

RADIO TEST REPORT

Test Report No. : 13561032H-A

Applicant : TOKAI RIKA CO., LTD.

Type of EUT : Smart Key Box

Model Number of EUT : B3V2L2L

FCC ID : MOZB3V2L2L

Test regulation : FCC Part 15 Subpart C: 2020

Test Result : Complied (Refer to SECTION 3.2)

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
2. The results in this report apply only to the sample tested.
3. This sample tested is in compliance with the limits of the above regulation.
4. The test results in this test report are traceable to the national or international standards.
5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
9. The information provided from the customer for this report is identified in Section 1.

Date of test: November 19 and 27, 2020

Representative test engineer:

Akihiko Maeda
Engineer
Consumer Technology Division

Approved by:

Shinichi Miyazono
Engineer
Consumer Technology Division

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.
 There is no testing item of "Non-accreditation".

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

REVISION HISTORY

Original Test Report No.: 13561032H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	13561032H-A	December 8, 2020	-	-

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	MCS	Modulation and Coding Scheme
AC	Alternating Current	MRA	Mutual Recognition Arrangement
AFH	Adaptive Frequency Hopping	N/A	Not Applicable
AM	Amplitude Modulation	NIST	National Institute of Standards and Technology
Amp, AMP	Amplifier	NS	No signal detect.
ANSI	American National Standards Institute	NSA	Normalized Site Attenuation
Ant, ANT	Antenna	NVLAP	National Voluntary Laboratory Accreditation Program
AP	Access Point	OBW	Occupied Band Width
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
BT	Bluetooth	PK	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	RBW	Resolution Band Width
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RSS	Radio Standards Specifications
DSSS	Direct Sequence Spread Spectrum	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
EU	European Union	Vert.	Vertical
EUT	Equipment Under Test	WLAN	Wireless LAN
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		
JAB	Japan Accreditation Board		
LAN	Local Area Network		
LIMS	Laboratory Information Management System		

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Faxsimile : +81 596 24 8124

CONTENTS	PAGE
SECTION 1: Customer information.....	5
SECTION 2: Equipment under test (EUT).....	5
SECTION 3: Test specification, procedures & results.....	6
SECTION 4: Operation of EUT during testing.....	9
SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission).....	11
SECTION 6: Automatically deactivate	13
SECTION 7: -20 dB and 99 % Occupied Bandwidth	13
APPENDIX 1: Test data	14
Automatically deactivate.....	14
Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission).....	15
-20 dB and 99% Occupied Bandwidth.....	18
APPENDIX 2: Test instruments	20
APPENDIX 3: Photographs of test setup	21
Radiated emission	21
Worst case position	23

SECTION 1: Customer information

Company Name : TOKAI RIKA CO., LTD.
Address : 3-260 Toyota, Oguchi-cho, Niwa-gun, Aichi-ken, 480-0195 Japan
Telephone Number : +81-587-95-0093
Facsimile Number : +81-587-95-5471
Contact Person : Hiroki Unno

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Smart Key Box
Model Number : B3V2L2L
Serial Number : Refer to SECTION 4.2
Rating : DC 12.0 V
Receipt Date : November 18, 2020
Condition : Engineering prototype
(Not for Sale: This sample is equivalent to mass-produced items.)
Modification : No Modification by the test lab

2.2 Product Description

Model: B3V2L2L (referred to as the EUT in this report) is a Smart Key Box mainly performs the functions in a Smart Key System and a RKE System.

Radio Specification

Radio Type : Transceiver
Frequency of Operation : Channel1: 314.35 MHz
Channel2: 312.10 MHz
Modulation : FSK
Antenna Type : Pattern Antenna, 3D Antenna
Operating Temperature Range : -30 deg. C to +80 deg. C
Operating Voltage Range : DC 8 V to 16 V
Clock Frequency (maximum) : 18.37 MHz
Receiving frequency of Operation : 125 kHz / 134.2 kHz *1)

*1) The test of receiver part was performed separately from this test report, and the conformability is confirmed.

[Bluetooth Specification] *

Frequency of Operation : 2402 MHz - 2480 MHz
Type of Modulation : GFSK

*The BLE module is a FCC certificated module.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C
 FCC Part 15 final revised on October 13, 2020

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators
 Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks			
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.207	N/A	N/A	*)			
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8						
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(a)(1)	N/A	Complied a)	Radiated			
	ISED: -	ISED: RSS-210 A1.1						
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(b)	3.9 dB 312.100 MHz Vertical PK with Duty factor	Complied# b)	Radiated			
	ISED: RSS-Gen 6.12	ISED: RSS-210 A1.2						
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.205 Section 15.209 Section 15.231(b)	4.4 dB 2829.150 MHz Horizontal PK with Duty factor <314.35 MHz>	Complied# b)	Radiated			
	ISED: RSS-Gen 6.13	ISED: RSS-210 A1.2 RSS-Gen 8.9						
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods	FCC: Section 15.231(c)	N/A	Complied c)	Radiated			
	ISED: -	ISED: Reference data						
Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.								
*) The test is not applicable since the EUT does not have AC Mains.								
a) Refer to APPENDIX 1 (data of Automatically deactivate)								
b) Refer to APPENDIX 1 (data of Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission))								
c) Refer to APPENDIX 1 (data of -20 dB and 99% Occupied Bandwidth)								
Symbols: Complied The data of this test item has enough margin, more than the measurement uncertainty. Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.								

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

The antenna is not removable from the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: RSS-210 A1.3	N/A	-	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor $k = 2$.

Radiated emission

Measurement distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.3 dB
		3.2 dB
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.8 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz	4.9 dB
	6 GHz to 18 GHz	5.2 dB
1 m	10 GHz to 26.5 GHz	5.5 dB
	26.5 GHz to 40 GHz	5.5 dB
10 m	1 GHz to 18 GHz	5.2 dB

Antenna Terminal test

Test Item	Uncertainty (+/-)
Automatically Deactivate	0.10 %
-20 dB Emission Bandwidth / 99 % Occupied Bandwidth	0.96 %

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 199967 / ISED Lab Company Number: 2973C
 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
 Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
 Telephone : +81 596 24 8999
 Facsimile : +81 596 24 8124

SECTION 4: Operation of EUT during testing

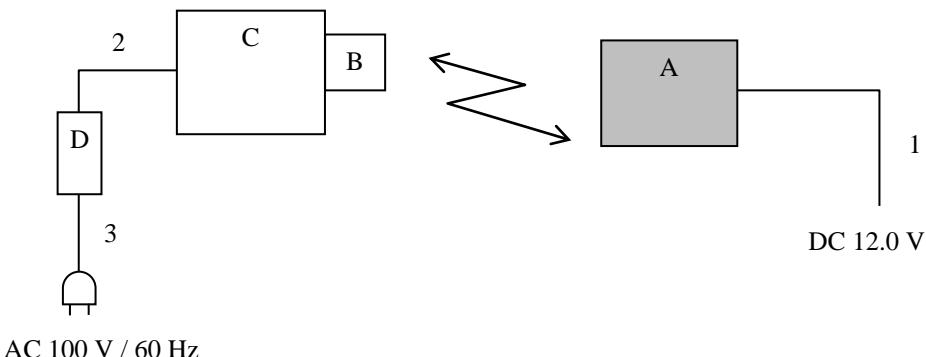
4.1 Operating Mode(s)

Test Item*	Mode
Automatically Deactivate	1) Normal use mode *1)
Electric Field Strength of Fundamental Emission	2) Transmitting mode (Tx)
Electric Field Strength of Spurious Emission -20 dB & 99 % Occupied Bandwidth	
* The system was configured in typical fashion (as a user would normally use it) for testing.	
*1) Once UHF transmission from BLE Dongle operating	
* EUT was set by the software as follows;	
Software:	
<Normal use mode>	
TMNA_15CY_SKB_v100_NorthAmerica_NoOnline.mot Version 1.00	
(Date: 2020.11.19, Storage location: EUT memory)	
<Transmitting mode>	
R5F10PLJ.mot Version 1.00	
(Date: 2020.11.19, Storage location: EUT memory)	
*This setting of software is the worst case.	
Any conditions under the normal use do not exceed the condition of setting.	
In addition, end users cannot change the settings of the output power of the product.	

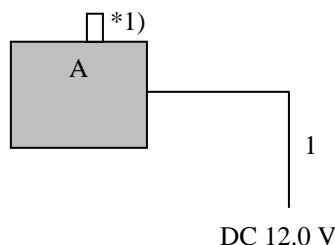
Justification: The system was configured in typical fashion (as a user would normally use it) for testing.

UL Japan, Inc.

Ise EMC Lab.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999


Facsimile : +81 596 24 8124

4.2 Configuration and peripherals

[Mode 1]

[Mode 2]

*1) Toggle switch

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Smart Key Box	B3V2L2L	001 *1) 002 *2)	TOKAIRIKA CO., LTD.	EUT
B	BLE Dongle	BLED112	1	Silicon Labs	-
C	Laptop PC	PR63PBAA337AD7X	6F053983H	TOSHIBA	-
D	AC Adapter	PA51770-1ACA	FX1200E91PCC	TOSHIBA	-

*1) Used for Mode 1

*2) Used for Mode 2

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	0.75 *1) 1.45 *2)	Unshielded	Unshielded	-
2	DC Cable	1.70	Unshielded	Unshielded	-
3	AC Cable	0.80	Unshielded	Unshielded	-

*1) Used for Radiated emission (Below 1 GHz) test only.

*2) Other tests except for Radiated emission (Below 1 GHz) test

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 30 MHz]

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

[For 30 MHz to 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

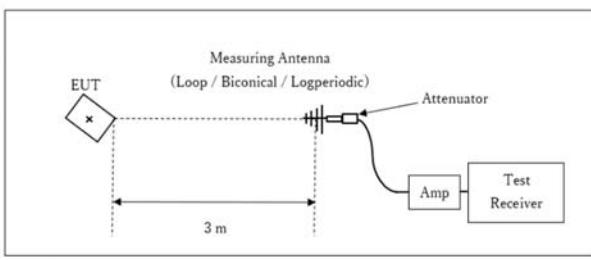
The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

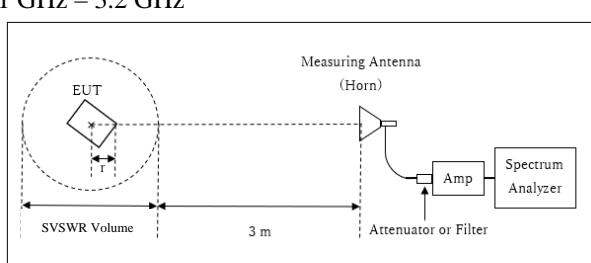
Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.


Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn


	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with Duty factor	Peak and Peak with Duty factor
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz, VBW: 3 MHz

[Test Setup]

Below 1 GHz

1 GHz – 3.2 GHz

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

*The result is rounded off to the second decimal place, so some differences might be observed.

Measurement range

: 9 kHz - 3.2 GHz

Test data

: APPENDIX

Test result

: Pass

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX
Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	200 MHz	1.5 kHz	5.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer

Peak hold was applied as Worst-case measurement.

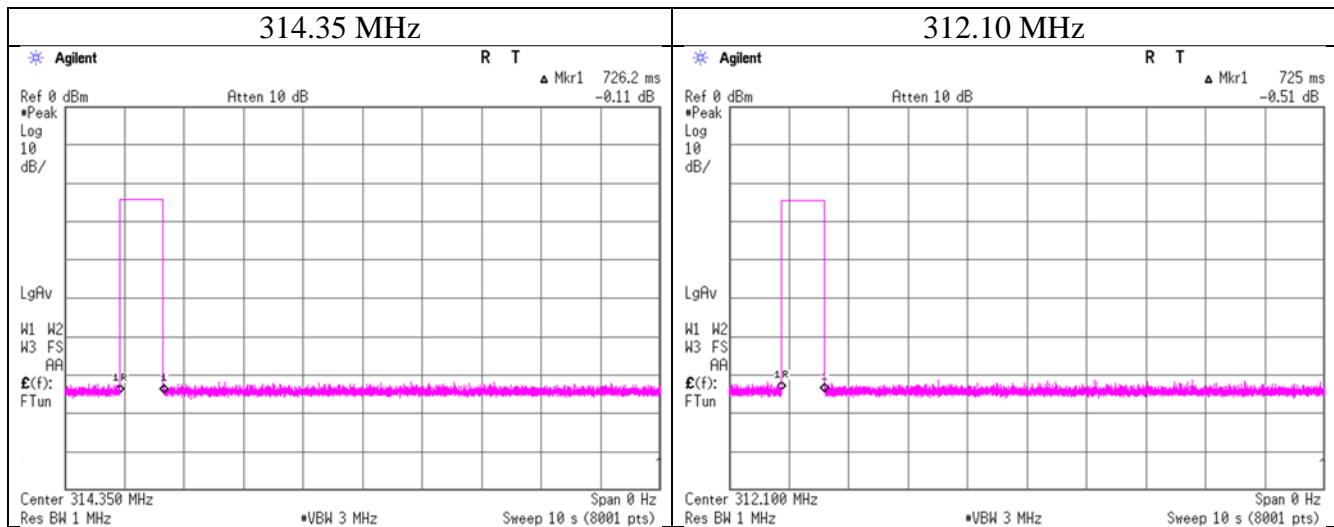
Test data : APPENDIX
Test result : Pass

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999


Facsimile : +81 596 24 8124

APPENDIX 1: Test data

Automatically deactivate 314.35 MHz / 312.10 MHz

Report No. 13561032H
 Test place Ise EMC Lab.
 Semi Anechoic Chamber No.3
 Date November 19, 2020
 Temperature / Humidity 24 deg. C / 48 % RH
 Engineer Akihiko Maeda
 Mode Mode 1

	Time of Transmitting [sec]	Limit [sec]	Result
314.35 MHz	0.7262	5.00	Pass
312.10 MHz	0.7250	5.00	Pass

* The test was performed by a request signal (BLE) from BLE Dongle operation as representative, because the EUT transmits UHF when LF signal is received from a vehicle or a request signal (BLE) from BLE Dongle is received, and the UHF transmission is stopped within 5 seconds even when receiving LF signal from vehicle.
 (Refer to Theory of operation-specification.)

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13561032H
 Test place Ise EMC Lab.
 Semi Anechoic Chamber No.4
 Date November 27, 2020
 Temperature / Humidity 23 deg. C / 43 % RH
 Engineer Akihiko Maeda
 Mode Mode 2, Tx 314.35 MHz

QP or PK		Frequency [MHz]	Detector	Reading [dBuV]		Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]		Limit [dBuV/m]	Margin [dB]		Remark Inside or Outside of Restricted Bands
Hor	Ver			[dB/m]	Hor					Hor	Ver		Hor	Ver	
314.350	PK	78.1	79.3	13.9	9.7	32.0	-	69.7	70.9	95.5	25.8	24.6	Carrier		
628.700	PK	48.2	48.3	19.4	11.3	32.0	-	47.0	47.1	75.5	28.5	28.4	Outside		
943.050	PK	35.8	35.2	21.8	12.6	30.7	-	39.5	38.9	75.5	36.0	36.6	Outside		
1257.400	PK	46.2	44.2	25.2	6.1	33.8	-	43.7	41.7	75.5	31.8	33.8	Outside		
1571.750	PK	44.8	44.5	25.0	5.5	33.0	-	42.3	42.0	73.9	31.7	32.0	Inside		
1886.100	PK	42.6	42.6	25.4	5.5	32.3	-	41.3	41.3	75.5	34.2	34.2	Outside		
2200.450	PK	42.4	42.4	28.2	5.6	31.9	-	44.3	44.3	73.9	29.6	29.6	Inside		
2514.800	PK	44.7	44.6	27.7	5.7	31.8	-	46.3	46.2	75.5	29.3	29.4	Outside		
2829.150	PK	46.9	46.4	28.5	5.8	31.7	-	49.5	49.0	73.9	24.4	24.9	Inside		
3143.500	PK	44.1	44.5	28.8	5.9	31.6	-	47.2	47.6	75.5	28.3	27.9	Outside		

PK with Duty factor

PK with Duty factor		Frequency [MHz]	Detector	Reading [dBuV]		Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]		Limit [dBuV/m]	Margin [dB]		Remark
Hor	Ver			[dB/m]	Hor					Hor	Ver		Hor	Ver	
314.350	PK	78.1	79.3	13.9	9.7	32.0	0.0	69.7	70.9	75.5	5.8	4.6	Carrier		
628.700	PK	48.2	48.3	19.4	11.3	32.0	0.0	47.0	47.1	55.5	8.5	8.4	Outside		
943.050	PK	35.8	35.2	21.8	12.6	30.7	0.0	39.5	38.9	55.5	16.0	16.6	Outside		
1257.400	PK	46.2	44.2	25.2	6.1	33.8	0.0	43.7	41.7	55.5	11.8	13.8	Outside		
1571.750	PK	44.8	44.5	25.0	5.5	33.0	0.0	42.3	42.0	53.9	11.7	12.0	Inside		
1886.100	PK	42.6	42.6	25.4	5.5	32.3	0.0	41.3	41.3	55.5	14.2	14.2	Outside		
2200.450	PK	42.4	42.4	28.2	5.6	31.9	0.0	44.3	44.3	53.9	9.6	9.6	Inside		
2514.800	PK	44.7	44.6	27.7	5.7	31.8	0.0	46.3	46.2	55.5	9.2	9.3	Outside		
2829.150	PK	46.9	46.4	28.5	5.8	31.7	0.0	49.5	49.0	53.9	4.4	4.9	Inside		
3143.500	PK	44.1	44.5	28.8	5.9	31.6	0.0	47.2	47.6	55.5	8.3	7.9	Outside		

Sample calculation:

Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1GHz) +Distance factor (above 1 GHz)} - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) +Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

For above 1GHz : Distance Factor: $20 \times \log (4.0 \text{ m}/3.0 \text{ m}) = 2.50 \text{ dB}$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Since the peak emission result satisfied the average limit, duty factor was omitted.

Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Faxsimile : +81 596 24 8124

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13561032H
 Test place Ise EMC Lab.
 Semi Anechoic Chamber No.4
 Date November 27, 2020
 Temperature / Humidity 23 deg. C / 43 % RH
 Engineer Akihiko Maeda
 Mode Mode 2, Tx 312.10 MHz

QP or PK		Frequency [MHz]	Detector	Reading [dBuV]		Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]		Limit [dBuV/m]	Margin [dB]		Remark Inside or Outside of Restricted Bands
Hor	Ver			[dB/m]	Hor					Hor	Ver		Hor	Ver	
312.100	PK	78.4	80.0	13.8	9.7	32.0	-	69.9	71.5	95.4	25.5	23.9	Carrier		
624.200	PK	49.2	48.2	19.4	11.3	32.0	-	48.0	47.0	75.4	27.4	28.4	Outside		
936.300	PK	35.9	35.4	21.9	12.5	30.7	-	39.6	39.1	75.4	35.8	36.3	Outside		
1248.400	PK	45.4	44.4	25.2	6.1	33.8	-	42.8	41.8	75.4	32.6	33.6	Outside		
1560.500	PK	44.9	44.3	25.0	5.5	33.1	-	42.3	41.7	73.9	31.6	32.2	Inside		
1872.600	PK	42.7	42.7	25.4	5.5	32.3	-	41.3	41.3	75.4	34.1	34.1	Outside		
2184.700	PK	42.4	42.4	28.2	5.5	31.9	-	44.2	44.2	75.4	31.2	31.2	Outside		
2496.800	PK	44.2	44.3	27.6	5.7	31.8	-	45.7	45.8	73.9	28.2	28.1	Inside		
2808.900	PK	46.8	46.7	28.5	5.8	31.7	-	49.4	49.3	73.9	24.5	24.6	Inside		
3121.000	PK	43.9	44.2	28.9	5.9	31.6	-	47.0	47.3	75.4	28.4	28.1	Outside		

PK with Duty factor

Frequency [MHz]	Detector	Reading [dBuV]		Ant Factor [dB/m]	Loss [dB]	Gain [dB]	Duty Factor [dB]	Result [dBuV/m]		Limit [dBuV/m]	Margin [dB]		Remark
		Hor	Ver					Hor	Ver		Hor	Ver	
		[dB/m]	Hor	Ver	[dB]	[dB]	[dB]	Hor	Ver	Hor	Ver	Hor	Ver
312.100	PK	78.4	80.0	13.8	9.7	32.0	0.0	69.9	71.5	75.4	5.5	3.9	Carrier
624.200	PK	49.2	48.2	19.4	11.3	32.0	0.0	48.0	47.0	55.4	7.4	8.4	Outside
936.300	PK	35.9	35.4	21.9	12.5	30.7	0.0	39.6	39.1	55.4	15.8	16.3	Outside
1248.400	PK	45.4	44.4	25.2	6.1	33.8	0.0	42.8	41.8	55.4	12.6	13.6	Outside
1560.500	PK	44.9	44.3	25.0	5.5	33.1	0.0	42.3	41.7	53.9	11.6	12.2	Inside
1872.600	PK	42.7	42.7	25.4	5.5	32.3	0.0	41.3	41.3	55.4	14.1	14.1	Outside
2184.700	PK	42.4	42.4	28.2	5.5	31.9	0.0	44.2	44.2	55.4	11.2	11.2	Outside
2496.800	PK	44.2	44.3	27.6	5.7	31.8	0.0	45.7	45.8	53.9	8.2	8.1	Inside
2808.900	PK	46.8	46.7	28.5	5.8	31.7	0.0	49.4	49.3	53.9	4.5	4.6	Inside
3121.000	PK	43.9	44.2	28.9	5.9	31.6	0.0	47.0	47.3	55.4	8.4	8.1	Outside

Sample calculation:

Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1GHz) +Distance factor (above 1 GHz)} - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) +Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

For above 1GHz : Distance Factor: $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.50 \text{ dB}$

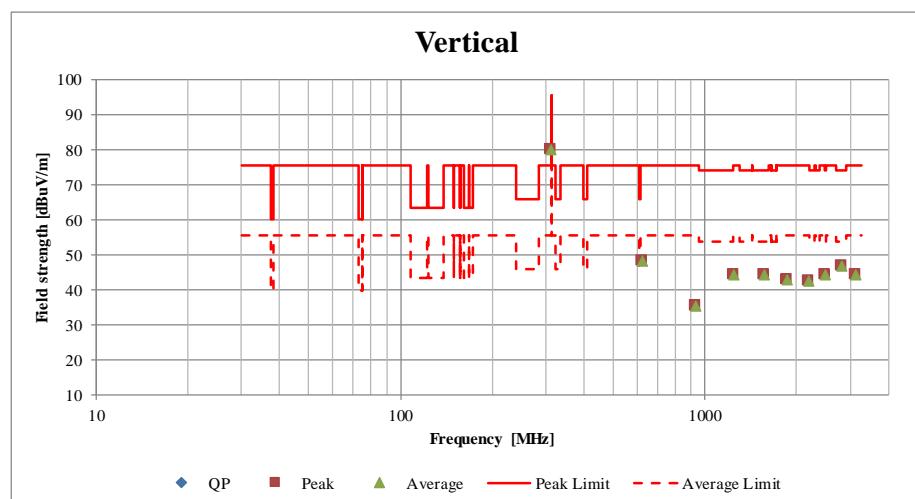
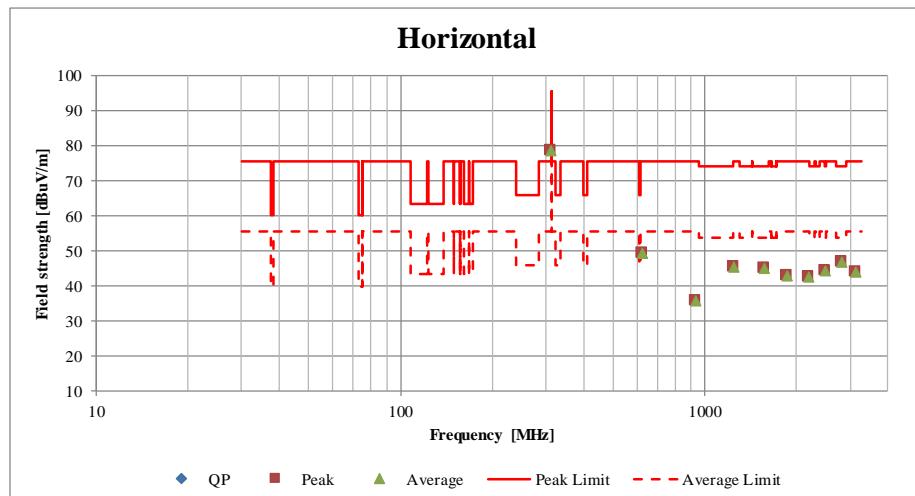
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Since the peak emission result satisfied the average limit, duty factor was omitted.

Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc.

Ise EMC Lab.



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Radiated Spurious Emission (Plot data, Worst case)

Report No. 13561032H
Test place Ise EMC Lab.
Semi Anechoic Chamber No.4
Date November 27, 2020
Temperature / Humidity 23 deg. C / 43 % RH
Engineer Akihiko Maeda
Mode Mode 2, Tx 312.10 MHz

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

-20 dB and 99% Occupied Bandwidth
314.35 MHz / 312.10 MHz

Report No. 13561032H
Test place Ise EMC Lab.
Semi Anechoic Chamber No.4
Date November 27, 2020
Temperature / Humidity 23 deg. C / 43 % RH
Engineer Akihiko Maeda
Mode Mode 2

Bandwidth Limit : Fundamental Frequency **312.10** MHz x 0.25% = 780.25 kHz

* The above limit was calculated from more stringent nominal frequency.

* Method of KDB 926416 for systems employing non sweeping frequencies was referred.

314.35 MHz

-20dB Bandwidth [kHz]
39.777

312.10 MHz

-20dB Bandwidth [kHz]
39.563

-20dB Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
79.340	780.25	Pass

Bandwidth Limit : Fundamental Frequency **314.35** MHz x 0.25% = 785.88 kHz

99% Occupied Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
43.2307	785.88	Pass

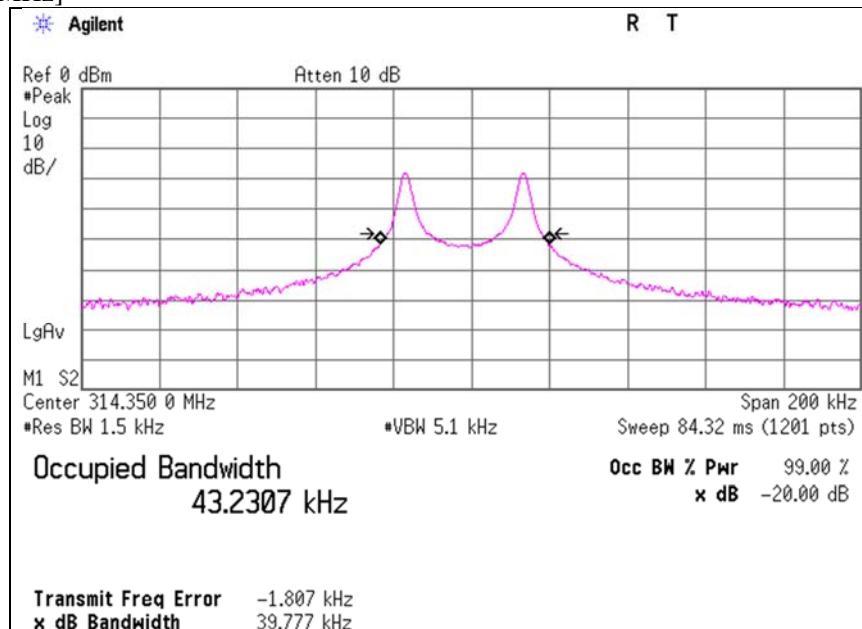
Bandwidth Limit : Fundamental Frequency **312.10** MHz x 0.25% = 780.25 kHz

99% Occupied Bandwidth [kHz]	Bandwidth Limit [kHz]	Result
43.1198	780.25	Pass

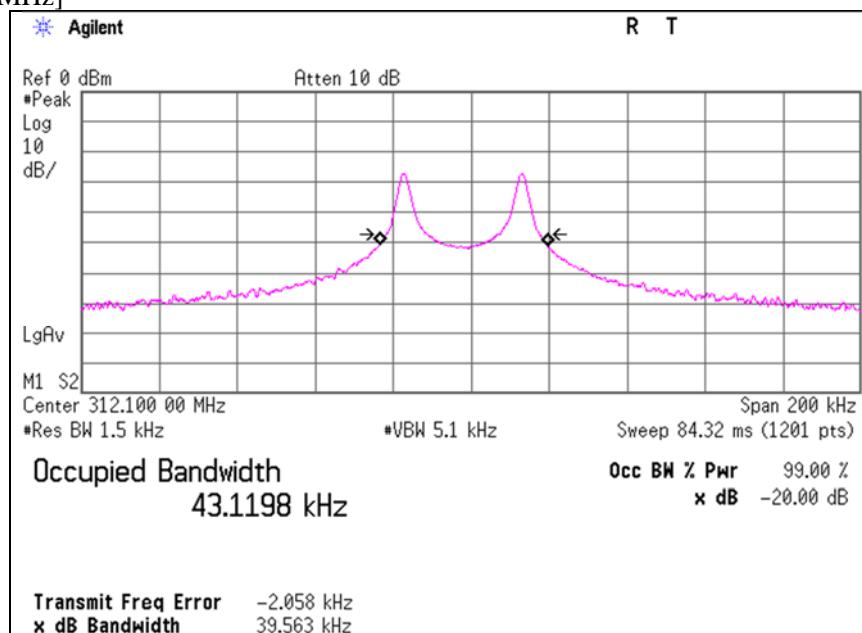
UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124


-20dB and 99% Occupied Bandwidth
314.35 MHz / 312.10 MHz

Report No. 13561032H
Test place Ise EMC Lab.
Semi Anechoic Chamber No.4
Date November 27, 2020
Temperature / Humidity 23 deg. C / 43 % RH
Engineer Akihiko Maeda
Mode Mode 2

[314.35 MHz]

[312.10 MHz]

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/07/2020	12
RE	MMM-08	141532	DIGITAL HiTESTER	Hioki	3805	51201197	01/06/2020	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
RE	MAT-95	142314	Attenuator	Pasternack	PE7390-6	D/C 1504	06/17/2020	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/06/2020	12
RE	MLA-22	141266	Logperiodic Antenna(200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-191	08/13/2020	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/10/2020	12
RE	MSA-15	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	10/15/2020	12
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/25/2020	24
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/07/2020	12
RE	MMM-10	141545	DIGITAL HiTESTER	Hioki	3805	51201148	01/06/2020	12
RE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
RE	COTS-MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-04-SV SWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/04/2019	24
RE	MTR-10	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	03/10/2020	12
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103+BBA9106	VHA 91031302	08/31/2020	12
RE	MLA-23	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-192	09/02/2020	12
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/05/2020	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	11/06/2020	12
RE	MRENT-130	141855	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187750	11/18/2020	12
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	557	05/22/2020	12
RE	MPA-12	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/19/2020	12
RE	MCC-246	199563	Microwave Cable	HUBER+SUNER	SF126E/11PC35/11PC35 1000M,5000M	537061/126E / 537072/126E	06/11/2020	12
RE	MHF-27	141297	High Pass Filter (1.1-10GHz)	TOKYO KEIKI	TF219CD1	1001	01/09/2020	12
RE	MLPA-07	142645	Loop Antenna	UL Japan	-	-	-	-

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth, and Automatically deactivate and tests

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124