



## Appendix C. Maximum Permissible Exposure

## 1. Maximum Permissible Exposure

### 1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.25 m normally can be maintained between the user and the device.

#### (A) Limits for Occupational / Controlled Exposure

| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (H) (A/m) | Power Density (S) (mW/ cm <sup>2</sup> ) | Averaging Time  E  <sup>2</sup> ,  H  <sup>2</sup> or S (minutes) |
|-----------------------|-----------------------------------|-----------------------------------|------------------------------------------|-------------------------------------------------------------------|
| 0.3-3.0               | 614                               | 1.63                              | (100)*                                   | 6                                                                 |
| 3.0-30                | 1842 / f                          | 4.89 / f                          | (900 / f)*                               | 6                                                                 |
| 30-300                | 61.4                              | 0.163                             | 1.0                                      | 6                                                                 |
| 300-1500              |                                   |                                   | F/300                                    | 6                                                                 |
| 1500-100,000          |                                   |                                   | 5                                        | 6                                                                 |

#### (B) Limits for General Population / Uncontrolled Exposure

| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (H) (A/m) | Power Density (S) (mW/ cm <sup>2</sup> ) | Averaging Time  E  <sup>2</sup> ,  H  <sup>2</sup> or S (minutes) |
|-----------------------|-----------------------------------|-----------------------------------|------------------------------------------|-------------------------------------------------------------------|
| 0.3-1.34              | 614                               | 1.63                              | (100)*                                   | 30                                                                |
| 1.34-30               | 824/f                             | 2.19/f                            | (180/f)*                                 | 30                                                                |
| 30-300                | 27.5                              | 0.073                             | 0.2                                      | 30                                                                |
| 300-1500              |                                   |                                   | F/1500                                   | 30                                                                |
| 1500-100,000          |                                   |                                   | 1.0                                      | 30                                                                |

Note: f = frequency in MHz ; \*Plane-wave equivalent power density

### 1.2. MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 \times P \times G}}{d}$$

$$\text{Power Density: } Pd \text{ (W/m}^2\text{)} = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

### 1.3. Calculated Result and Limit

<For WLAN Function>:

Antenna Type : Dipole Antenna

Max Conducted Power for IEEE 802.11n (2.4GHz) 20MHz : 21.42dBm

| Antenna Gain (dBi) | Antenna Gain (numeric) | Peak Output Power (dBm) | Peak Output Power (mW) | Power Density (S) (mW/cm <sup>2</sup> ) | Limit of Power Density (S) (mW/cm <sup>2</sup> ) | Test Result |
|--------------------|------------------------|-------------------------|------------------------|-----------------------------------------|--------------------------------------------------|-------------|
| 2                  | 1.5849                 | 21.4200                 | 138.6756               | 0.043747                                | 1                                                | Complies    |

**<For GSM 850 Function>:**

**3G USB Dongle 1 (Mode 1), FCC ID: Q78-ZTEMF626**

**Antenna Type : Fixed Internal Antenna**

| Frequency (MHz) | ERP power(dBm) | EIRP(dBm) | EIRP(mW)  | Power Density (S) (mW/cm <sup>2</sup> ) | Limit of Power Density (S) (mW/cm <sup>2</sup> ) | Test Result |
|-----------------|----------------|-----------|-----------|-----------------------------------------|--------------------------------------------------|-------------|
| 824.2           | 27.4900        | 29.6300   | 918.3326  | 0.1828                                  | 0.549                                            | Complies    |
| 836.4           | 28.9600        | 31.1000   | 1288.2496 | 0.256419                                | 0.549                                            | Complies    |
| 848.8           | 29.9900        | 32.1300   | 1633.0519 | 0.325050                                | 0.549                                            | Complies    |

**CONCLUSION:**

Both of the WLAN and GSM 850 can transmit simultaneously, the formula of calculated the MPE is:

**CPD1 / LPD1 + CPD2 / LPD2 + .....etc. < 1**

**CPD = Calculation power density**

**LPD = Limit of power density**

Therefore, the worst-case situation is  $0.043747 / 1 + 0.325050 / 0.549 = 0.635824$ , which is less than "1".

This confirmed that the device comply with FCC 1.1310 MPE limit.

<For GSM 850 Function>

3G USB Dongle 2 (Mode 2), FCC ID: QISE169

Antenna Type : Fixed Internal Antenna

| Frequency (MHz) | ERP power(dBm) | EIRP(dBm) | EIRP(mW)  | Power Density (S) (mW/cm <sup>2</sup> ) | Limit of Power Density (S) (mW/cm <sup>2</sup> ) | Test Result |
|-----------------|----------------|-----------|-----------|-----------------------------------------|--------------------------------------------------|-------------|
| 824.2           | 31.7800        | 33.9200   | 2466.0393 | 0.490852                                | 0.549                                            | Complies    |
| 836.4           | 31.7500        | 33.8900   | 2449.0632 | 0.487473                                | 0.549                                            | Complies    |
| 848.8           | 31.7300        | 33.8700   | 2437.8108 | 0.485233                                | 0.549                                            | Complies    |

#### CONCLUSION:

Both of the WLAN and GSM 850 can transmit simultaneously, the formula of calculated the MPE is:

$CPD1 / LPD1 + CPD2 / LPD2 + \dots \text{etc.} < 1$

**CPD = Calculation power density**

**LPD = Limit of power density**

Therefore, the worst-case situation is  $0.043747 / 1 + 0.490852 / 0.549 = 0.937831$ , which is less than "1".

This confirmed that the device comply with FCC 1.1310 MPE limit.

**<For GSM 1900 Function>:**

**3G USB Dongle 3 (Mode 3), FCC ID: QISE220**

**Antenna Type : Fixed Internal Antenna**

| Frequency (MHz) | ERP power(dBm) | EIRP(dBm) | EIRP(mW) | Power Density (S) (mW/cm <sup>2</sup> ) | Limit of Power Density (S) (mW/cm <sup>2</sup> ) | Test Result |
|-----------------|----------------|-----------|----------|-----------------------------------------|--------------------------------------------------|-------------|
| 1850.2          | 26.6700        | 28.8100   | 760.3263 | 0.151339                                | 1                                                | Complies    |
| 1880            | 26.9200        | 29.0600   | 805.3784 | 0.160306                                | 1                                                | Complies    |
| 1909.8          | 26.7900        | 28.9300   | 781.6278 | 0.155579                                | 1                                                | Complies    |

**CONCLUSION:**

Both of the WLAN and GSM 1900 can transmit simultaneously, the formula of calculated the MPE is:

**CPD1 / LPD1 + CPD2 / LPD2 + .....etc. < 1**

**CPD = Calculation power density**

**LPD = Limit of power density**

Therefore, the worst-case situation is  $0.043747 / 1 + 0.160306 / 1 = 0.204053$ , which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.