

FCC TEST REPORT

for

47 CFR, Part 15, Subpart C

Equipment : WIRELESS MOUSE

Model No. : AM-1300UP; AM-1300U

FCC ID : MNL98929110077

Filing Type : Certification

Applicant : **ADOMAX TECHNOLOGY CO., LTD**
5F/2, No. 192, Chung Hsin Road, Sec. 2, Hsin
Tien City, 231, Taipei Hsien, Taiwan.

- The test result refers exclusively to the test presented test model / sample.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- **Certificate or Test Report must not be used by the applicant to claim the product in this test report endorsement by NVLAP or any agency of U.S. government.**

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

History of this test report	ii
CERTIFICATE OF COMPLIANCE.....	1
1. General Description of Equipment under Test	2
1.1. Applicant.....	2
1.2. Manufacturer.....	2
1.3. Basic Description of Equipment under Test.....	2
1.4. Feature of Equipment under Test.....	2
2. Test Configuration of Equipment under Test	3
2.1. Test Manner.....	3
2.2. Description of Test System.....	3
2.3. Band edge compliance plot per 15.227(b).....	5
2.4. Connection Diagram of Test System.....	6
3. General Information of Test	7
3.1. Test Facility	7
3.2. Standard for Methods of Measurement.....	7
3.3. Test in Compliance with.....	7
3.4. Frequency Range Investigated.....	7
3.5. Test Distance.....	7
4. Test of Conducted Powerline.....	8
5. Test of Radiated Emission	9
5.1. Major Measuring Instruments.....	9
5.2. Test Procedures	10
5.3. Typical Test Setup Layout of Radiated Emission	11
5.4. Test Result of Radiated Emission	12
6. EMI Suppression Component List	13
7. Antenna Factor & Cable Loss	14
8. List of Measuring Equipments Used	15
9. Uncertainty of Test Site.....	16

History of this test report

Original Report Issue Date: Sep. 20, 2002

No additional attachment.

Additional attachment were issued as following record:

Certificate No. : F290502

CERTIFICATE OF COMPLIANCE

for

47 CFR, Part 15, Subpart C

Equipment : WIRELESS MOUSE

Model No. : AM-1300UP; AM-1300U

FCC ID : MNL98929110077

Applicant : **ADOMAX TECHNOLOGY CO., LTD**
5F/2, No. 192, Chung Hsin Road, Sec. 2, Hsin
Tien City, 231, Taipei Hsien, Taiwan.

I **HEREBY** CERTIFY THAT :

The measurements shown in this test report were made in accordance with the procedures given in **ANSI C63.4 - 1992** and the energy emitted by this equipment was **passed** both radiated and conducted emission limits. Testing was carried out on Sep. 12, 2002 at **SPORTON International Inc.** LAB.

K. J. Lin Oct. 08, 2002

K. J. Lin

Manager

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

1. General Description of Equipment under Test**1.1. Applicant**

ADOMAX TECHNOLOGY CO., LTD
5F/2, No. 192, Chung Hsin Road, Sec. 2, Hsin
Tien City, 231, Taipei Hsien, Taiwan.

1.2. Manufacturer

Same as 1.1.

1.3. Basic Description of Equipment under Test

Equipment : WIRELESS MOUSE
Model No. : AM-1300UP; AM-1300U
Trade Name : ADOMAX
Power Supply Type : From Battery
AC Power Cord : 3V

1.4. Feature of Equipment under Test

- The WLM consists of the mouse unit and the base unit. The battery powered mouse unit transmits an RF signal to the base unit that is connected to the USB port on the PC or laptop computer.

2. Test Configuration of Equipment under Test

2.1. Test Manner

- a. The EUT has been configured and operated pursuant to ANSI C63.4-1992 in a manner which tended to maximize its emission characteristics in a typical application.
- b. The complete test system included HP PC, HITACHI Monitor, HP PS/2 Keyboard, HP Printer, ACEEX Modem, ADOMAX Wireless Travel Mouse Receiver and EUT for EMI test.
- c. Frequency range investigated: conduction 150 KHz to 30 MHz, radiation 30 MHz to 1000MHz.

2.2. Description of Test System

Support Unit 1. -- Personal Computer (HP)

FCC ID	: N/A
Model No.	: VECTRA VL420 DT
Power Supply Type	: Switching
Power Cord	: Non-Shielded
Serial No.	: SP0039
Data Cable	: Shielded, 360 degree via metal backshells
Remark	: This support device was tested to comply with FCC standards and authorized under a declaration of conformity.

Support Unit 2. -- Monitor (HITACHI)

FCC ID	: N/A
Model No.	: CM823F
Power Supply Type	: Switching
Power Cord	: Non-Shielded
Serial No.	: SP0023
Data Cable	: Shielded, 360 degree via metal backshells, 1.7m
Remark	: This support device was tested to comply with FCC standards and authorized under a declaration of conformity.

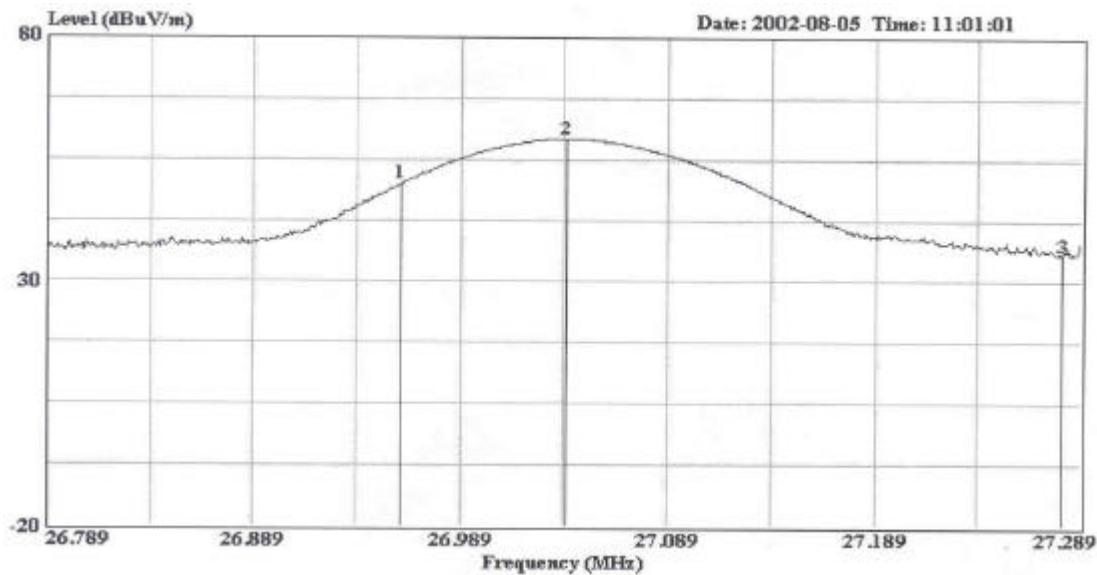
Support Unit 3. – PS/2 Keyboard (HP)

FCC ID	: N/A
Model No.	: SK-2502C
Serial No.	: SP0032
Data Cable	: Shielded, 1.7m
Remark	: This support device was tested to comply with FCC standards and authorized under a declaration of conformity.

Support Unit 4. -- Printer (HP)

FCC ID	: B94C2642X
Model No.	: DJ 400
Power Supply Type	: Linear
Power Cord	: Non-Shielded
Serial No.	: SP0048
Data Cable	: Braided-Shielded, 1.35m

Support Unit 5. -- Modem (ACEEX)

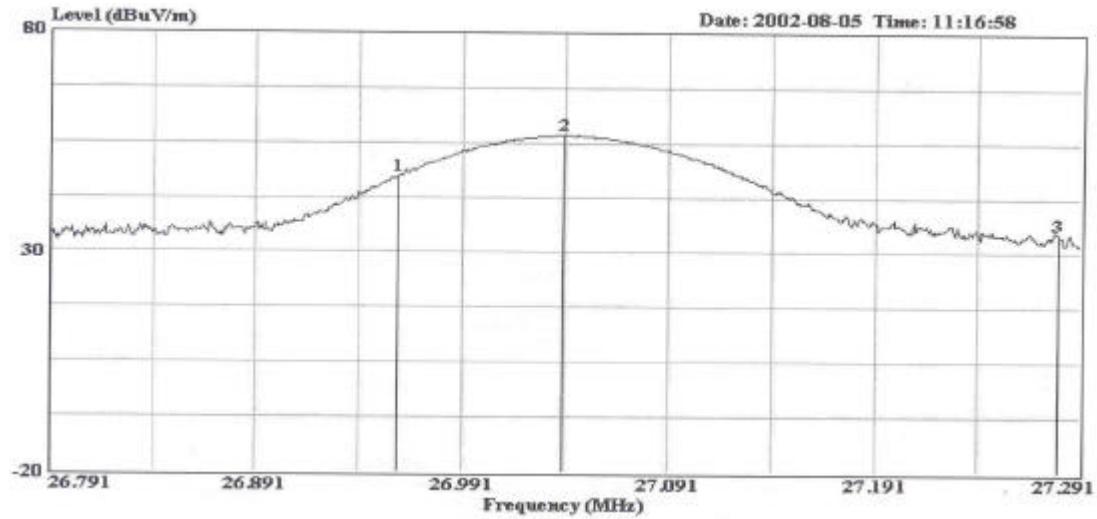

FCC ID	: IFAXDM1414
Model No.	: DM1414
Power Supply Type	: Linear
Power Cord	: Non-Shielded
Serial No.	: SP0015
Data Cable	: Shielded, 1.15m

Support Unit 6. --Wireless Travel Mouse Receiver (ADOMAX)

FCC ID	: N/A
Model No.	: AM-1300UP
Serial No.	: SP0108

2.3. Band edge compliance plot per 15.227(b).

Horizontal:

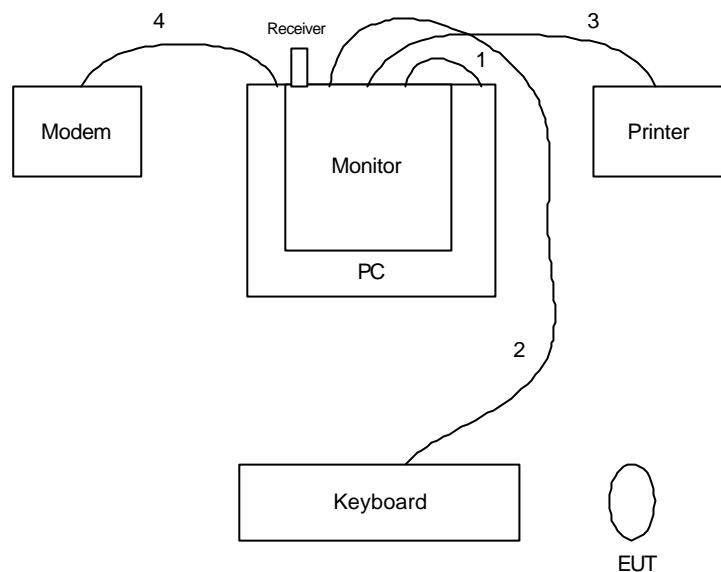


Mark 1 : 26.96MHz

Mark 3 : 27.28MHz

Conformation of the fundamental frequency

Vertical:



Mark 1 : 26.96MHz

Mark 3 : 27.28MHz

Conformation of the fundamental frequency

2.4. Connection Diagram of Test System

1. The I/O cable is connected from PC to the support unit 2.
2. The I/O cable is connected from PC to the support unit 3.
3. The I/O cable is connected from PC to the support unit 4.
4. The I/O cable is connected from PC to the support unit 5.

3. General Information of Test

3.1. Test Facility

Test Site Location : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park,
Kwei-Shan Hsiag, Tao Yuan Hsien, Taiwan, R.O.C.
TEL : 886-3-327-3456
FAX : 886-3-318-0055

Test Site No : SH04

3.2. Standard for Methods of Measurement

ANSI C63.4-1992

3.3. Test in Compliance with

FCC Part 15, Subpart C

3.4. Frequency Range Investigated

- a. Conduction: from 150 kHz to 30 MHz
- b. Radiation : from 30 MHz to 1 GHz

3.5. Test Distance

The test distance of radiated emission from antenna to EUT is 3 M.

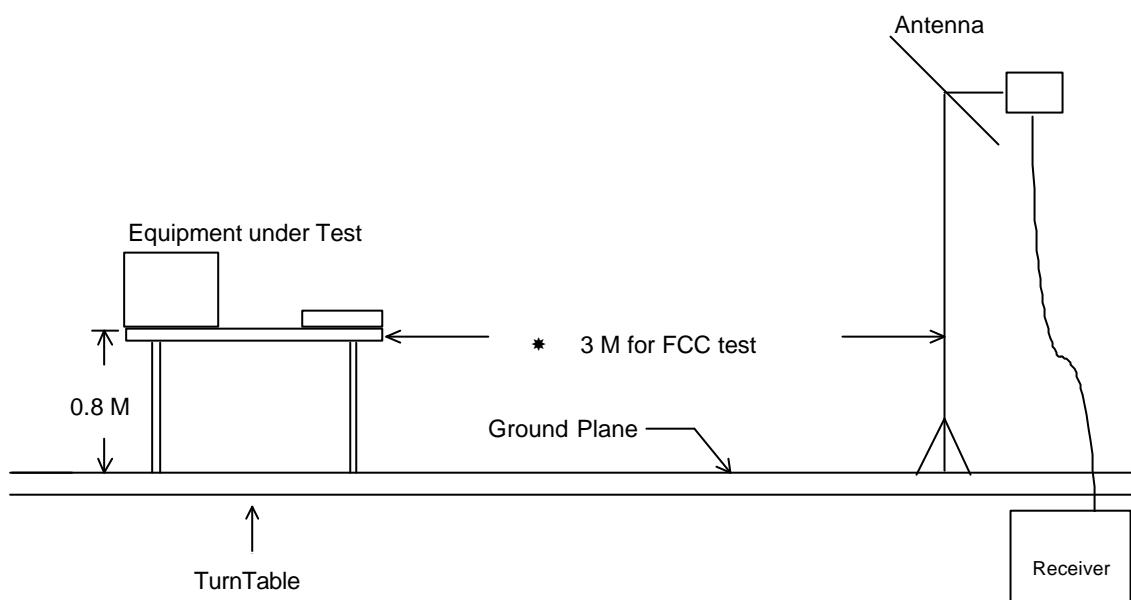
4. Test of Conducted Powerline

The power supply of the EUT is from battery.

So the conducted powerline test is not applicable to the EUT.

5. Test of Radiated Emission

Radiated emissions from 30 MHz to 1 GHz were measured with a bandwidth of 120 kHz according to the methods defines in ANSI C63.4-1992. The EUT was placed on a nonmetallic stand in the open-field site, 0.8 meter above the ground plane, as shown in section 5.3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions.


5.1. Major Measuring Instruments

- Amplifier (HP 8447D)
Attenuation 0 dB
RF Gain 30 dB
Signal Input 100 KHz to 1.3 GHz

- Spectrum Analyzer (RAHDE&SCHEARZ & FSP)
Attenuation 10 dB
Start Frequency 30 MHz
Stop Frequency 1000 MHz
Resolution Bandwidth 120 KHz
Signal Input 9 KHz to 7 GHz

5.2. Test Procedures

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.

5.3. Typical Test Setup Layout of Radiated Emission

5.4. Test Result of Radiated Emission

- Test Distance : 3 M
- Temperature : 26°C
- Relative Humidity : 59 %
- Test Date : Sep. 12, 2002
- Emission level (dBuV/m) = 20 log Emission level (uV/m)
- Corrected Reading : Antenna Factor + Cable Loss + Reading = Emission

The Radiated Emission test was passed at minimum margin

758.500 MHz / 31.16 dBuV/m (HORIZONTAL) Antenna Height 1.2 Meter, Turntable Degree 57 °.

- Spurious Emissions:

Frequency (MHz)	Antenna Polarity	Cable Factor	Reading Loss	Limits		Emission (dBuV/m)	Level (uV/m)	Margin (dB)	Detect
				(dBuV)	(dBuV/m)	(uV/m)	(dBuV/m)	(uV/m)	Mode
40.530	V	12.56	1.10	10.52	40.00	100	24.18	16.18	-15.82 Peak
133.140	V	11.15	1.90	13.45	43.50	150	26.50	21.13	-17.00 Peak
53.490	H	6.75	1.28	14.23	40.00	100	22.26	12.97	-17.74 Peak
133.140	H	11.15	1.90	13.94	43.50	150	26.99	22.36	-16.51 Peak
292.170	H	12.71	2.90	12.98	46.00	200	28.59	26.88	-17.41 Peak
758.500	H	19.80	4.74	6.62	46.00	200	31.16	36.14	-14.84 Peak

- Field strength of fundamental and harmonics

Frequency (MHz)	Antenna Polarity	Cable Factor	Reading Loss	Limits		Emission (dBuV/m)	Level (uV/m)	Margin (dB)	Detect
				(dBuV)	(dBuV/m)	(uV/m)	(dBuV/m)	(uV/m)	Mode
27.060	V	15.40	0.93	14.12	80.00	10000	30.45	33.30	-49.55 Peak
27.050	H	15.40	0.93	21.59	80.00	10000	37.92	78.70	-42.08 Peak

Test Engineer :

Wayne

Wayue Hsu

6. EMI Suppression Component List

No EMI suppression components.

7. Antenna Factor & Cable Loss

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)
30	18.10	0.90
35	16.00	0.90
40	13.19	1.09
45	10.57	1.10
50	8.00	1.21
55	6.30	1.30
60	5.30	1.30
65	4.95	1.40
70	5.19	1.40
75	6.05	1.49
80	6.86	1.50
85	7.94	1.60
90	8.60	1.60
95	9.70	1.60
100	10.26	1.69
110	11.19	1.70
120	11.60	1.81
130	11.42	1.90
140	10.92	1.99
150	10.20	2.00
160	9.20	2.11
170	9.00	2.20
180	8.60	2.29
190	8.70	2.30
200	8.10	2.40
220	8.86	2.51
240	10.70	2.60
260	13.10	2.71
280	12.50	2.80
300	13.00	2.90
320	13.51	3.00
340	13.90	3.10
360	14.43	3.30
380	14.79	3.30
400	15.80	3.40
450	16.37	3.59
500	17.40	3.80
550	18.57	3.90
600	18.50	4.20
650	18.93	4.40
700	19.03	4.40
750	19.84	4.71
800	19.82	4.90
850	20.30	5.00
900	20.32	5.11
950	20.82	5.60
1000	21.20	5.50

8. List of Measuring Equipments Used

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	RAHDE & SCHEARZ	FSP	838858/037	9KHz – 7GHz	Jan. 08, 2002	Radiation (SH04)
Amplifier	HP	8447D	2944A09072	100KHz – 1.3GHz	Sep. 26, 2001	Radiation (SH04)
Bilog Antenna	SCHAFFNER	CBL6112B	2687	30MHz –2GHz	Dec. 23, 2001	Radiation (SH04)
Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (SH04)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (SH04)
Half-wave dipole antenna	Schwarzbeck	UHAP VHAP	995+99 1024+1024	30MHz - 1GHz	Sep. 27, 2001	Radiation (SH04)

Calibration Interval of instruments listed above is one year.

9. Uncertainty of Test Site

Uncertainty of Radiated Emission Measurement

Contribution	Probability Distribution	3m
Antenna factor calibration	normal(k=2)	± 1
cable loss calibration	normal(k=2)	± 0.3
RCV/SPA specification	rectangular	± 2
Antenna Directivity	rectangular	± 3
Antenna Factor V.S. Height	rectangular	± 2
Antenna Factor Interpolation for Frequency	rectangular	± 0.25
site imperfection	rectangular	± 2
Mismatch Receiver VSWR $\Gamma 1=0.09$ Antenna VSWR $\Gamma 2=0.67$ Uncertainty=20log(1- $\Gamma 1 * \Gamma 2$)	U-shaped	± 0.54
combined standard uncertainty $U_e(y)$	normal	± 2.7
Measuring uncertainty for a level of confidence of 95% $U=2U_e(y)$	normal (k=2)	± 5.4

$U_e = \{(1/2)^2 + (0.3/2)^2 + (2^2 + 0.5^2 + 2^2 + 0.25^2 + 2^2)/3 + (0.54)^2/2\} = 2.2$ for 10m test distance

$U = \{(1/2)^2 + (0.3/2)^2 + (2^2 + 3^2 + 2^2 + 0.25^2 + 2^2)/3 + (0.54)^2/2\} = 2.7$ for 3m test distance

Uncertainty of Conducted Emission Measurement

Contribution	Probability Distribution	150KHz 30MHz
Cable and I/P attenuator calibration	normal(k=2)	± 0.3
RCV/SPA specification	rectangular	± 2
LISN coupling specification	rectangular	± 1.5
Transducer factor frequency interpolation	rectangular	± 0.2
Mismatch Receiver VSWR $\Gamma 1=0.09$ LISN VSWR $\Gamma 2=0.33$ Uncertainty=20log(1- $\Gamma 1 * \Gamma 2$)	U-shaped	0.2
combined standard uncertainty $U_e(y)$	normal	± 1.66
Measuring uncertainty for a level of confidence of 95% $U=2U_e(y)$	normal (k=2)	± 3.32

$U_e = \{(0.3/2)^2 + (2^2 + 1.5^2 + 0.2^2)/3 + (0.2)^2/2\} = 1.66$