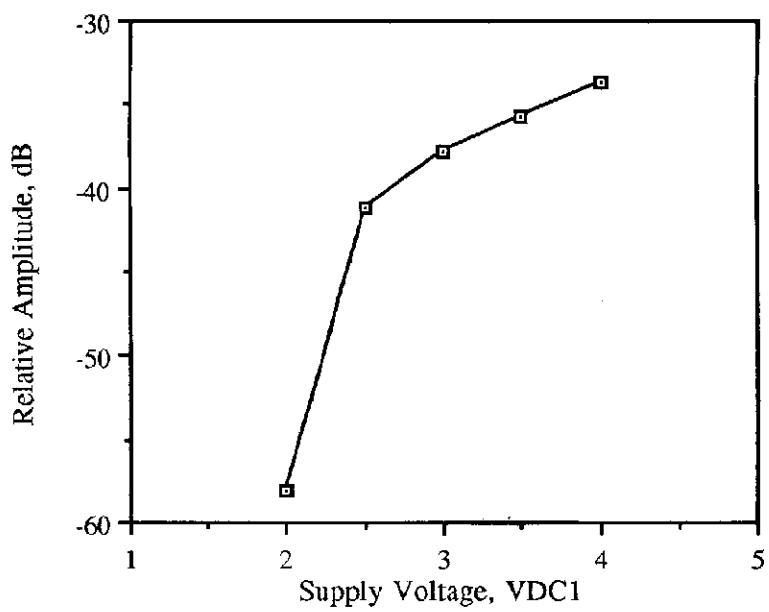


Figure 6.4. Relative emission at 315.0 MHz vs. supply voltage. (CW emission)