

FCC Test Report (NFC)

Report No.: RF200601E06-4

FCC ID: MQT-AT100R3

Test Model: xCL AT-100-R3-18U

Received Date: June 01, 2020

Test Date: July 05 to 15, 2020

Issued Date: Oct. 16, 2020

Applicant: XAC AUTOMATION CORP.

Address: 4F, No. 30, INDUSTRY E. RD. IX, SCIENCE-BASED INDUSTRIAL

PARK, HSINCHU, TAIWAN

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

FCC Registration /

723255 / TW2022 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	Release Control Record3				
1		Certificate of Conformity	4		
2	;	Summary of Test Results	5		
	2.1 2.2	Measurement Uncertainty Modification Record			
3		General Information	6		
	3.1 3.2 3.2.1 3.3 3.3.1 3.4	Description of Support Units Configuration of System under Test General Description of Applied Standards	8 9 .11 12 13		
4		Test Types and Results	14		
	4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5	Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Frequency Stability	14 15 17 17 18 18 19 33 33 34 34 35 36 38 38 38 38 39 40 40 40 40 40 40		
		Test Results			
5		Pictures of Test Arrangements			
ΑĮ	Appendix – Information of the Testing Laboratories43				

Release Control Record

Issue No.	Description	Date Issued
RF200601E06-4	Original release.	Oct. 16, 2020

1 Certificate of Conformity

Product: Terminal

Brand: XAC

Test Model: xCL_AT-100-R3-18U

Sample Status: ENGINEERING SAMPLE

Applicant: XAC AUTOMATION CORP.

Test Date: July 05 to 15, 2020

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.225)

47 CFR FCC Part 15, Subpart C (Section 15.215)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : , Date: Oct. 16, 2020

Joyce Kuo / Specialist

Approved by : , Date: Oct. 16, 2020

Clark Lin / Technical Manager

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.225, 15.215)							
FCC Clause	Test Item	Result	Remarks					
15.207	15.207 Conducted emission test		Meet the requirement of limit. Minimum passing margin is -20.47dB at 16.61719MHz.					
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz		Meet the requirement of limit. Minimum passing margin is -5.9dB at 48.99MHz.					
The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz		PASS	Meet the requirement of limit.					
		PASS	Meet the requirement of limit.					
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	PASS	Meet the requirement of limit. Minimum passing margin is -7.6dB at 50.05MHz.					
15.225 (e)	The frequency tolerance	PASS	Meet the requirement of limit.					
15.215 (c)	20dB Bandwidth	PASS	Meet the requirement of limit.					
15.203 Antenna Requirement		PASS	Antenna connector is i-pex(MHF) not a standard connector.					

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Conducted emissions	-	2.5 dB
Dedicted Emissions up to 1 CUz	9kHz ~ 30MHz	3.1 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.4 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (NFC)

Product	Terminal
Brand	XAC
Test Model	xCL_AT-100-R3-18U
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	Refer to note
Modulation Type	ASK
Transfer Rate	Refer to Note
Operating Frequency	13.56MHz
Number of Channel	1
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	Battery x1 (Option)
Data Cable Supplied	NA

Note:

1. The EUT has three radios as following table:

Radio 1	Radio 2	Radio 3
WLAN(2.4GHz + 5GHz) + Bluetooth	WWAN(LTE + WCDMA)	NFC

2. Simultaneously transmission condition.

Condition	Techr	nology
1	WWAN	NFC
2	WWAN	Bluetooth
3	WLAN 2.4GHz	NFC
4	WLAN 5GHz	NFC
5	Bluetooth	NFC

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

3. The EUT must be supplied power adapter and battery as following table:

Adapter (Only test not for sale)					
Brand	Model	Specification			
MASS POWER	NBS10B050200VUU	AC Input: 100-240Vac, 0.3A, 50-60Hz DC Output: 5Vdc, 2A			
Battery (Option)					
Brand	Model	Specification			
Shenzhen Rishengzhi Electronics Technology Co., Ltd.	J625	3.7V, 3000mAh, 11.1Wh			

4. The antennas provided to the EUT, please refer to the following table:

Antenna Set	RF Chain NO.	Brand	Model	Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connecter Type
NFC	Main	XAC	RTOS	13	13.56MHz	wire	None
Wi-Fi	Main	0\0/0 NI	AVECD 100000	2.31	2.4~2.4835GHz	DIEA	i pov/MUE)
ВТ	Main	AWAN	AYF6P-100002	2.99	5.15~5.85GHz	PIFA	i-pex(MHF)
	Main(B2) TX			1.19	1850 MHz to 1910 MHz		
	Main(B4) TX		AWAN AXF6P- 100013	2.67	1710 MHz to 1755 MHz	PIFA	i-pex(MHF)
	Main(B12) TX	AWAN		0.82	699 MHz to 715 MHz		
LTE	Main(B2) RX			2.35	1930 MHz to 1990 MHz		
	Main(B4) RX			2.05	2110 MHz to 2155 MHz		
	Main(B12) RX				2.45	729 MHz to 745 MHz	
	Aux(B2) RX	Aux(B2) RX		2.54	1930 MHz to 1990 MHz	PIFA	
LTE	Aux(B4) RX	AWAN	WAN AXF6P- 100005	-0.26	2110 MHz to 2155 MHz		i-pex(MHF)
	Aux(B12) RX		100005	-1.21	729 MHz to 746 MHz		
	Main(B2) TX			1.19	1850 MHz to 1910 MHz		
14/05144	Main(B5) TX		AWAN AXF6P- 100013	0.12	824 MHz to 849 MHz	PIFA	i-pex(MHF)
WCDMA	Main(B2) RX	AWAN		2.35	1930 MHz to 1990 MHz		:(\(\D)
	Main(B5) RX			2.62	869 MHz to 894 MHz		i-pex(MHF)
MCDMA	Aux(B2) RX	0\0/0 N1	AXF6P-	2.54	1930 MHz to 1990 MHz	5.54	(1.41.15)
WCDMA	Aux(B5) RX AWAN 100005	1.19	869 MHz to 894 MHz	PIFA	i-pex(MHF)		

5. The EUT was pre-tested for radiated test under following test modes:

Pre-test Mode	Power	
1 To tost Wood	1 OWOI	
Mode A	Power from Adapter	
Mode B	Power from Battery	
From the above modes, the worst radiated test was found in Mode A .		

6. The EUT was pre-tested for conducted test under following test modes:

Pre-test Mode	Power	
Mode A	Power from Adapter	
Mode B	Power from Laptop	
From the above modes, the worst radiated test was found in Mode A .		

- 7. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.
- 8. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

One channel was provided to this EUT:

Channel	Frequency (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode		Description			
Mode	RE	PLC	FS	EB	•
-	V	V	V	V	-

Where

RE≥1G: Radiated Emission **FS:** Frequency Stability

PLC: Power Line Conducted Emission **EB:** 20dB Bandwidth measurement

Radiated Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type	
1	1	ASK	

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type	
1	1	ASK	

Frequency Stability:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type	
1	1	ASK	

20dB Bandwidth:

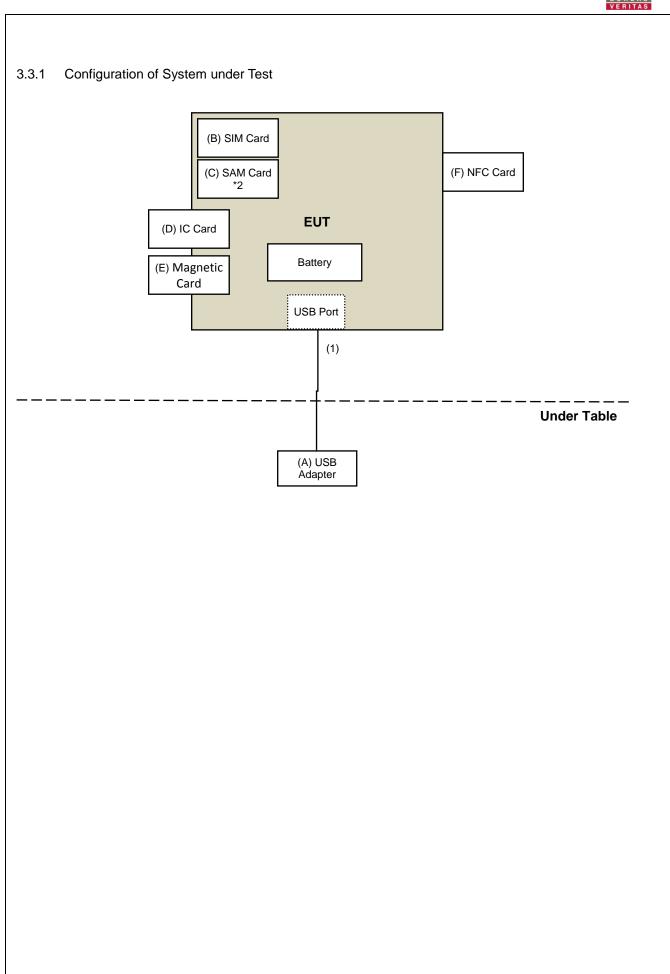
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type
1	1	ASK

Test Condition:

Applicable to	Environmental Conditions	Input Power (System)	Tested By
RE	23deg. C, 69%RH	120Vac, 60Hz	Andy Ho
PLC	PLC 25deg. C, 75%RH		Kevin Ko
FS	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin
EB	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin


3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	USB Adapter	MASS POWER	SS POWER NBS10B050200VUU		NA	Supplied by client
B.	SIM Card	Keysight	NA	NA	NA	Provided by Lab
C.	SAM Card *2	XAC	NA	NA	NA	Supplied by client
D.	IC Card	XAC	NA	NA	NA	Supplied by client
E.	Magnetic Card	XAC	NA	NA	NA	Supplied by client
F.	NFC Card	XAC	NA	NA	NA	Supplied by client

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Type C to USB Cable	1	1.2	Yes	0	Supplied by client

3.4 General Description of Applied Standards						
The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:						
FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215) ANSI C63.10-2013						
All test items have been performed and recorded as per the above standards.						

4 Test Types and Results

4.1 Radiated Emission Measurement

- 4.1.1 Limits of Radiated Emission Measurement
 - (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
 - (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
 - (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
 - (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209 as below table:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. The emission limits shown in the above table are based on measurements employing a CISPR quasipeak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 4. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

For Emission:

MODEL NO	SEDIAL NO	CALIBRATED	CALIBRATED
WODEL NO.	SERIAL NO.	DATE	UNTIL
NOU387	MV54450088	July 06, 2020	July 05, 2021
1190307	101134430000	July 00, 2020	July 03, 2021
EMC001340	980142	May 25, 2020	May 24, 2021
		,	,,
EM-6879	264	Feb. 18, 2020	Feb. 17, 2021
NA	LOOPCAB-001	Jan. 08, 2020	Jan. 07, 2021
NA	LOOPCAB-002	Jan. 08, 2020	Jan. 07, 2021
ZFI -1000VH2B	AMP-7FL-05	Apr 28 2020	Apr. 27, 2021
Z. Z 1000 VI IZB	7 2. 2. 00	7 (pr. 20, 2020	, (p.: 21, 202)
VULB 9168	9168-361	Nov. 11, 2019	Nov. 10, 2020
8D	966-3-1	Mar. 17, 2020	Mar. 16, 2021
8D	966-3-2	Mar. 17, 2020	Mar. 16, 2021
8D	966-3-3	Mar. 17, 2020	Mar. 16, 2021
LINIAT-5+	PAD-3m-3-01	Son 26 2010	Sep. 25, 2020
UNAT-ST	FAD-SIII-S-01	З е р. 20, 2019	3ep. 23, 2020
ADT_Radiated_V8.7.08	NA	NA	NA
MF-7802	MF780208406	NA	NA
	NA NA ZFL-1000VH2B VULB 9168 8D 8D 8D UNAT-5+ ADT_Radiated_V8.7.08	N9038A MY54450088 EMC001340 980142 EM-6879 264 NA LOOPCAB-001 NA LOOPCAB-002 ZFL-1000VH2B AMP-ZFL-05 VULB 9168 9168-361 8D 966-3-1 8D 966-3-2 8D 966-3-2 8D 966-3-3 UNAT-5+ PAD-3m-3-01 ADT_Radiated_V8.7.08 NA	MODEL NO. SERIAL NO. DATE N9038A MY54450088 July 06, 2020 EMC001340 980142 May 25, 2020 EM-6879 264 Feb. 18, 2020 NA LOOPCAB-001 Jan. 08, 2020 NA LOOPCAB-002 Jan. 08, 2020 ZFL-1000VH2B AMP-ZFL-05 Apr. 28, 2020 VULB 9168 9168-361 Nov. 11, 2019 8D 966-3-1 Mar. 17, 2020 8D 966-3-2 Mar. 17, 2020 8D 966-3-3 Mar. 17, 2020 BD 966-3-3 Mar. 17, 2020 UNAT-5+ PAD-3m-3-01 Sep. 26, 2019 ADT_Radiated_V8.7.08 NA NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Tested Date: July 06, 2020

For other test items:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSV40	100964	May 29, 2020	May 28, 2021
Spectrum Analyzer Keysight	N9030A	MY54490679	July 13, 2020	July 12, 2021
Power meter Anritsu	ML2495A	1529002	July 26, 2019	July 25, 2020
Power sensor Anritsu	MA2411B	1339443	July 26, 2019	July 25, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 14, 2020	Apr. 13, 2021
Mech Switch Absorptive Mini-Circuits	MSP4TA-18+	0140	Feb. 10, 2020	Feb. 09, 2021
FXD ATTEN Mini-Circuits	BW-S3W2+	MN71981	Feb. 10, 2020	Feb. 09, 2021
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

NOTE:

- 1. The test was performed in Oven room 2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: July 15, 2020

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak or Average Detects Function and Specified Bandwidth with Maximum Hold Mode.

Note:

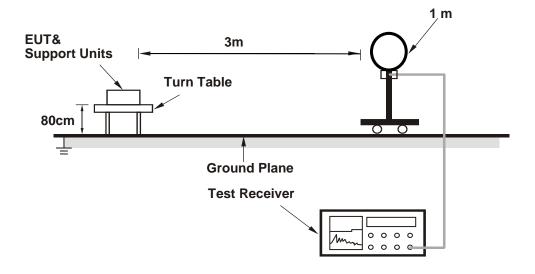
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

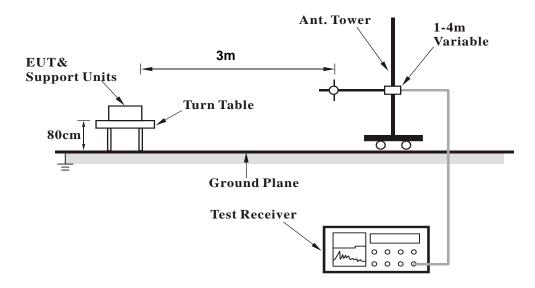
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.


4 4 4	D	C	01 1 1
414	Deviation	from lest	Standard

No deviation.



4.1.5 Test Setup

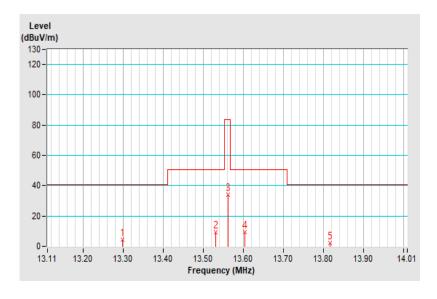
For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

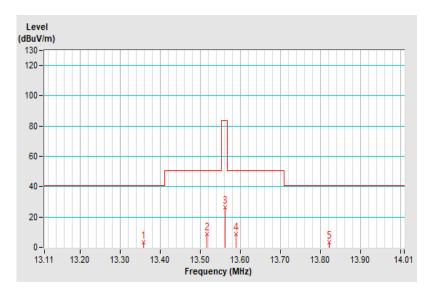

4.1.7 Test Results

Frequency Range	13.11 ~ 14.01MHz	Detector Function	Quasi-Peak
-----------------	------------------	-------------------	------------

	Antenna Polarity : Parallel								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	13.297	4.58 QP	40.51	-35.93	1.00	256	48.07	-43.49	
2	13.530	9.31 QP	50.47	-41.16	1.00	134	52.84	-43.53	
3	*13.561	34.20 QP	84.00	-49.80	1.00	126	77.74	-43.54	
4	13.604	9.36 QP	50.47	-41.11	1.00	304	52.90	-43.54	
5	13.817	2.25 QP	40.51	-38.26	1.00	228	45.83	-43.58	

Remarks:

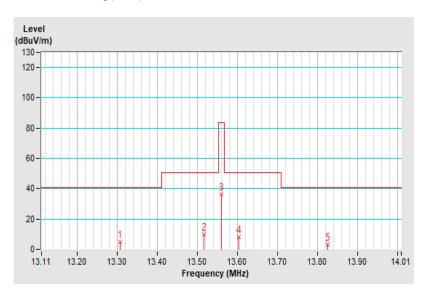
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. For the test distance below $0.49 \sim 30 \text{MHz}$ is 3m, extrapolate the measured field strength to a distance of 30 meters.



Frequency Range 13.11 ~ 14.01MHz Detector Function Quasi-Peak

	Antenna Polarity : Perpendicular								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	13.357	3.29 QP	40.51	-37.22	1.00	142	46.79	-43.50	
2	13.517	8.91 QP	50.47	-41.56	1.00	265	52.44	-43.53	
3	*13.561	26.55 QP	84.00	-57.45	1.00	308	70.09	-43.54	
4	13.590	8.94 QP	50.47	-41.53	1.00	252	52.48	-43.54	
5	13.822	3.53 QP	40.51	-36.98	1.00	203	47.11	-43.58	

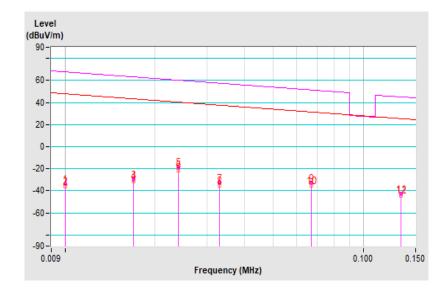
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. For the test distance below $0.49 \sim 30 \text{MHz}$ is 3m, extrapolate the measured field strength to a distance of 30 meters.



Frequency Range 13.11 ~ 14.01MHz Detector Function Quasi-Peak

	Antenna Polarity : Ground-parallel								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	13.306	4.85 QP	40.51	-35.66	1.00	119	48.34	-43.49	
2	13.517	9.91 QP	50.47	-40.56	1.00	264	53.44	-43.53	
3	*13.560	36.34 QP	84.00	-47.66	1.00	115	79.88	-43.54	
4	13.604	8.34 QP	50.47	-42.13	1.00	295	51.88	-43.54	
5	13.826	3.53 QP	40.51	-36.98	1.00	112	47.11	-43.58	

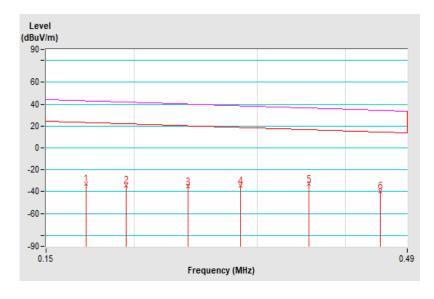
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. For the test distance below $0.49 \sim 30 \text{MHz}$ is 3m, extrapolate the measured field strength to a distance of 30 meters.



Frequency Range 9kHz ~ 150kHz	Detector Function	Peak/Average
-------------------------------	-------------------	--------------

	Antenna Polarity : Parallel								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	0.010	-33.72 PK	67.60	-101.32	1.00	301	9.85	-43.57	
2	0.010	-36.14 AV	47.60	-83.74	1.00	301	7.43	-43.57	
3	0.017	-29.93 PK	62.99	-92.92	1.00	142	16.92	-46.85	
4	0.017	-31.16 AV	43.00	-74.16	1.00	142	15.69	-46.85	
5	0.024	-19.03 PK	60.00	-79.03	1.00	258	30.94	-49.97	
6	0.024	-21.12 AV	40.00	-61.12	1.00	258	28.85	-49.97	
7	0.033	-33.15 PK	57.23	-90.38	1.00	334	20.04	-53.19	
8	0.033	-35.26 AV	37.23	-72.49	1.00	334	17.93	-53.19	
9	0.067	-33.00 PK	51.07	-84.07	1.00	142	26.28	-59.28	
10	0.067	-35.13 AV	31.08	-66.21	1.00	142	24.15	-59.28	
11	0.134	-42.99 PK	45.06	-88.05	1.00	269	22.22	-65.21	
12	0.134	-44.27 AV	25.06	-69.33	1.00	269	20.94	-65.21	

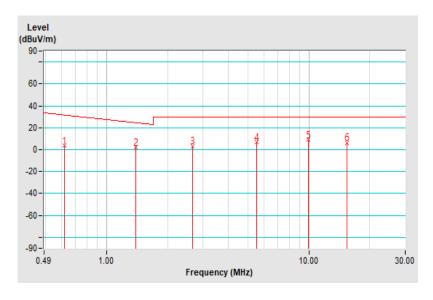
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.



Frequency Range 150kHz ~ 490kHz Detector Function Peak/Average
--

	Antenna Polarity : Parallel									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	0.171	-32.73 QP	22.94	-55.67	1.00	165	34.02	-66.75		
2	0.195	-34.07 QP	21.80	-55.87	1.00	266	33.67	-67.74		
3	0.239	-35.13 QP	20.03	-55.16	1.00	264	34.44	-69.57		
4	0.284	-34.48 QP	18.54	-53.02	1.00	179	36.95	-71.43		
5	0.355	-32.85 QP	16.60	-49.45	1.00	264	40.19	-73.04		
6	0.449	-39.53 QP	14.56	-54.09	1.00	171	35.11	-74.64		

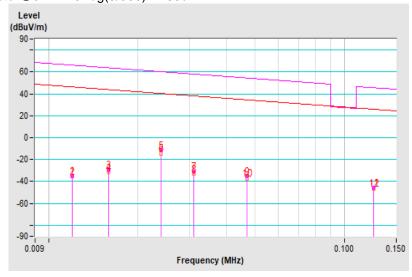
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.



Frequency Range	490kHz ~ 30MHz	Detector Function	Peak/Average
-----------------	----------------	-------------------	--------------

	Antenna Polarity : Parallel										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	0.618	3.70 QP	31.78	-28.08	1.00	245	40.14	-36.44			
2	1.388	2.11 QP	24.75	-22.64	1.00	174	42.37	-40.26			
3	2.671	3.23 QP	29.54	-26.31	1.00	159	46.28	-43.05			
4	5.537	6.75 QP	29.54	-22.79	1.00	263	50.52	-43.77			
5	9.942	8.87 QP	29.54	-20.67	1.00	164	51.81	-42.94			
6	15.459	6.17 QP	29.54	-23.37	1.00	263	50.01	-43.84			

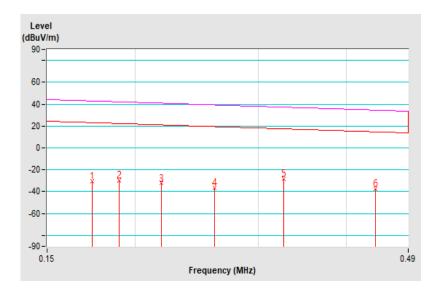
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below $0.49 \sim 30 MHz$ is 3m, extrapolate the measured field strength to a distance of 300 meters.



Frequency Range	9kHz ~ 150kHz	Detector Function	Peak/Average
3			

	Antenna Polarity : Perpendicular								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	0.012	-34.76 PK	66.02	-100.78	1.00	302	9.75	-44.51	
2	0.012	-35.13 AV	46.02	-81.15	1.00	302	9.38	-44.51	
3	0.016	-29.52 PK	63.52	-93.04	1.00	245	16.86	-46.38	
4	0.016	-31.42 AV	43.52	-74.94	1.00	245	14.96	-46.38	
5	0.024	-11.68 PK	60.00	-71.68	1.00	138	38.29	-49.97	
6	0.024	-14.15 AV	40.00	-54.15	1.00	138	35.82	-49.97	
7	0.031	-31.23 PK	57.77	-89.00	1.00	267	21.52	-52.75	
8	0.031	-33.14 AV	37.78	-70.92	1.00	267	19.61	-52.75	
9	0.047	-35.27 PK	54.16	-89.43	1.00	142	20.98	-56.25	
10	0.047	-37.26 AV	34.16	-71.42	1.00	142	18.99	-56.25	
11	0.126	-45.86 PK	45.59	-91.45	1.00	263	19.01	-64.87	
12	0.126	-46.47 AV	25.59	-72.06	1.00	263	18.40	-64.87	

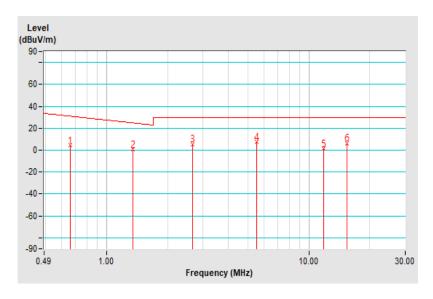
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.



Frequency Range 150kHz ~ 490kHz Detector Function Peak/Average
--

	Antenna Polarity : Perpendicular										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	0.174	-30.41 QP	22.79	-53.20	1.00	141	36.47	-66.88			
2	0.190	-29.54 QP	22.03	-51.57	1.00	302	38.00	-67.54			
3	0.218	-32.28 QP	20.83	-53.11	1.00	269	36.43	-68.71			
4	0.260	-36.55 QP	19.30	-55.85	1.00	147	33.89	-70.44			
5	0.326	-27.92 QP	17.34	-45.26	1.00	224	44.62	-72.54			
6	0.440	-37.41 QP	14.73	-52.14	1.00	196	37.08	-74.49			

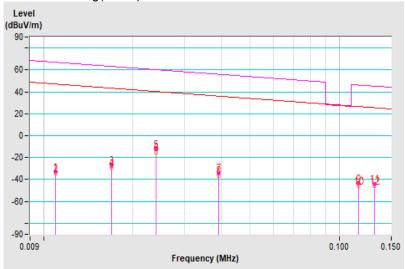
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.



Frequency Range	490kHz ~ 30MHz	Detector Function	Quasi-Peak
-----------------	----------------	-------------------	------------

	Antenna Polarity : Perpendicular										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	0.661	4.32 QP	31.20	-26.88	1.00	142	41.10	-36.78			
2	1.345	0.52 QP	25.02	-24.50	1.00	265	40.70	-40.18			
3	2.671	5.51 QP	29.54	-24.03	1.00	332	48.56	-43.05			
4	5.537	7.42 QP	29.54	-22.12	1.00	263	51.19	-43.77			
5	11.866	1.47 QP	29.54	-28.07	1.00	202	44.72	-43.25			
6	15.459	6.34 QP	29.54	-23.20	1.00	224	50.18	-43.84			

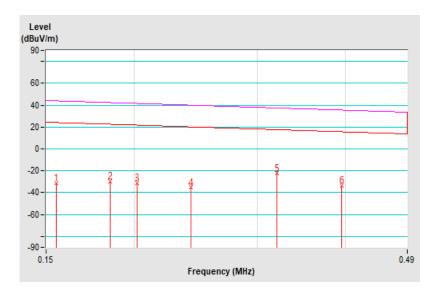
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below $0.49 \sim 30 MHz$ is 3m, extrapolate the measured field strength to a distance of 300 meters.



			_
Frequency Range	9kHz ~ 150kHz	Detector Function	Peak/Average

	Antenna Polarity : Ground-parallel									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	0.011	-32.98 PK	66.78	-99.76	1.00	265	11.06	-44.04		
2	0.011	-34.56 AV	46.78	-81.34	1.00	265	9.48	-44.04		
3	0.017	-27.16 PK	62.99	-90.15	1.00	302	19.69	-46.85		
4	0.017	-29.26 AV	43.00	-72.26	1.00	302	17.59	-46.85		
5	0.024	-12.33 PK	60.00	-72.33	1.00	159	37.64	-49.97		
6	0.024	-15.42 AV	40.00	-55.42	1.00	159	34.55	-49.97		
7	0.039	-34.33 PK	55.78	-90.11	1.00	264	20.18	-54.51		
8	0.039	-36.41 AV	35.78	-72.19	1.00	264	18.10	-54.51		
9	0.116	-43.55 PK	46.31	-89.86	1.00	311	20.92	-64.47		
10	0.116	-46.13 AV	26.31	-72.44	1.00	311	18.34	-64.47		
11	0.132	-43.93 PK	45.19	-89.12	1.00	247	21.19	-65.12		
12	0.132	-46.13 AV	25.19	-71.32	1.00	247	18.99	-65.12		

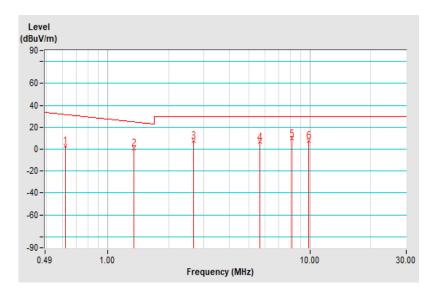
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.



Frequency Range 150kHz ~ 490kHz Detector Function Peak/Average
--

	Antenna Polarity : Ground-parallel										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	0.155	-31.20 QP	23.80	-55.00	1.00	302	34.89	-66.09			
2	0.185	-29.56 QP	22.26	-51.82	1.00	334	37.76	-67.32			
3	0.202	-31.11 QP	21.50	-52.61	1.00	264	36.93	-68.04			
4	0.241	-35.26 QP	19.96	-55.22	1.00	206	34.39	-69.65			
5	0.320	-22.22 QP	17.50	-39.72	1.00	145	50.22	-72.44			
6	0.395	-33.25 QP	15.67	-48.92	1.00	142	40.46	-73.71			

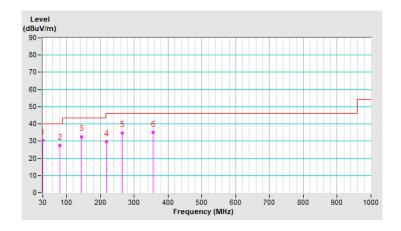
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.



Frequency Range	490kHz ~ 30MHz	Detector Function	Quasi-Peak
-----------------	----------------	-------------------	------------

	Antenna Polarity : Ground-parallel											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	0.618	3.24 QP	31.78	-28.54	1.00	116	39.68	-36.44				
2	1.345	0.78 QP	25.02	-24.24	1.00	264	40.96	-40.18				
3	2.671	7.89 QP	29.54	-21.65	1.00	206	50.94	-43.05				
4	5.665	6.69 QP	29.54	-22.85	1.00	302	50.43	-43.74				
5	8.145	9.76 QP	29.54	-19.78	1.00	242	53.03	-43.27				
6	9.856	7.63 QP	29.54	-21.91	1.00	142	50.59	-42.96				

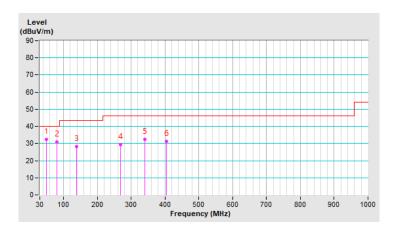
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below $0.49 \sim 30 MHz$ is 3m, extrapolate the measured field strength to a distance of 300 meters.



Frequency Range	30MHz ~ 1000MHz	Detector Function	Quasi-Peak	

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	30.39	30.5 QP	40.0	-9.5	2.00 H	0	39.3	-8.8			
2	81.17	27.6 QP	40.0	-12.4	2.00 H	328	40.4	-12.8			
3	145.24	32.6 QP	43.5	-10.9	2.00 H	77	39.6	-7.0			
4	219.08	29.8 QP	46.0	-16.2	1.50 H	245	39.6	-9.8			
5	264.89	34.9 QP	46.0	-11.1	1.00 H	96	42.2	-7.3			
6	356.02	35.1 QP	46.0	-10.9	1.00 H	245	39.2	-4.1			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



Frequency Range 30MHz ~ 1000MHz Detector Function Quasi-Peak	requency Range	30MHz ~ 1000MHz	Detector Function	Quasi-Peak
--	----------------	-----------------	-------------------	------------

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	50.05	32.4 QP	40.0	-7.6	2.00 V	40	39.9	-7.5			
2	80.78	30.9 QP	40.0	-9.1	1.00 V	68	43.6	-12.7			
3	139.00	28.2 QP	43.5	-15.3	1.00 V	57	35.5	-7.3			
4	268.01	29.2 QP	46.0	-16.8	1.50 V	135	36.3	-7.1			
5	340.01	32.3 QP	46.0	-13.7	2.00 V	275	36.9	-4.6			
6	404.01	31.1 QP	46.0	-14.9	1.50 V	265	34.0	-2.9			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MHz)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

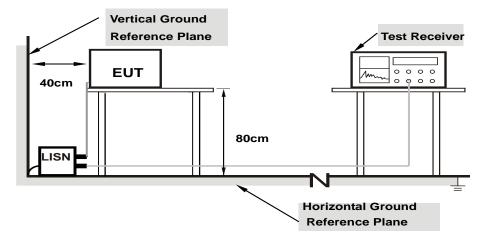
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 19, 2020	Mar. 18, 2021
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	005	Aug. 30, 2019	Aug. 29, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: July 05, 2020


4.2.3 Test Procedures

a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.

	units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
b.	Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
C.	The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.
Not	te: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
4.2.4	Deviation from Test Standard
No	deviation.

4.2.5 Test Setup

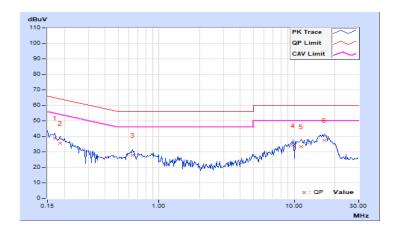
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

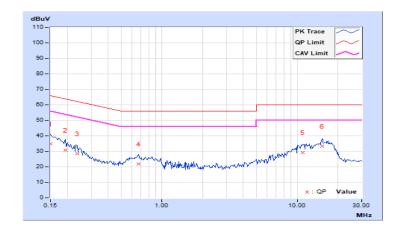

4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)	
-------	----------	-------------------	-----------------------------------	--

	Corr.		Reading Value		Emission Level		Limit		Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16953	10.03	28.95	10.37	38.98	20.40	64.98	54.98	-26.00	-34.58
2	0.18516	10.03	25.64	12.05	35.67	22.08	64.25	54.25	-28.58	-32.17
3	0.64219	10.08	17.77	10.15	27.85	20.23	56.00	46.00	-28.15	-25.77
4	9.74609	10.76	23.14	14.32	33.90	25.08	60.00	50.00	-26.10	-24.92
5	11.29297	10.87	22.53	14.48	33.40	25.35	60.00	50.00	-26.60	-24.65
6	16.61719	11.25	26.26	18.28	37.51	29.53	60.00	50.00	-22.49	-20.47

Remarks:

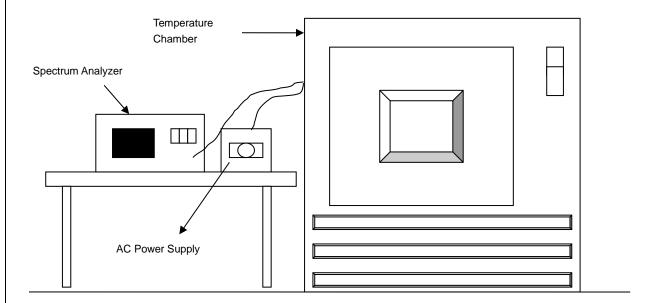
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)

	Гтос	Corr.	Readin	g Value	Emissio	n Level	Lir	nit	Mar	gin
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB ((uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.02	24.96	11.25	34.98	21.27	66.00	56.00	-31.02	-34.73
2	0.19297	10.04	20.70	5.13	30.74	15.17	63.91	53.91	-33.17	-38.74
3	0.23594	10.04	18.65	3.58	28.69	13.62	62.24	52.24	-33.55	-38.62
4	0.66953	10.09	11.61	5.58	21.70	15.67	56.00	46.00	-34.30	-30.33
5	11.05078	10.75	18.64	8.35	29.39	19.10	60.00	50.00	-30.61	-30.90
6	15.24219	10.97	22.53	11.55	33.50	22.52	60.00	50.00	-26.50	-27.48

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of –20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turned the EUT on and coupled its output to a spectrum analyzer.
- c. Turned the EUT off and set the chamber to the highest temperature specified.
- d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency after 2, 5, and 10 minutes.
- e. Repeated step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.3.5 Deviation from Test Standard

No deviation.

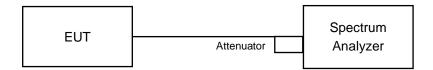
4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

Frequemcy Stability Versus Temp.									
		0 Minute		2 Minutes		5 Minutes		10 Minutes	
TEMP. (°C)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency		Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
40	120	13.56006	0.00044	13.56005	0.00037	13.56006	0.00044	13.56006	0.00044
30	120	13.55996	-0.00029	13.55996	-0.00029	13.55997	-0.00022	13.55997	-0.00022
20	120	13.55993	-0.00052	13.55992	-0.00059	13.55992	-0.00059	13.55993	-0.00052
10	120	13.55995	-0.00037	13.55996	-0.00029	13.55996	-0.00029	13.55996	-0.00029
0	120	13.56007	0.00052	13.56006	0.00044	13.56006	0.00044	13.56006	0.00044

Frequemcy Stability Versus Voltage									
		0 Minute		2 Minutes		5 Minutes		10 Minutes	
TEMP. (°C)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
	138	13.55993	-0.00052	13.55992	-0.00059	13.55992	-0.00059	13.55993	-0.00052
20	120	13.55993	-0.00052	13.55992	-0.00059	13.55992	-0.00059	13.55993	-0.00052
	102	13.55993	-0.00052	13.55992	-0.00059	13.55992	-0.00059	13.55993	-0.00052



4.4 20dB Bandwidth

4.4.1 Limits of 20dB BANDWIDTH Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

4.4.3 Test Instruments

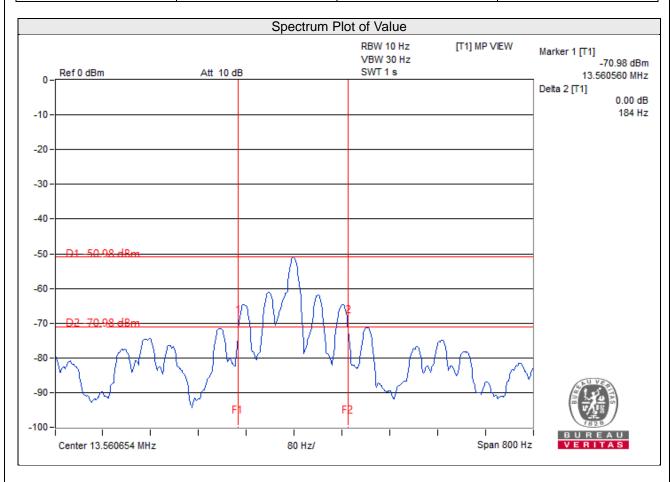
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 10kHz RBW and 30kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.


4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

20dBc Point (Low)	20dBc Point (High)	Operating Frequency	Pass/Fail
(MHz)	(MHz)	Band (MHz)	
13.56056	13.560744	13.11 – 14.01	Pass

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---