

FCC Test Report (BT-LE)

Report No.: RF200518E05-3

FCC ID: MQT-AT150R3

Test Model: xCL AT-150-R3-18U

Received Date: May 26, 2020

Test Date: June 09 to 17, 2020

Issued Date: Sep. 18, 2020

Applicant: XAC AUTOMATION CORP.

Address: 4F, No. 30, INDUSTRY E. RD. IX, SCIENCE-BASED INDUSTRIAL

PARK, HSINCHU, TAIWAN

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

FCC Registration /

723255 / TW2022 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record4					
1	(Certificate of Conformity5				
2	;	Summary of Test Results	. 6			
	2.1	Measurement Uncertainty	6			
	2.2	Modification Record				
3		General Information	7			
_	3.1	General Description of EUT (BT-LE)				
	3.1	Description of Test Modes				
	3.2.1	·				
	3.3	Duty Cycle of Test Signal				
	3.4	Description of Support Units				
	3.4.1					
	3.5	General Description of Applied Standards and References	15			
4	-	Test Types and Results				
	4.1	Radiated Emission and Bandedge Measurement				
		Limits of Radiated Emission and Bandedge Measurement				
		Test Instruments				
		Test Procedures Deviation from Test Standard				
		Test Setup				
		EUT Operating Conditions				
		Test Results				
	4.2	Conducted Emission Measurement				
	4.2.1	Limits of Conducted Emission Measurement				
	4.2.2	Test Instruments	27			
		Test Procedures				
		Deviation from Test Standard				
		Test Setup				
		EUT Operating Conditions Test Results				
	4.2.7	6dB Bandwidth Measurement				
	4.3.1					
		Test Setup				
		Test Instruments				
	4.3.4	Test Procedure	31			
	4.3.5	Deviation from Test Standard	31			
		EUT Operating Conditions				
		Test Results				
	4.4	Conducted Output Power Measurement				
	4.4.1					
	4.4.2	Test Setup Test Instruments				
		Test Procedures				
	4.4.5					
	4.4.6	EUT Operating Conditions				
		Test Results				
	4.5	Power Spectral Density Measurement				
	4.5.1	· · · · · · · · · · · · · · · · · · ·				
	4.5.2					
	4.5.3					
		Test Procedure				
		EUT Operating Condition				
	7.5.0	Lot operating condition	JJ			

	Test Results				
	Conducted Out of Band Emission Measurement				
4.6.1	Limits of Conducted Out of Band Emission Measurement	37			
4.6.2	Test Setup	37			
4.6.3	Test Instruments	37			
	Test Procedure				
	Deviation from Test Standard				
4.6.6	EUT Operating Condition	37			
4.6.7	Test Results	37			
5 F	ictures of Test Arrangements	39			
Annex	Annex A - Band-Edge Measurement				
Append	Appendix – Information of the Testing Laboratories				

Release Control Record

Issue No.	Description	Date Issued
RF200518E05-3	Original release.	Sep. 18, 2020

1 Certificate of Conformity

Product: Terminal

Brand: XAC

Test Model: xCL_AT-150-R3-18U

Sample Status: ENGINEERING SAMPLE

Applicant: XAC AUTOMATION CORP.

Test Date: June 09 to 17, 2020

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : , Date: Sep. 18, 2020

Joyce Kuo / Specialist

Approved by: , Date: Sep. 18, 2020

Clark Lin / Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)					
FCC Clause	Test Item	Result	Remarks		
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -13.36 dB at 0.46250 MHz.		
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -6.0 dB at 49.67 MHz.		
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.		
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.		
15.247(b)	Conducted power	PASS	Meet the requirement of limit.		
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.		
15.203	Antenna Requirement	PASS	Antenna connector is i-pex(MHF) not a standard connector.		

Note:

- 1. For 2.4GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Conducted Emissions	-	2.5 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
Radiated Effissions up to 1 GHz	30MHz ~ 1GHz	5.4 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
Radiated Emissions above 1 GHZ	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-LE)

Product	Terminal
Brand	XAC
Test Model	xCL_AT-150-R3-18U
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	Refer to note 3
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 1 Mbps
Operating Frequency	2.402 ~ 2.480 GHz
Number of Channel	40
Output Power	2.317 mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	Battery x1 (Option)
Data Cable Supplied	NA

Note:

1. The EUT has three radios as following table:

Radio 1	Radio 2	Radio 3
WLAN(2.4GHz + 5GHz) + Bluetooth	WWAN(LTE + WCDMA)	NFC

2. Simultaneously transmission condition.

Condition	Technology			
1 WWAN		NFC		
2 WWAN		Bluetooth		
3 WLAN 2.4GHz		NFC		
4 WLAN 5GHz NFC		NFC		
5 Bluetooth		NFC		

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

3. The EUT must be supplied power adapter and battery as following table:

Adapter (Only test not for sale)						
Brand	Model	Specification				
MASS POWER	NBS10B050200VUU	AC Input: 100-240Vac, 0.3A, 50-60Hz DC Output: 5Vdc, 2A				
Battery (Option)	Battery (Option)					
Brand	Model	Specification				
Shenzhen Rishengzhi Electronics Technology Co., Ltd.	J625	3.7V, 3000mAh, 11.1Wh				

4. The antennas provided to the EUT, please refer to the following table:

Antenna No.	RF Chain NO.	Brand	Model	Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connector Type
NFC	Main	XAC	RTOS	13	13.56MHz	wire	None
				-2.7	2.4~2.4835GHz		
Wi-Fi BT	Main	AWAN	N AYF6P-100002	2.19	5.15~5.85GHz	PIFA	i-pex(MHF)
				-2.7	2.4~2.4835GHz		
	Main(B2) TX	AWAN		1.55	1850 MHz to 1910 MHz	PIFA	i-pex(MHF)
	Main(B4) TX		AWAN AXF6P-100004	1.48	1710 MHz to 1755 MHz		
LTE	Main(B12) TX			2.87	699 MHz to 716 MHz		
LIE	Aux(B2) RX			2.36	1930 MHz to 1990 MHz		
	Aux(B4) RX	AWAN	AXF6P-100005	2.91	2110 MHz to 2155 MHz	PIFA	i-pex(MHF)
	Aux(B12) RX			2.8	729 MHz to 746 MHz		i-pex(MHF)
	Main(B2) TX	0)0/0 NI	AVECD 400004	1.55	1850 MHz to 1910 MHz	DIEA	: (NALIE)
WCDMA	Main(B5) TX	AWAN	AXF6P-100004	1.23	824 MHz to 849 MHz	PIFA	i-pex(MHF)
WCDIVIA	Aux(B2) RX	Δ\Δ/Δ N I	AWAN AXF6P-100005	2.36	1930 MHz to 1990 MHz	DIEA	:(NALIE)
	Aux(B5) RX	AWAN		2.84	869 MHz to 894 MHz	PIFA	i-pex(MHF)

5. The EUT was pre-tested for radiated test under following test modes:

Pre-test Mode	Power		
Mode A	Power from Adapter		
Mode B	Power from Laptop		
From the above modes, the worst radiated test was found in Mode A .			

6. The EUT was pre-tested for conducted test under following test modes:

er the Let was pro tested for conducted test and or removing test medice.				
Pre-test Mode	Power			
Mode A	Power from Adapter			
Mode B	Power from Battery			
From the above modes, the worst radiated test was found in Mode A .				

7. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT		APPLICA	DESCRIPTION		
CONFIGURE MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION
-	√	√	\checkmark	√	-

Where

RE≥1G: Radiated Emission above 1GHz &

Bandedge Measurement

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)	
0 to 39	0, 19, 39	GFSK	1	

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL TESTED CHANNEL		MODULATION TYPE	DATA RATE (Mbps)	
0 to 39	39	GFSK	1	

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)	
0 to 39	39	GFSK	1	

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL TESTED CHANNEL		MODULATION TYPE	DATA RATE (Mbps)
0 to 39	0, 19, 39	GFSK	1

Test Condition:

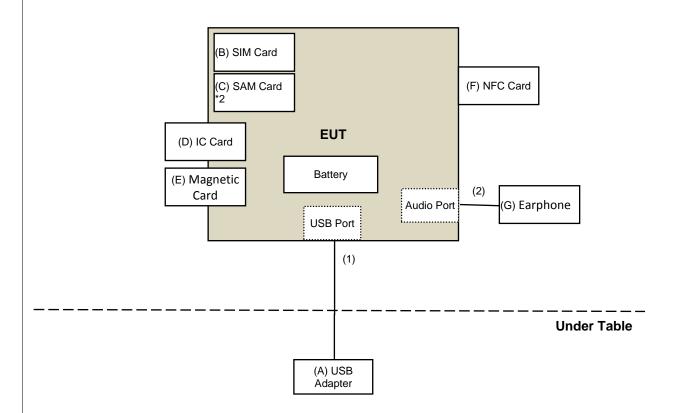
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (System)	TESTED BY
RE≥1G	25deg. C, 75%RH	120Vac, 60Hz	Kevin Ko
RE<1G	29deg. C, 71%RH	120Vac, 60Hz	Kevin Ko
PLC	21deg. C, 60%RH	120Vac, 60Hz	Sampon Chen
APCM	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is < 98 %, duty factor shall be considered.

Duty cycle = 0.386 ms/0.631 ms = 0.612, Duty factor = 10 * log (1/ Duty cycle) = <math>2.13

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	USB Adapter	MASS POWER	NBS10B050200VUU	NA	NA	Supplied by client
B.	SIM Card	Keysight	NA	NA	NA	Provided by Lab
C.	SAM Card *2	XAC	NA	NA	NA	Supplied by client
D.	IC Card	XAC	NA	NA	NA	Supplied by client
E.	Magnetic Card	XAC	NA	NA	NA	Supplied by client
F.	NFC Card	XAC	NA	NA	NA	Supplied by client
G.	Earphone	Infinix	NA	NA	NA	Provided by Lab

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Type C to USB Cable	1	1.2	Yes	0	Supplied by client
2.	Earphone Cable	1	1.1	Yes	0	Provided by Lab

3.4.1 Configuration of System under Test

.

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

For Radiated Emission & Bangedge test:

DESCRIPTION &	MODEL NO	SEDIAL NO	CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver Keysight	N9038A	MY54450088	July 03, 2019	July 02, 2020
Pre-Amplifier EMCI	EMC001340	980142	May 25, 2020	May 24, 2021
Loop Antenna Electro-Metrics	EM-6879	264	Feb. 18, 2020	Feb. 17, 2021
RF Cable	NA	LOOPCAB-00 1	Jan. 08, 2020	Jan. 07, 2021
RF Cable	NA	LOOPCAB-00 2	Jan. 08, 2020	Jan. 07, 2021
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 28, 2020	Apr. 27, 2021
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 11, 2019	Nov. 10, 2020
RF Cable	8D	966-3-1	Mar. 17, 2020	Mar. 16, 2021
RF Cable	8D	966-3-2	Mar. 17, 2020	Mar. 16, 2021
RF Cable	8D	966-3-3	Mar. 17, 2020	Mar. 16, 2021
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 26, 2019	Sep. 25, 2020
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 24, 2019	Nov. 23, 2020
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-1200	160922	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-2000	180601	June 09, 2020	June 08, 2021
RF Cable	EMC104-SM-SM-6000	180602	June 09, 2020	June 08, 2021
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 15, 2020	Jan. 14, 2021
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 24, 2019	Nov. 23, 2020
RF Cable	EMC102-KM-KM-1200	160924	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC-KM-KM-4000	200214	Mar. 11, 2020	Mar. 10, 2021
Software	ADT_Radiated_V8.7.0	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Tested Date: June 09 to 11, 2020

For other test items:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSV40	100964	May 29, 2020	May 28, 2021
Power meter Anritsu	ML2495A	1529002	July 26, 2019	July 25, 2020
Power sensor Anritsu	MA2411B	1339443	July 26, 2019	July 25, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 14, 2020	Apr. 13, 2021
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

NOTE:

- 1. The test was performed in Oven room 2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: June 17, 2020

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

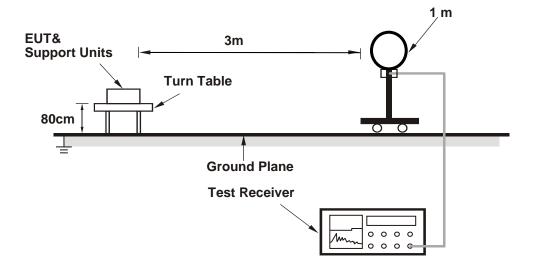
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

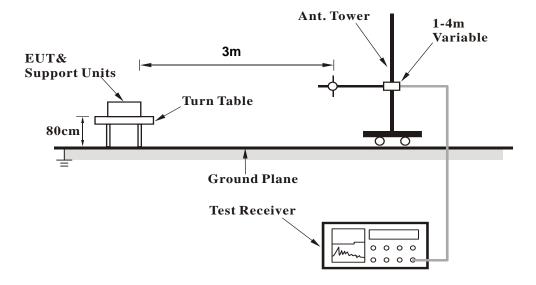
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

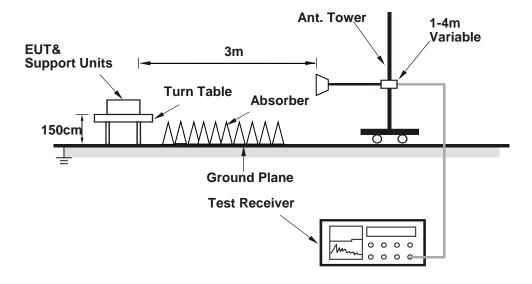

4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (QDART 4.8.29) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

Channel	TX Channel 0	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	53.1 PK	74.0	-20.9	1.26 H	210	55.0	-1.9
2	2390.00	42.7 AV	54.0	-11.3	1.26 H	210	44.6	-1.9
3	*2402.00	94.3 PK			1.26 H	210	96.2	-1.9
4	*2402.00	92.6 AV			1.26 H	210	94.5	-1.9
5	4804.00	38.6 PK	74.0	-35.4	2.35 H	321	35.7	2.9
6	4804.00	26.8 AV	54.0	-27.2	2.35 H	321	23.9	2.9
		Ante	nna Dalarit	v 9 Toot Di	otomoo . Vor	tical at 2 m		

	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	52.9 PK	74.0	-21.1	2.22 V	247	54.8	-1.9
2	2390.00	42.9 AV	54.0	-11.1	2.22 V	247	44.8	-1.9
3	*2402.00	99.9 PK			2.22 V	247	101.8	-1.9
4	*2402.00	98.7 AV			2.22 V	247	100.6	-1.9
5	4804.00	37.2 PK	74.0	-36.8	2.28 V	333	34.3	2.9
6	4804.00	25.7 AV	54.0	-28.3	2.28 V	333	22.8	2.9

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

Channel	TX Channel 19	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2440.00	93.6 PK			1.50 H	215	95.6	-2.0
2	*2440.00	92.2 AV			1.50 H	215	94.2	-2.0
3	4880.00	38.3 PK	74.0	-35.7	2.36 H	327	35.5	2.8
4	4880.00	26.4 AV	54.0	-27.6	2.36 H	327	23.6	2.8
5	7320.00	44.2 PK	74.0	-29.8	1.46 H	102	35.3	8.9
6	7320.00	31.7 AV	54.0	-22.3	1.46 H	102	22.8	8.9
		Ante	nna Dalarit	v 9 Toot Di	otomoo . Vor	tical at 2 m		

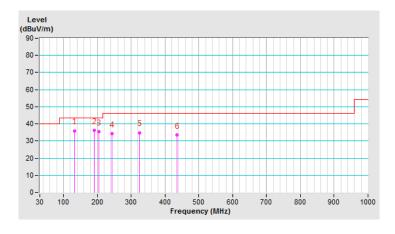
Antenna Polarity & Test Distance : Vertical at 3 m **Emission** Raw Correction **Antenna Table** Frequency Limit Margin No Level Height Angle Value **Factor** (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV) (dB/m) (m) (Degree) *2440.00 97.3 PK 1.50 V 99.3 -2.0 237 2 *2440.00 96.0 AV 1.50 V 237 98.0 -2.0 4880.00 37.8 PK 74.0 -36.2 2.37 V 338 35.0 2.8 3 4880.00 26.2 AV 54.0 -27.8 2.37 V 338 23.4 2.8 5 7320.00 44.6 PK 74.0 -29.4 1.56 V 119 35.7 8.9 7320.00 31.4 AV 54.0 -22.6 1.56 V 119 22.5 6 8.9

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

Channel	TX Channel 39	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	95.3 PK			1.36 H	236	97.2	-1.9
2	*2480.00	93.9 AV			1.36 H	236	95.8	-1.9
3	2483.50	53.2 PK	74.0	-20.8	1.36 H	236	55.1	-1.9
4	2483.50	42.6 AV	54.0	-11.4	1.36 H	236	44.5	-1.9
5	4960.00	38.5 PK	74.0	-35.5	2.34 H	326	35.7	2.8
6	4960.00	26.6 AV	54.0	-27.4	2.34 H	326	23.8	2.8
7	7440.00	44.2 PK	74.0	-29.8	1.48 H	129	35.2	9.0
8	7440.00	31.5 AV	54.0	-22.5	1.48 H	129	22.5	9.0
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	96.9 PK			1.53 V	221	98.8	-1.9
2	*2480.00	96.3 AV			1.53 V	221	98.2	-1.9
3	2483.50	53.1 PK	74.0	-20.9	1.53 V	221	55.0	-1.9
4	2483.50	42.7 AV	54.0	-11.3	1.53 V	221	44.6	-1.9
5	4960.00	37.5 PK	74.0	-36.5	2.27 V	327	34.7	2.8
6	4960.00	25.7 AV	54.0	-28.3	2.27 V	327	22.9	2.8
7	7440.00	44.4 PK	74.0	-29.6	1.56 V	92	35.4	9.0
8	7440.00	31.5 AV	54.0	-22.5	1.56 V	92	22.5	9.0

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

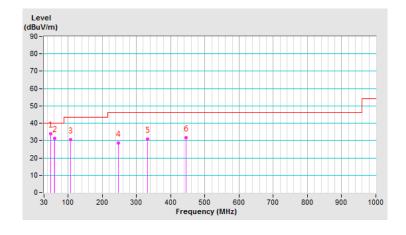

Below 1GHz Data:

CHANNEL	TX Channel 39	DETECTOR	Overi Back (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	132.02	36.0 QP	43.5	-7.5	1.50 H	304	44.1	-8.1	
2	190.27	36.3 QP	43.5	-7.2	1.50 H	258	45.8	-9.5	
3	204.09	35.5 QP	43.5	-8.0	1.00 H	251	45.4	-9.9	
4	243.01	34.3 QP	46.0	-11.7	1.50 H	30	42.4	-8.1	
5	324.01	34.9 QP	46.0	-11.1	1.00 H	127	39.9	-5.0	
6	436.04	33.6 QP	46.0	-12.4	2.00 H	232	35.3	-1.7	

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	TX Channel 39	DETECTOR	Ougai Pagis (OP)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	49.67	34.0 QP	40.0	-6.0	1.00 V	216	41.5	-7.5
2	61.28	31.4 QP	40.0	-8.6	1.50 V	360	39.8	-8.4
3	107.43	30.6 QP	43.5	-12.9	1.00 V	328	41.0	-10.4
4	247.30	28.5 QP	46.0	-17.5	1.00 V	319	36.5	-8.0
5	332.03	30.9 QP	46.0	-15.1	1.50 V	63	35.6	-4.7
6	445.57	31.6 QP	46.0	-14.4	1.00 V	1	33.1	-1.5

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MHz)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

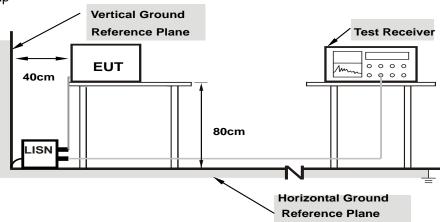
4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 19, 2020	Mar. 18, 2021
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	005	Aug. 30, 2019	Aug. 29, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: June 09, 2020

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
-------	----------	-------------------	-----------------------------------

	Phase Of Power : Line (L)									
	Frequency	Correction	Readin	g Value	Emissic	n Level	Lir	nit	Margin	
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17344	9.97	37.68	13.96	47.65	23.93	64.79	54.79	-17.14	-30.86
2	0.18516	9.97	39.63	19.06	49.60	29.03	64.25	54.25	-14.65	-25.22
3	0.47422	9.98	32.73	17.35	42.71	27.33	56.44	46.44	-13.73	-19.11
4	0.63438	10.00	32.51	20.53	42.51	30.53	56.00	46.00	-13.49	-15.47
5	0.89609	10.01	28.72	12.66	38.73	22.67	56.00	46.00	-17.27	-23.33
6	1.36328	10.04	30.65	17.10	40.69	27.14	56.00	46.00	-15.31	-18.86

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		g Value uV)		n Level uV)		nit uV)		rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.18125	9.97	38.27	17.42	48.24	27.39	64.43	54.43	-16.19	-27.04
2	0.20078	9.97	36.85	16.84	46.82	26.81	63.58	53.58	-16.76	-26.77
3	0.46250	9.98	33.31	17.62	43.29	27.60	56.65	46.65	-13.36	-19.05
4	0.63047	10.00	32.08	20.25	42.08	30.25	56.00	46.00	-13.92	-15.75
5	0.94297	10.02	29.86	14.90	39.88	24.92	56.00	46.00	-16.12	-21.08
6	1.33594	10.03	28.64	16.20	38.67	26.23	56.00	46.00	-17.33	-19.77

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

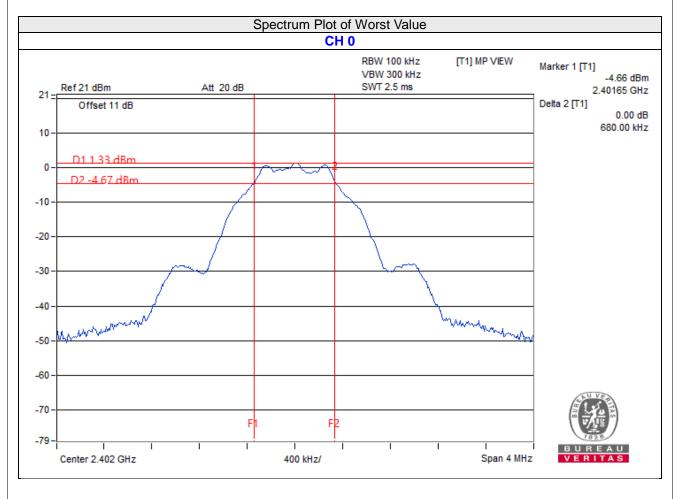
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation from Test Standard

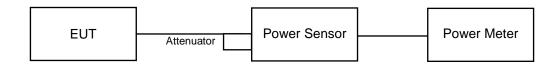
No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.68	0.5	Pass
19	2440	0.68	0.5	Pass
39	2480	0.68	0.5	Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

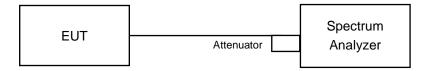
4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	2.203	3.43	30	Pass
19	2440	2.203	3.43	30	Pass
39	2480	2.317	3.65	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	1.786	2.52
19	2440	1.795	2.54
39	2480	1.928	2.85



4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

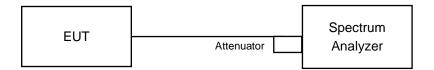
No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.3.6.

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	2402	-13.87	8	Pass
19	2440	-13.98	8	Pass
39	2480	-13.38	8	Pass



4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

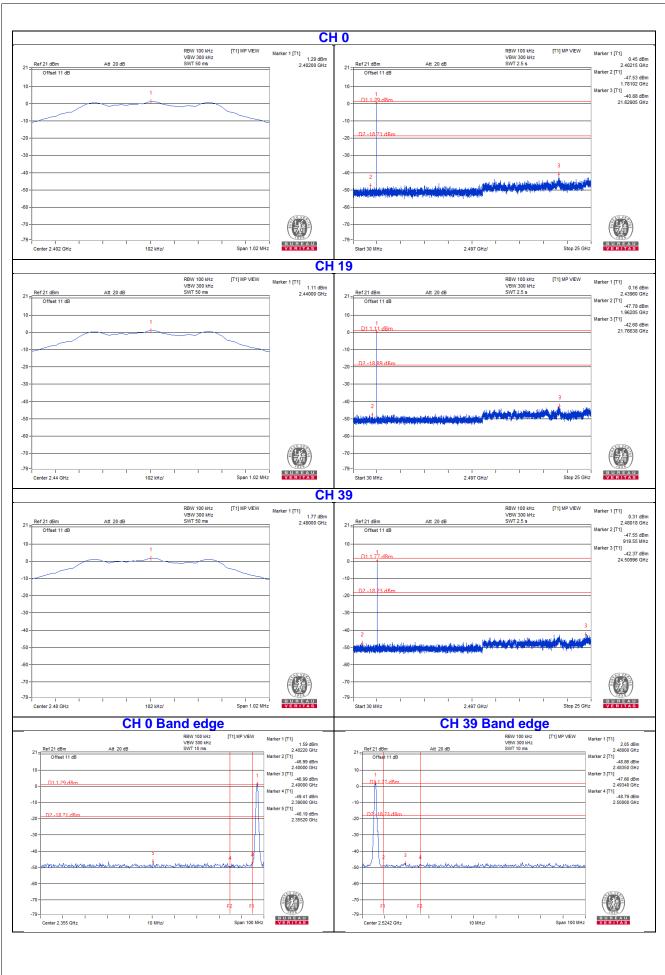
MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

No deviation.

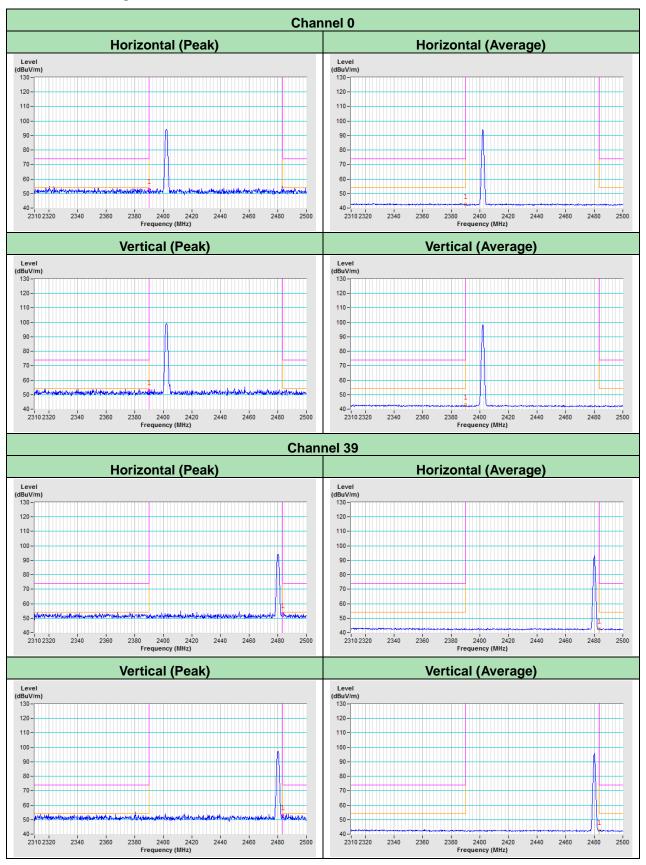
4.6.6 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest and highest channel frequencies individually.

4.6.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

Report Format Version: 6.1.1



5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Annex A - Band-Edge Measurement

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---