

APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

TABLE OF CONTENTS

TEST REPORT CONTAINING:

PAGE	1-3.....	LIST OF TEST EQUIPMENT
PAGE	4.....	TEST PROCEDURES
PAGE	5.....	RADIATION INTERFERENCE TEST DATA
PAGE	6.....	METHOD OF MEASURING RADIATED SPURIOUS EMISS.
PAGE	7.....	RF POWER OUTPUT
PAGE	8.....	RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BANDS
PAGE	9-10.....	BANEDGE PLOTS
PAGE	11.....	MPE CALCULATIONS

EXHIBIT ATTACHMENTS:

EXHIBIT 1.....	COVER LETTER
EXHIBIT 2.....	PHOTOGRAPH OF ANTENNA
EXHIBIT 3.....	ANTENNA SPECIFICATIONS
EXHIBIT 4.....	TEST SETUP UP PHOTOGRAPH
EXHIBIT 5.....	STATEMENTS FOR USER'S MANUAL

APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

REPORT #: A\Adcon_MQX\110UT3\110UT3TestReport.doc

TABLE OF CONTENTS LIST

EMC Equipment List

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 12/22/99	12/22/02
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
	Receiver, Beige Tower Spectrum Analyzer (Tan)	HP	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
	RF Preselector (Tan)	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
	Quasi-Peak Adapter (Tan)	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
X	Receiver, Blue Tower Spectrum Analyzer (Blue)	HP	8568B	2928A04729 2848A18049	CHAR 10/22/01	10/22/03
X	RF Preselector (Blue)	HP	85685A	2926A00983	CHAR 10/22/01	10/22/03
X	Quasi-Peak Adapter (Blue)	HP	85650A	2811A01279	CHAR 10/22/01	10/22/03
X	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
	Biconnical Antenna	Eaton	94455-1	1057	CHAR 3/15/00	3/15/02
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CHAR 10/16/01	10/16/03
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CHAR 11/24/00	11/24/03
	Double-Ridged Horn Antenna	Electro-Metrics	RGA -180	2319	CAL 12/19/01	12/19/03
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/21/01	3/21/03
	Horn Antenna	ATM	19-443-6R	None	No Cal Required	
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03

APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

REPORT #: A\Adcon_MQX\110UT3\110UT3TestReport.doc

Page 1 of 11

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
	Line Impedance Stabilization . . .	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03
	Line Impedance Stabilization . . .	Electro-Metrics	EM-7820	2682	CAL 3/16/01	3/16/03
	Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
	Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 12/12/01	12/12/03
	Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
	Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
	AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
	AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
	AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
X	Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
	Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
	Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
	Multimeter	Fluke	FLUKE-77-3	79510405	CAL 9/26/01	9/26/03
	Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/03
	Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
	Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
X	Temp/Humidity gauge	EXTech	44577F	E000901	CHAR 1/22/02	1/22/04
	Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
	Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 1/26/01	1/26/03
	Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
	Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
	Signal Generator	HP	8640B	2308A21464	CAL 11/15/01	11/15/03
	Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/03

APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

REPORT #: A\Adcon_MQX\110UT3\110UT3TestReport.doc

Page 2 of 11

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03
BandReject Filter	Lorch Microwave	5BR4-2400/60-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	6BR6-2442/300-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	5BR4-10525/900-S	Z1	CHAR 3/2/01	3/2/03
High Pas Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
Frequency Counter	HP	5385A	3242A07460	CHAR 12/11/01	12/11/03
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

REPORT #: A\Adcon_MQX\110UT3\110UT3TestReport.doc

Page 3 of 11

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC. Shielded interface cables were used in all cases except for cables connecting to the telephone line and the power cords. A test program was run which simulated a normal data transmission on a network.

POWER OUTPUT: The RF power output was measured at the antenna feed point using a peak power meter.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a pre-selector. The bandwidth(RBW) of the spectrum analyzer was 100kHz up to 1GHz and 1.0MHz above 1GHz with an appropriate sweep speed. The VBW above 1.0GHz was = 3.0MHz. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The ambient temperature of the UUT was 83°F with a humidity of 47%.

APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

REPORT #: A\Adcon_MQX\110UT3\110UT3TestReport.doc

Page 4 of 11

15.247(c), 15.205 & 15.209(b) Field strength of spurious emissions:

REQUIREMENTS:

FIELD STRENGTH of Fundamental: 902-928MHz 2.4-2.4835GHz 127.38dBuV/m @3m	FIELD STRENGTH of Harmonics 30 - 88 MHz 88 - 216 MHz 216 - 960 MHz 54 dBuV/m @3m	S15.209 40 dBuV/m @3M 43.5 46 54dBuV/m
--	---	--

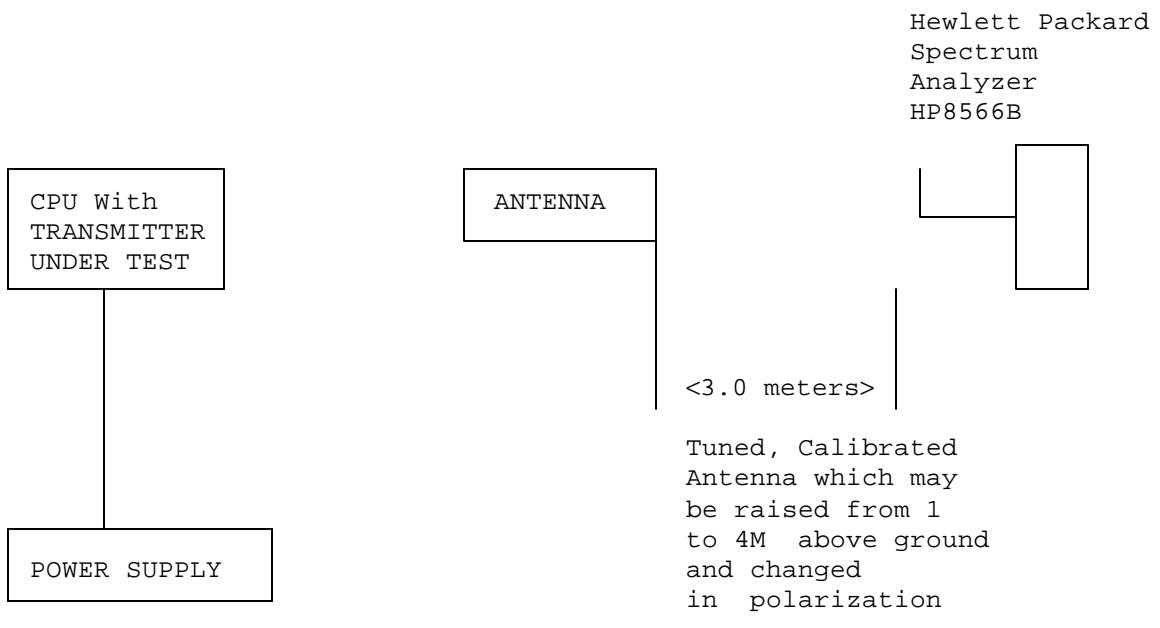
EMISSIONS RADIATED OUTSIDE OF THE SPECIFIED FREQUENCY BANDS, EXCEPT FOR HARMONICS, SHALL BE ATTENUATED BY AT LEAST 20 dB BELOW THE LEVEL OF THE FUNDAMENTAL OR TO THE GENERAL RADIATED EMISSION LIMITS IN 15.209, WHICHEVER IS THE LESSER ATTENUATION.

REQUIREMENTS: Emissions that fall in the restricted bands (15.205) must be less than 54dBuV/m otherwise the spurious and harmonics must be attenuated by at least 20dB.

TEST DATA:

Tuned Frequency MHz	Emission Frequency MHz	Meter Reading dBuV	Ant. Polarity	Coax Loss dB	Field Correction Factor dB	Field Strength dBuV/m	Margin dB
904.10	904.10	80.7	V	4.11	23.45	108.26	19.12
	1,808.20	16.0	H	2.80	28.42	47.22	41.04
	1,808.20	19.1	V	2.80	28.42	50.32	37.94
	2,712.30R	11.2	H	3.57	29.74	44.51	9.49
	2,712.30R	15.2	V	3.57	29.74	48.51	5.49
	3,616.50R	7.4	H	4.42	31.53	43.35	10.65
	3,616.50R	7.3	V	4.42	31.53	43.25	10.75
	4,520.60R	10.0	H	5.53	33.54	49.07	4.93
	4,520.60R	9.4	V	5.53	33.54	48.47	5.53
	5,424.70R	10.3	V	6.35	34.28	50.93	3.07
	5,424.70R	8.1	H	6.35	34.28	48.73	5.27
	6,328.90	16.2	V	6.62	35.29	58.11	30.15
	6,328.90	11.7	H	6.62	35.29	53.61	34.65
	7,233.00	7.3	H	7.04	36.04	50.38	37.88
	7,233.00	9.8	V	7.04	36.04	52.88	35.38

The EUT was measured in 3 places in the band and the worst case is presented above.


METHOD OF MEASUREMENT: The procedure used was ANSI STANDARD C63.4-1992 and the FCC/OET Guidance on Measurements for Frequency Hopper Spread Systems. Measurements were made at the open field test site of TIMCO ENGINEERING INC. located at 849 N.W. State Road 45, Newberry, FL 32669.

APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

REPORT #: A\Adcon_MQX\110UT3\110UT3TestReport.doc

Method of Measuring Radiated Spurious Emissions

Equipment placed 80cm above ground
on a rotatable platform.

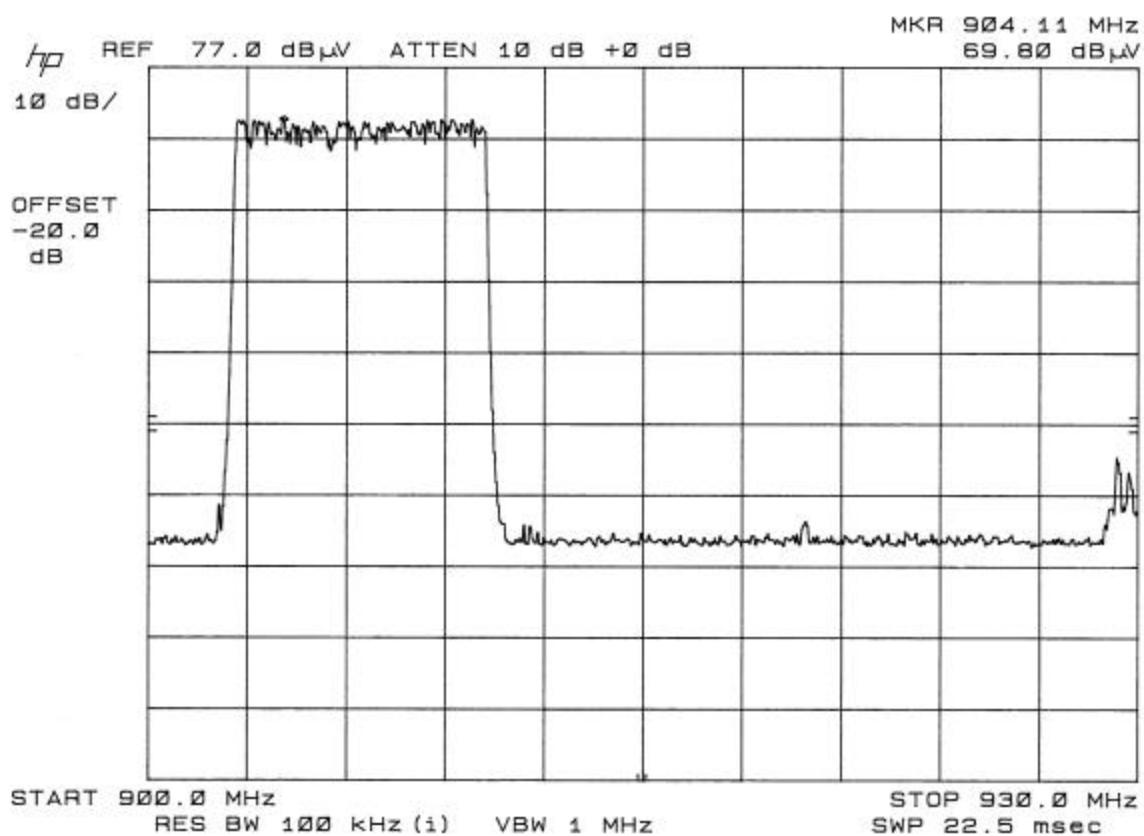
POWER OUTPUT: The RF power output was measured at the antenna feed point using a peak power meter.

The power output measured using a peak reading power meter is: 20 mW

APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

NAME OF TEST: RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BAND


REQUIREMENTS: Emissions that fall in the restricted bands (15.205). These emissions must be less than or equal to 500 uV/m (54 dBuV/m).

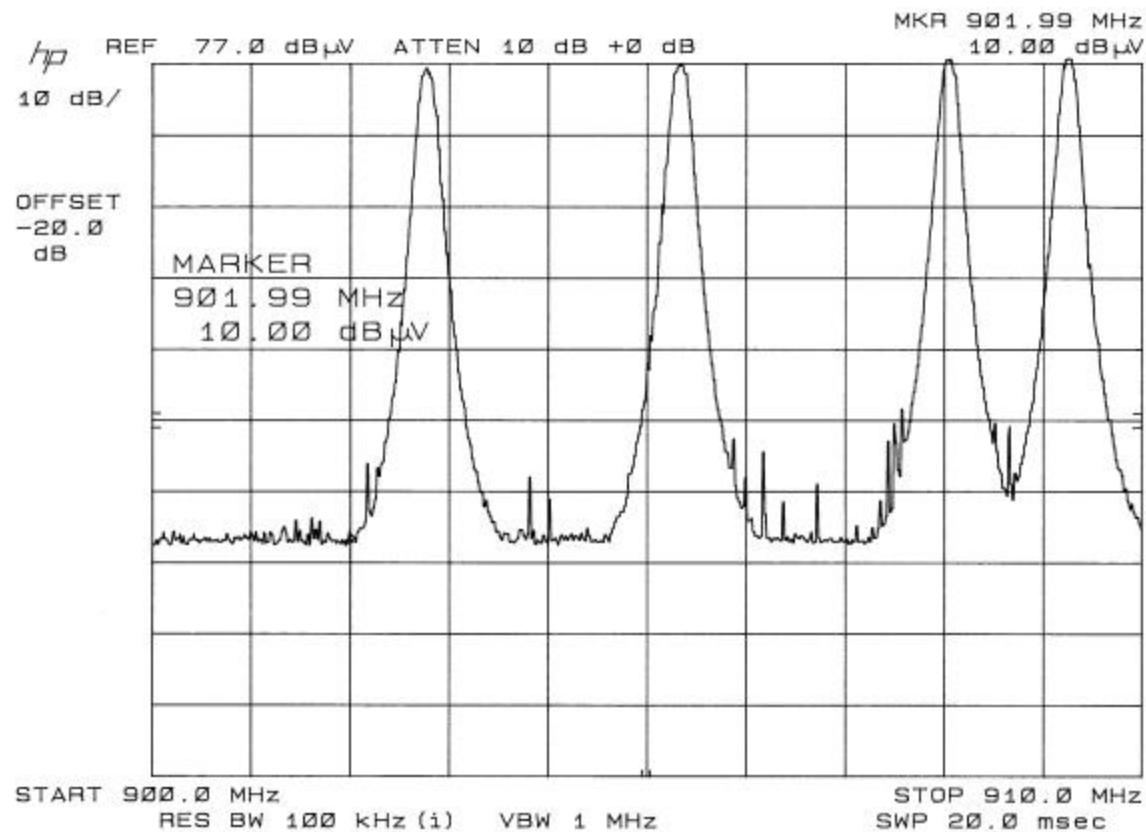
TEST PROCEDURE: An in band field strength measurement of the fundamental Emission using the RBW and detector function required by C63.4-2000 and FCC Rules.

There were no significant emissions at the band edge. The Plots are on the following two pages.

APPLICANT: ADCON TELEMETRY, INC.
FCC ID: MQXB900SS-20
REPORT #: A\Adcon_MQX\110UT3\110UT3TestReport.doc
Page 8 of 11

BANDEDGE

This is a bandedge plot showing both lower bandedge and upper bandedge with the transceiver in hopping mode. There are no significant spurious emissions. The emissions shown at the top of the band are those of paging systems in the 929 to 931 MHz band.


APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

REPORT #: A\Adcon_MQX\110UT3\110UT3TestReport.doc

Page 9 of 11

BANDEDGE

This is a plot of the lower bandedge showing a close in view of several hopping channels and any spurious emissions.

APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

REPORT #: A\Adcon_MQX\110UT3\110UT3TestReport.doc

Page 10 of 11

GdB := 2.15 gain of ant in dBi

$$G := 10^{\frac{GdB}{10}}$$

G = 1.641 numeric gain of antenna

P := 20 R1 := 5 P is power in mW R1 is distance in cm

$$S1 := \frac{(P \cdot G)}{4\pi \cdot R1^2}$$

M := P · G

M = 32.812

S1 = 0.104 Power density in mW/cm^2

MPE exposure for over 300 MHz in mW/cm^2

f := 915 MHz

Controlled exposure

General population

$$MPE := \frac{f}{300}$$

$$MPE1 := \frac{f}{1500}$$

MPE = 3.05

MPE1 = 0.61

The MPE calculation for a 902 to 928 MHz device shows that .61 mW/cm^2 is required for compliance.

Using the antenna submitted in this report and the rated output power of 20 mW. 0.104 mW /cm^2 is easily below the FCC limit for this device.

This level is still significantly below the FCC limit and required no additions to the RF exposure statements in the users manuals.

APPLICANT: ADCON TELEMETRY, INC.

FCC ID: MQXB900SS-20

REPORT #: A\Adcon_MQX\110UT3\110UT3TestReport.doc

Page 11 of 11