

Description of equipment under test

Test items Transmitter of automatic meter reading system

Manufacturer Miltel Communications Ltd.

Types (Models) Speed HPTx Receipt date April 4, 2002

Applicant information

Applicant's representative Mr. Erez Sharabi, V.P. engineering

Applicant's responsible person Mr. Yarum Locker, C.E.O. Company Miltel Communications Ltd.

Address 7 Leshem street

P.O.Box 7374
Postal code 49170
City Petach Tikva
Country Israel

Telephone number +972 3926 9550 Telefax number +972 3924 6550

Test performance

Test started April 4, 2002 Test completed April 11, 2002

Purpose of test The EUT certification in accordance with CFR 47,

part 2, §2.1033; part 90 subpart I

Test specification(s) FCC part 90 subpart I, §§90.205, 90.209, 90.210,

90.213; part 15 subpart B §15.109

Test Location: Hermon Laboratories Ltd.

Certified Test Facilities

Contents

1	Summary and signatures	4
2	General information	5
2.1	Abbreviations and acronyms	5
2.2	I .	
2.3	EUT description	6
3	Test Facility Description	7
4	Emissions measurements	8
4.1	Effective radiated power measurements according to FCC part 90	
	paragraph 205(g)	8
4.2		
	paragraph 209	
4.3	Emission mask according to FCC part 90 paragraph 210(c)	.18
4.4	Frequency stability measurements according to FCC part 90	
	paragraph 213	.55
4.5	Radiated emission measurements according to FCC part 15 subpart	
	B §15.109	
4.6	Transient Frequency Behavior according to FCC part 90 Paragraph	
	214	
ΔΡΡΕ	ENDIX A - Test equipment and ancillaries used for tests	69
, 11 I L	Treat of the state	
APPE	NDIX B-Test equipment correction factors	.70

1 Summary and signatures

The EUT, Speed HPTx transmitter of automatic meter reading system, was tested according to FCC part 90 subpart I, §§90.205, 90.209, 90.210, 90.213, part 15 subpart B §15.109 and found to comply with the standard requirements.

Test description	Specification reference	Test report paragraph	Pass / Fail
RF output power	90.205, 2.1046	4.1	Pass
Occupied bandwidth	90.209 2.1049	4.2	Pass
Emission mask	90.210	4.3	Pass
Radiated spurious emissions	90.210 2.1053	4.3	Pass
Frequency stability vs temperature	90.213 2.1055	4.4	Pass
Frequency stability vs voltage	2.1055	4.4	Pass
Radiated emissions	15.109	4.5	Pass

2 **General information**

2.1 Abbreviations and acronyms

The following abbreviations and acronyms are applicable to this test report:

centimeter cm dB decibel

decibel referred to one milliwatt dBm $dB(\mu V)$ decibel referred to one microvolt

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

DC direct current

EMC electromagnetic compatibility

equipment under test **EUT** GHz

gigahertz height Н hertz Hz kHz kilohertz kV kilovolt L length meter m MHz megahertz milliwatt MW NA not applicable PC personal computer QP quasi-peak (detector) RE radiated emission rms root-mean-square

sec second ٧/ volt

VCO volt control oscillator

W watt

Specification references 2.2

CFR 47 part 15: 10/2001 Radio Frequency Devices

CFR 47 part 90: 10/2001 Private land mobile radio services, Subpart I

ANSI C63.2:06/1996 American National Standard for Instrumentation-

Electromagnetic Noise and Field Strength, 10 kHz to

40 GHz-Specifications.

ANSI C63.4:1992 of American National Standard for Methods

> Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the

Range of 9 kHz to 40 GHz.

2.3 EUT description

The EUT, Speed HPTx, is a data link transmitter operating in 450 –470 MHz frequency range and used for data acquisition in Miltel's water consumption readings collection system. The automatic meter reading system is a fully computerized radio device. It requires no human intervention after initial installation. The system enables remote, continuous and accurate reading of water consumption. The Speed HPTx transmits the data acquired from water meters to a regional concentrator. The concentrator transfers the data to the central computer for data collection and for further analysis and reporting. The transmitter is powered by an internal 3.6 V lithium battery and can be connected to several meters (e.g. water) in parallel. The transmitter is enclosed in a plastic enclosure.

An integral wire antenna soldered to the internal Printed Circuit Board is used.

3 Test Facility Description

Tests were performed at Hermon Laboratories Ltd. by Miltel personnel. Hermon Laboratories is a fully independent, private EMC, Safety and Telecommunications testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by the Industry of Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, Telecommunications, Safety standards, and by AMTAC (UK) for safety of medical devices. The laboratory is accredited by the American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for Electromagnetic Compatibility, Product Safety, Telecommunications and Environmental Simulation (for exact scope please refer to Certificate No. 839.01).

4 Emissions measurements

4.1 Effective radiated power measurements according to FCC part 90 paragraph 205(g)

4.1.1 General

This test was performed to determine maximal effective radiated power. The standard maximum allowable ERP is 2 W (33 dBm).

4.1.2 Test procedure

The test was performed in the anechoic chamber with biconilog antenna at 3-meter test distance, i.e. the distance between measuring antenna and EUT boundary as shown in Figure 4.1.1. The EUT in transmission mode was installed on the 0.8 m high wooden table placed on the metal turntable flush mounted with the ground plane. The transmitter was tested in 3 orthogonal positions. To find the maximum radiation measuring antenna height was changed from 1 to 4 m, the turntable was rotated 360° and the antennas polarization was changed from vertical to horizontal.

The field strength generated by the EUT was measured at 3 carrier frequencies (low, middle, high) 450.4009 MHz, 460.0009 MHz and 469.6009 MHz. The EUT was tested by the substitution method with dipole antenna. The EUT was replaced with calibrated antenna connected to signal generator. The signal generator output levels corresponded to measured field strength were recorded and the power was calculated from equation:

The measured field strength result 115.77 dB μ V/m (see Plot 4.1.3) at frequency 469.6 MHz corresponds to 17.9 dBm output power of the signal generator. Maximum ERP was calculated from equation:

$$ERP_{max} = P_{out gen} - Cable loss + Antenna gain = 17.9 dBm - 1.1 dB + 0.54 dB = 17.34 dBm = 54.2 mW.$$

The test results are recorded in Table 4.1.1 and are shown in Plots 4.1.1 to 4.1.3. The EUT was found to be in compliance with the standard requirements and passed the test.

Reference numbers of test equipment used

0465 0521 0604 0614 0661 1947

Full description is in Appendix A.

Table 4.1.1 Effective radiated power measurement test results

DATE: March 25, 2002

RELATIVE HUMIDITY: 49% AMBIENT TEMPERATURE: 24°C

MEASUREMENTS PERFORMED AT 3 METRES DISTANCE

Frequency,	Radiated measured	Antenna gain,	Cable loss,	Gener. P _{out}	ERP,	Spec. limit,	Margin,	Pass/ Fail
MHz	result, dBμV/m	dB	dB	dBm	dBm	dBm	dB	
450.400	114.93	0.96	1.1	17.0	16.86	33	16.14	Pass
460.000	115.31	0.75	1.1	17.5	17.15	33	15.85	Pass
469.610	115.77	0.54	1.1	17.9	17.34	33	15.66	Pass

Test parameters:

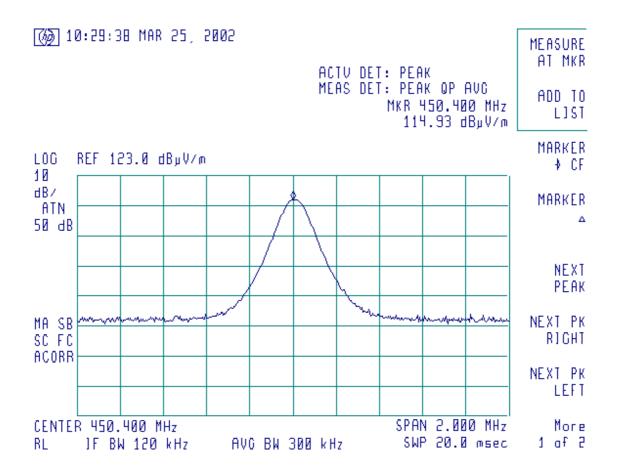
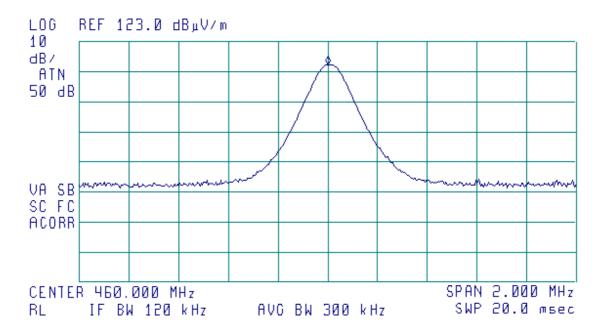

Test results listed in the table were obtained throughout the testing with biconilog antenna in vertical polarization, peak detector and resolution bandwidth 120 kHz.

Table calculations and abbreviations:

ERP (dBm) = P_{out} (dBm) – cable loss (dB) + antenna gain (dB)

Margin = dB below (negative if above) specification limit.

Plot 4.1.1 Electric field strength measurement test results at 450.4 MHz

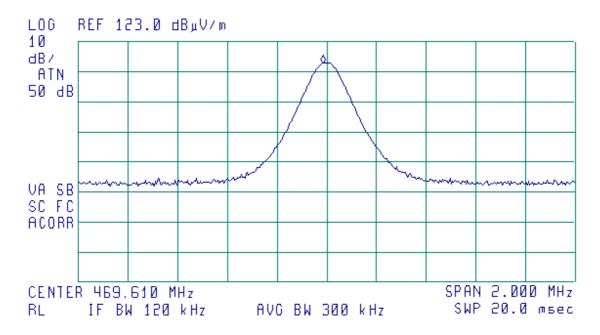


Plot 4.1.2 Electric field strength measurement test results at 460.0 MHz

| 76万|| 10:35:10 MAR 25, 2002

ACTU DET: PEAK MEAS DET: PEAK OP AUG

MKR 460.000 MHz 115.31 dBµV/m



Plot 4.1.3 Electric field strength measurement test results at 469.6 MHz

(例 10:45:50 MAR 25, 2002

ACTU DET: PEAK MEAS DET: PEAK OP AUG

MKR 469.595 MHz 115.77 dBµV/m

Absorbing material

Plastic antenna mast

Antenna
1 - 4 m

EMI Receiver

Auxillary

Wooden table
1.5 m. x mw

D=2 m

Figure 4.1.1 Set up for ERP measurement

4.2 Occupied bandwidth measurements according to FCC part 90 paragraph 209

4.2.1 General

According to paragraph 90.209 (5) the maximum authorized bandwidth shall be 11.25 kHz in the 450 – 470 MHz frequency band.

4.2.2 Test procedure

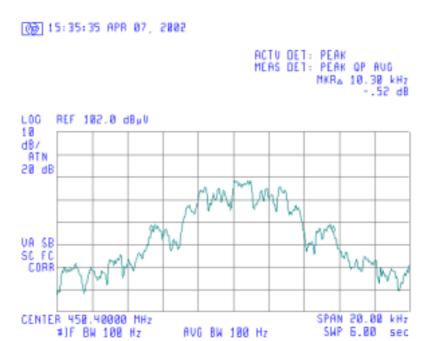
The measurements were performed using spectrum analyzer.

The occupied bandwidth was measured as a frequency band between points where power envelope of carrier, modulated with normal signal, drops 23 dB below unmodulated carrier.

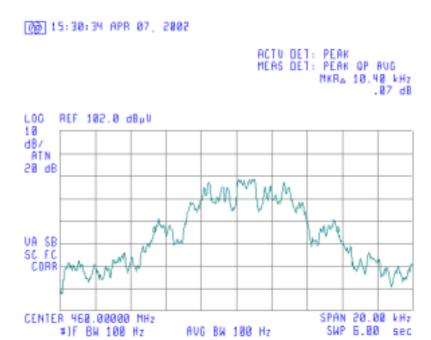
Measured occupied bandwidth was 10.40 kHz for middle channel frequency.

The test results are recorded in Table 4.2.1 and shown in Plots 4.2.1 to 4.2.3.

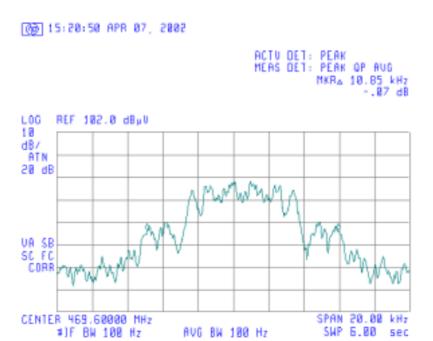
Table 4.2.1 Occupied bandwidth measurements


Frequency, MHz	OBW, kHz	Pass / Fail
450.4000	10.30	Pass
460.0009	10.40	Pass
469.6000	10.85	Pass

Reference numbers of test equipment used


0.405	0504	0004	4.405	4500	4000
0465	0591	0604	1425	1536	1620

Full description is in Appendix A.


Plot 4.2.1 Occupied bandwidth measurements test result

Plot 4.2.2 Occupied bandwidth measurements test result

Plot 4.2.3 Occupied bandwidth measurements test result

4.3 Emission mask according to FCC part 90 paragraph 210(c)

4.3.1 General

The power of any emission must be attenuated below the transmitter unmodulated carrier output power (P in watts) as follows:

- On any frequency from the center of the authorized bandwidth f_o to 5.625 kHz removed from f_o Zero dB;
- On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz, but not more than 12.5 kHz: at least 7.27 (f_d – 2.88 kHz) dB;
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: at least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

4.3.2 Test procedure

The emission mask, calculated according to formulas (1) - (3) and measured results are shown in Plots 4.3.1 to 4.3.6.

Radiated spurious emissions were measured in the anechoic chamber at 3-m test distance: with the loop antenna in the range 9 kHz to 30 MHz,

the biconilog - in the range 30 MHz to 2000 MHz

the double ridged guide – in frequency range from 2000 to 5000 MHz.

The specified limit 50 + 10 log (P) was converted in EIRP units - 20 dBm and in field strength units as follows:

E = sqrt(30P) / r, where $P = -20 \text{ dBm} = 0.01 \text{ mW} = 10^{-5} \text{ W}$.

 $E [dB\mu V/m] = 20 log {10^6 x sqrt (30x10^{-5})/3} = 75.2 dB\mu V/m.$

This limit was applied to spurious emissions throughout the following frequency ranges:

9 kHz to 450.35 MHz and 450.45 MHz to 5 GHz.

9 kHz to 459.95 MHz and 460.05 MHz to 5 GHz,

9 kHz to 469.55 MHz and 469.65 MHz to 5 GHz - according to paragraph 2.1057(a)(1).

The EUT was set up on the wooden table, as shown in Figure 4.1.1.

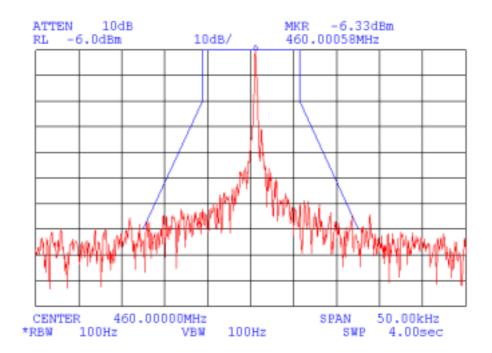
To find maximum radiation the turntable was rotated 360°, the measuring antenna height varied from 1 to 4 m and the antennas polarization was changed from vertical to horizontal.

The received values were compared with calculated field strength limit E = 75.2 dB μ V/m and found at least 3 dB below the limit (note: the accompanying test result plots 4.3.7 – 4.3.36 were processed with a field strength limit of 82.2 dB μ V/m where the received values were at least 10 dB below this limit). The test results and spectrum analyzer settings are shown in Plots 4.3.7 to 4.3.36.

The EUT was found to comply with standard requirements.

Reference numbers of test equipment used

0041	0446	0465	0589	0604	1004	1424	1940
1947							

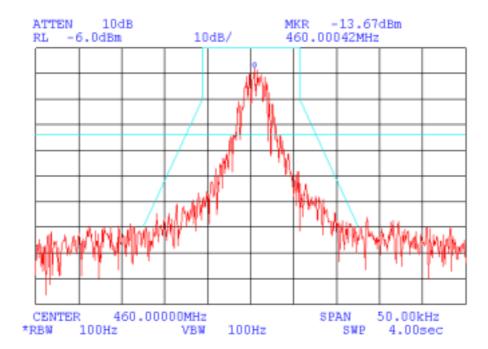

Full description is in Appendix A.

Plot 4.3.1 Emission mask test results

Date/Time: April 8 2002 8:38:42 AM

Test Name: Emission mask

Customer: Miltel

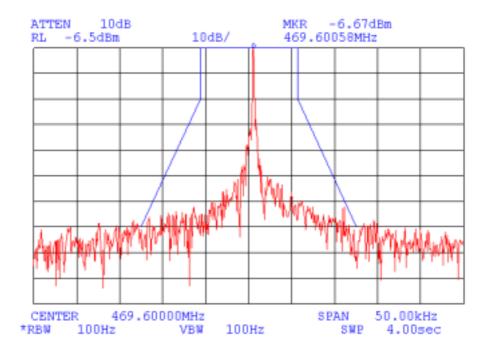


Plot 4.3.2 Emission mask test results

Date/Time: April 8 2002 8:41:08 AM

Test Name: Emission mask

Customer: Miltel

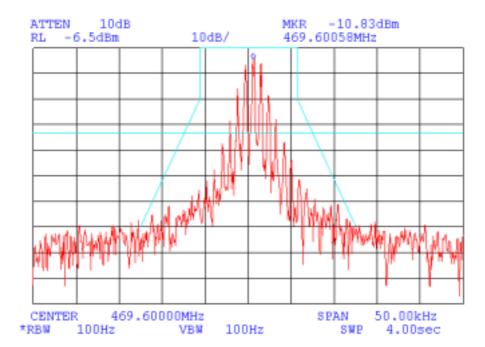


Plot 4.3.3 Emission mask test results

Date/Time: April 8 2002 8:50:08 AM

Test Name: Emission mask

Customer: Miltel

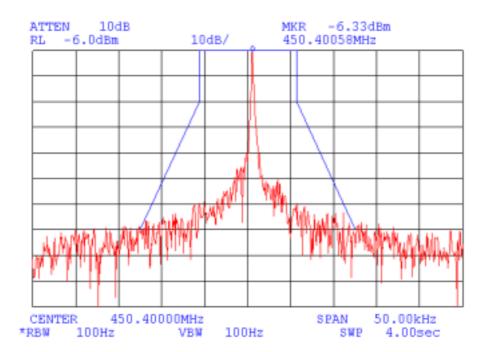


Plot 4.3.4 Emission mask test results

Date/Time: April 8 2002 8:51:17 AM

Test Name: Emission mask

Customer: Miltel

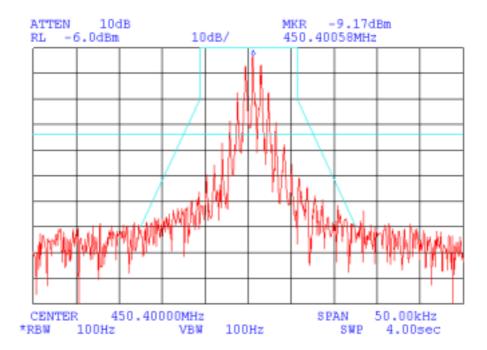


Plot 4.3.5 Emission mask test results

Date/Time: April 8 2002 8:53:36 AM

Test Name: Emission mask

Customer: Miltel



Plot 4.3.6 Emission mask test results

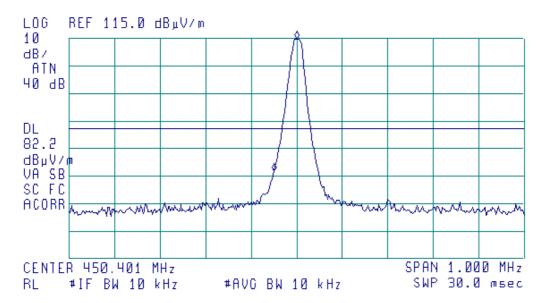
Date/Time: April 8 2002 8:54:35 AM

Test Name: Emission mask

Customer: Miltel

Plot 4.3.7 Spurious emissions measurement test results

Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel


Note F=450.4009 MHz

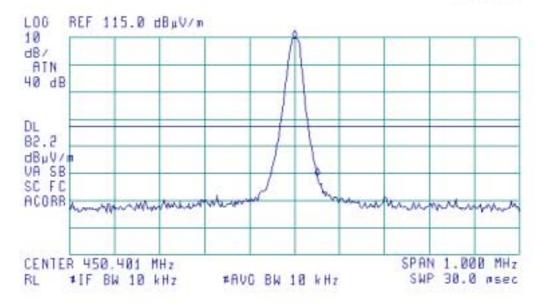
(例 14:19:03 MAR 25, 2002

ACTU DET: PEAK

MEAS DET: PEAK QP AVG

MKRA -50 kHz -47.83 dB

Plot 4.3.8 Spurious emissions measurement test results


Spurious emission Speed HPTx Miltel

ote F=450.4009 MHz

(%) 14:20:37 MAR 25, 2002

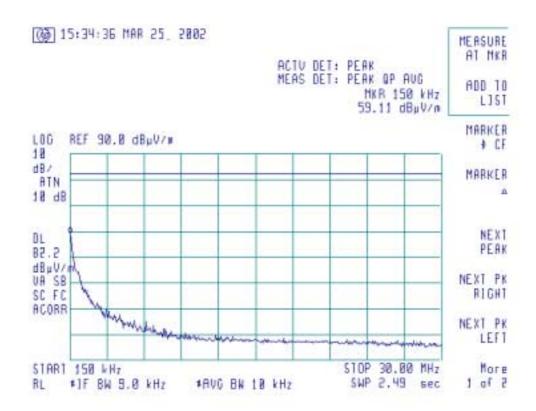
ACTU DET: PEAK
MEAS DET: PEAK OP AUG
MKRA 50 kHz

MKRA 50 kHz -50.86 dB

Plot 4.3.9 Spurious emissions measurement test results


Spurious emission Speed HPTx

Miltel

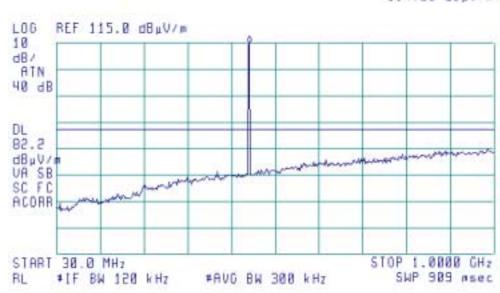

F=450.4009 MHz

(5) 15:28:07 MAR 25, 2002

ACTU DET: PEAK
MEAS DET: PEAK OP AUG
MKR 17.1 kHz
56.95 dBµV/n

Plot 4.3.10 Spurious emissions measurement test results

Plot 4.3.11 Spurious emissions measurement test results


Spurious emission Speed HPTx Miltel

F=450.4009 MHz

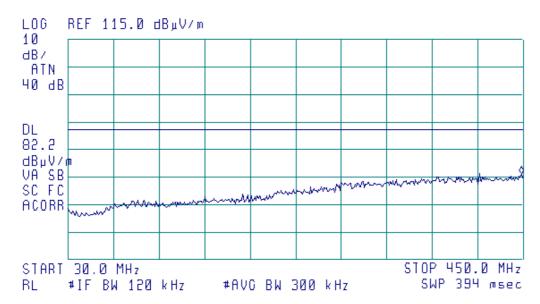
(%) 14:25:47 MAR 25, 2002

ACTU DET: PEAK MEAS DET: PEAK OP AUG

MKR 456.8 MHz 114.68 dBuV/m

Plot 4.3.12 Spurious emissions measurement test results

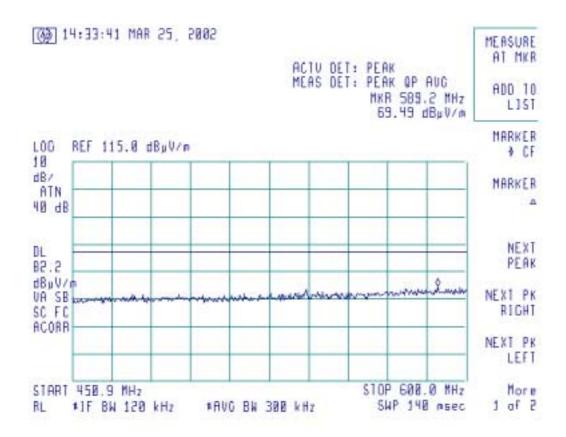
Spurious emission Speed HPTx Miltel


F=450.4009 MHz

(例 14:32:12 MAR 25, 2002

ACTU DET: PEAK

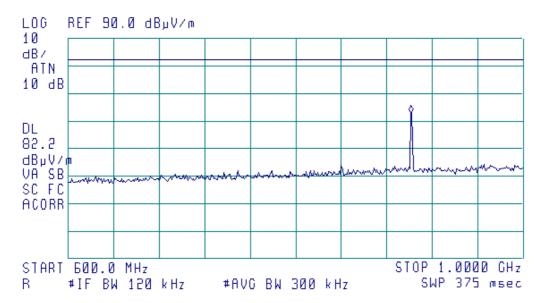
MEAS DET: PEAK QP AVG


MKR 447.9 MHz 65.89 dB_µV/m

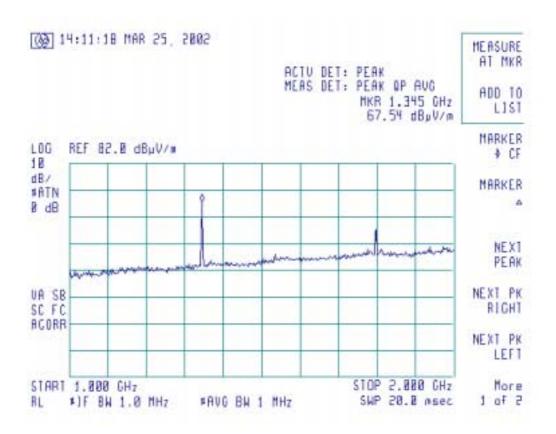
Plot 4.3.13 Spurious emissions measurement test results

Spurious emission Speed HPTx Miltel

F=450.4009 MHz

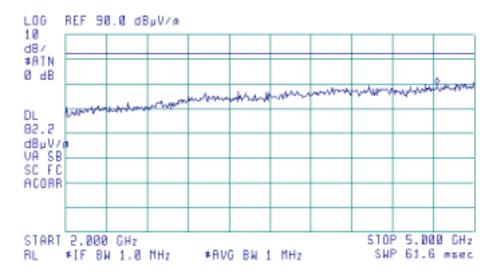

Plot 4.3.14 Spurious emissions measurement test results

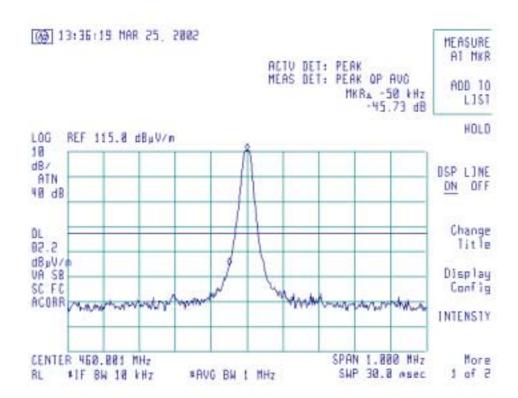
(例 14:47:58 MAR 25, 2002


ACTU DET: PEAK

MEAS DET: PEAK QP AVG

MKR 901.0 MHz 63.02 dBµV/m

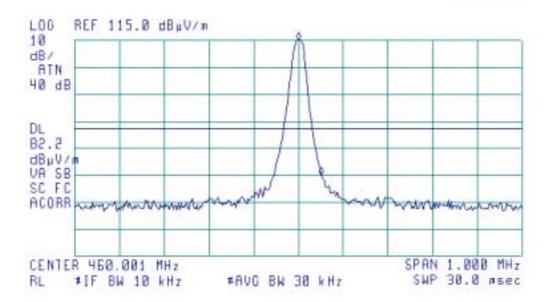

Plot 4.3.15 Spurious emissions measurement test results


Plot 4.3.16 Spurious emissions measurement test results

(₹) 16:31:31 MAR 25, 2002

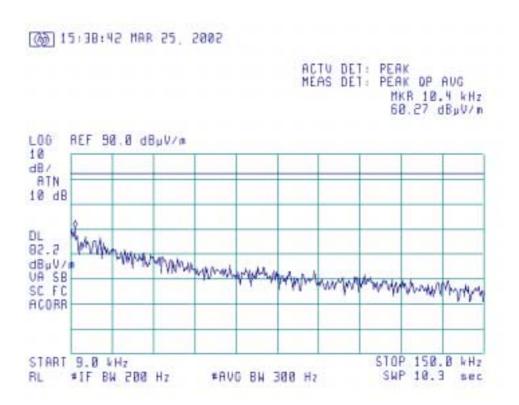
ACTU DET: PEAK
MEAS DET: PEAK OP AUG
MKR 4.722 OHz
69.43 dBpV/m

Plot 4.3.17 Spurious emissions measurement test results


Plot 4.3.18 Spurious emissions measurement test results

Spurious emission Speed HPTx Miltel

F=460.009 MHz


(A) 13:39:45 MAR 25, 2002

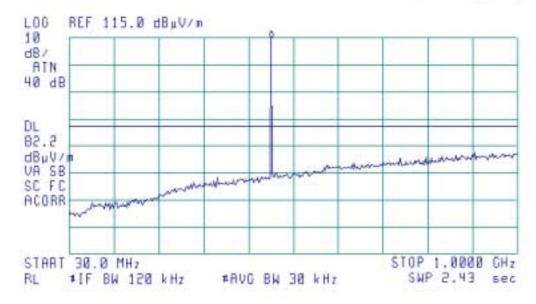
ACTU DET: PEAK
MEAS DET: PEAK OP AUG
MKRA 50 kHz
-49.99 dB

Plot 4.3.19 Spurious emissions measurement test results

Spurious emission Speed HPTx Miltel F=460.0009 MHz

Plot 4.3.20 Spurious emissions measurement test results

Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel
Note F=460.0009 MHz


Plot 4.3.21 Spurious emissions measurement test results

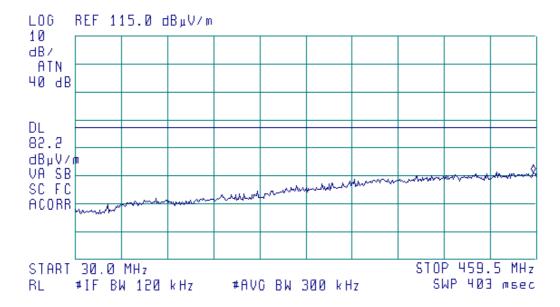
Spurious emission Speed HPTx Miltel F=460.009 MHz

(%) 13:46:33 MAR 25, 2002

ACTU DET: PEAK MEAS DET: PEAK OP AUG

MKR 466.5 MHz 114.77 dBpV/m

Plot 4.3.22 Spurious emissions measurement test results


Spurious emission Speed HPTx

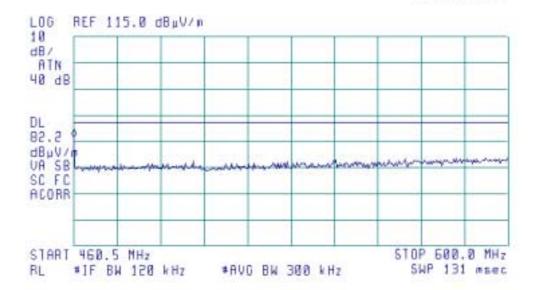
Miltel F=460.009 MHz

| 76万|| 13:5B:36 MAR 25, 2002

ACTU DET: PEAK MEAS DET: PEAK OP AUG

MKR 456.3 MHz 66.16 dBµV/m

Plot 4.3.23 Spurious emissions measurement test results


Spurious emission Speed HPTx

Miltel

F=460.009 MHz

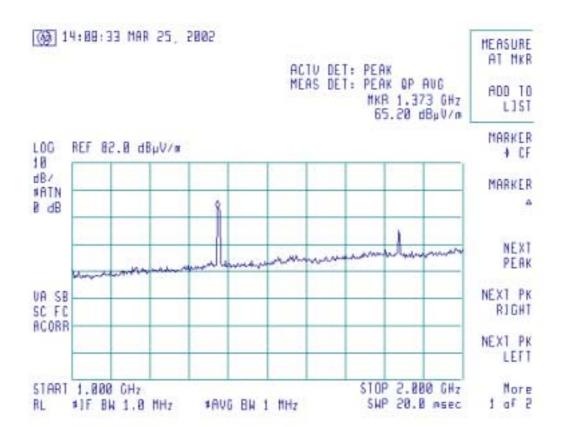
(%) 14:00:11 MAR 25, 2002

ACTU DET: PEAK
MEAS DET: PEAK DP AUG
MKR 460.5 MHz
76.52 dBuV/n



Plot 4.3.24 Spurious emissions measurement test results

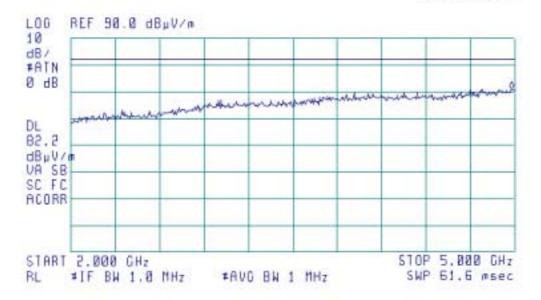
Spurious emission Speed HPTx Miltel F=460.009 MHz


(%) 14:83:53 MAR 25, 2082

ACTU DET: PEAK MEAS DET: PEAK OP AUG MKR 921.0 MHz 64.73 d8µV/m

Plot 4.3.25 Spurious emissions measurement test results

Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel
Note F=460.009 MHz

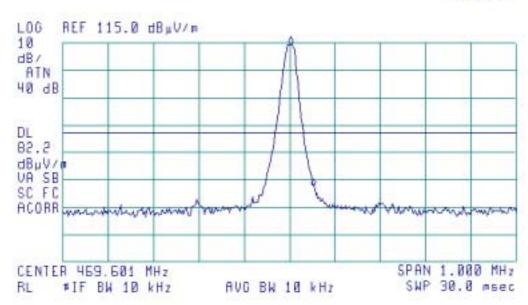


Plot 4.3.26 Spurious emissions measurement test results

Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel
Note F=460.009 MHz

(A) 16:28:30 MAR 25, 2002

ACTU DET: PEAK
MEAS DET: PEAK DP AUG
MKR 4.977 GHz
71.01 dBuV/m

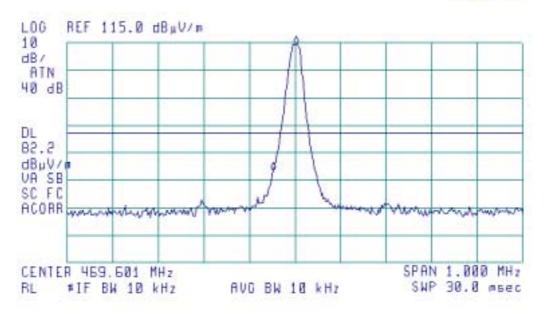

Plot 4.3.27 Spurious emissions measurement test results

Spurious emission Speed HPTx Miltel

F=469.6 MHz

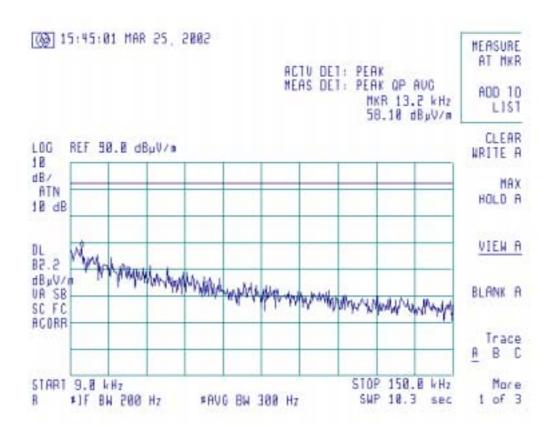
12:03:09 MAR 25, 2002

ACTU DET: PEAK
MEAS DET: PEAK OP AUG
MKRA 50 kHz
-52.05 dB

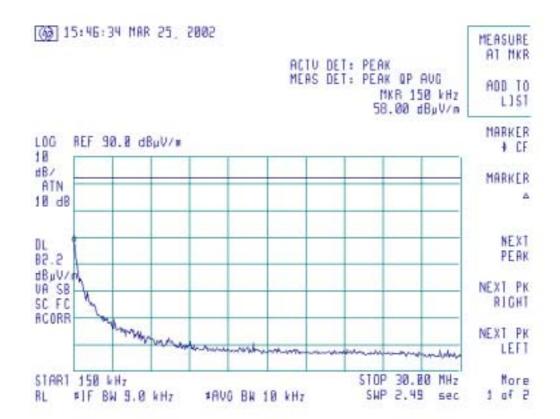


Plot 4.3.28 Spurious emissions measurement test results

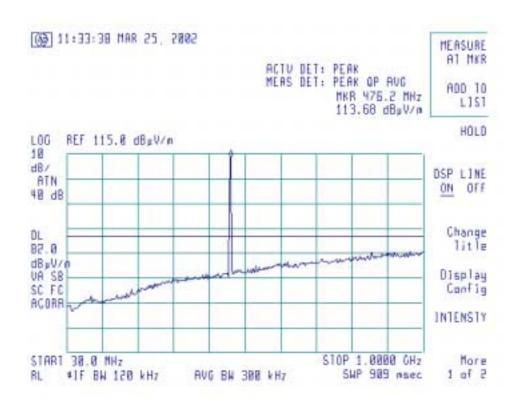
Spurious emission Speed HPTx Miltel F=469.6 MHz


12:04:17 MAR 25, 2002

ACTU DET: PEAK MEAS DET: PEAK OP AUG MKRA -50 kHz -45.08 dB

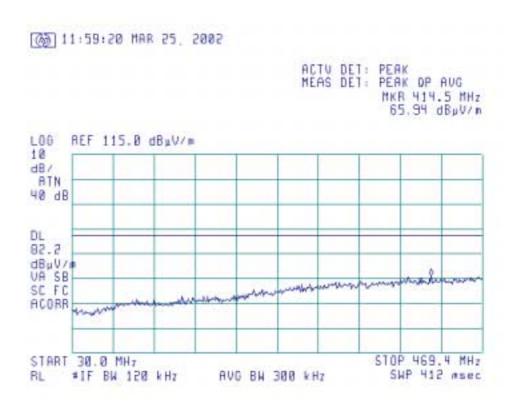

Plot 4.3.29 Spurious emissions measurement test results

Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel
Note F=469.6009 MHz

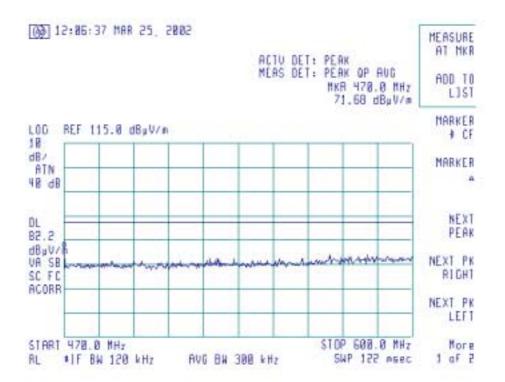

Plot 4.3.30 Spurious emissions measurement test results

Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel
Note F=469.6009 MHz

Plot 4.3.31 Spurious emissions measurement test results

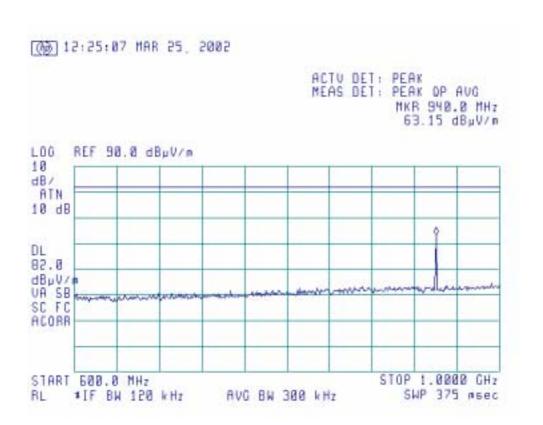

Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel
Note F=469.6 MHz

Plot 4.3.32 Spurious emissions measurement test results

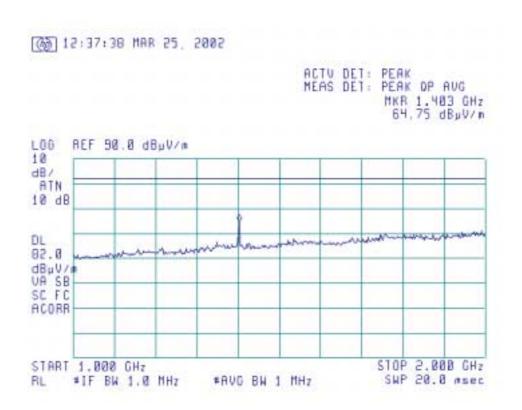

Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel

Note F=469.6 MHz

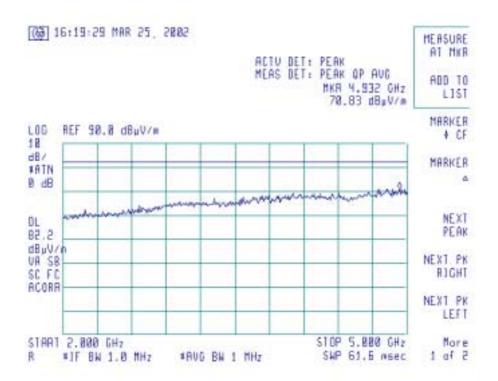
Plot 4.3.33 Spurious emissions measurement test results


Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel
Note F=469.6 MHz

Plot 4.3.34 Spurious emissions measurement test results


Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel

Note F=469.6 MHz


Plot 4.3.35 Spurious emissions measurement test results

Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel
Note F=469.6 MHz

Plot 4.3.36 Spurious emissions measurement test results

Test Name Spurious emission
EUT Model Number Speed HPTx
Customer Name Miltel
Note F=469.6009 MHz

4.4 Frequency stability measurements according to FCC part 90 paragraph 213

4.4.1 General

According to paragraph 90.213, the frequency stability limit (in parts per million) is 2.5 ppm in the frequency range 450 - 470 MHz.

For frequency 450 400 708 Hz the specified limit is ± 1126 Hz

for 460 000 692 Hz - \pm 1150 Hz for 469 600 759 Hz - \pm 1174 Hz.

4.4.2 Test procedure

The EUT frequency stability was investigated for various temperatures in the range from -30°C to +50°C at the low, middle and high frequency channels.

Test results were recorded in Tables 4.4.1 to 4.4.6. The maximum measured displacement was - 910 Hz.

The EUT was found to comply with the standard requirements.

Reference numbers of test equipment used

0493 0558	0758	0808	
-----------	------	------	--

Full description is in Appendix A.

Table 4.4.1
Frequency stability test results vs supply voltage
Frequency: 450.400 MHz, limit: ±1126 Hz

Temperature: 22°C

Voltage, V	Frequency, Hz	Displacement, Hz	Time, min	Pass/ Fail
	450400816	+108	startup	Pass
Ucc=3.6V	450400748	+40	+2	Pass
	450400712	+4	+5	Pass
	450400708	0	+10	Pass
	450400864	+156	startup	Pass
Ucc=3.2V	450400805	+97	+2	Pass
	450400773	+65	+5	Pass
	450400762	+54	+10	Pass
	450400808	+100	startup	Pass
Ucc=4.14V	450400685	-23	+2	Pass
	450400639	-69	+5	Pass
	450400613	-95	+10	Pass

Reference frequency: 450400708 Hz

Table 4.4.2
Frequency stability test results vs ambient temperature
Reference frequency: 450400708 Hz, limit: ±1126 Hz

Temperature, °C	Frequency, Hz	Displacement, Hz	Time, min	Pass/ Fail
	450400675	-33	startup	Pass
t°=30°C	450400583	-125	+2	Pass
	450400554	-154	+5	Pass
	450400533	-175	+10	Pass
	450400200	-508	startup	Pass
t°=40°C	450400118	-590	+2	Pass
	450400122	-586	+5	Pass
	450400126	-582	+10	Pass
	450399939	-769	startup	Pass
t°=50°C	450399988	-720	+2	Pass
	450400007	-701	+5	Pass
	450400021	-687	+10	Pass
	450401103	395	startup	Pass
t°=10°C	450401048	340	+2	Pass
	450401046	338	+5	Pass
	450401046	338	+10	Pass
	450400745	37	startup	Pass
t°=0°C	450400848	140	+2	Pass
	450400842	134	+5	Pass
	450400850	142	+10	Pass
	450400593	-115	startup	Pass
t°=-10°C	450400790	82	+2	Pass
	450400855	147	+5	Pass
	450400764	56	+10	Pass
	450400634	-74	startup	Pass
t°=-20°C	450400825	117	+2	Pass
	450400842	134	+5	Pass
	450400838	130	+10	Pass
	450399248	-933	startup	Pass
t°=-30°C	450400261	-447	+2	Pass
	450400296	-412	+5	Pass
	450400272	-436	+10	Pass

Table 4.4.3
Frequency stability test results vs supply voltage
Frequency: 460.000 MHz, limit: ±1150 Hz

Temperature: 22°C

Voltage, V	Frequency, Hz	Displacement, Hz	Time, min	Pass/ Fail
	460000707	+15	startup	Pass
Ucc=3.6V	460000700	+8	+2	Pass
	460000697	+5	+5	Pass
	460000692	0	+10	Pass
	460000759	+67	startup	Pass
Ucc=3.2V	460000751	+59	+2	Pass
	460000741	+49	+5	Pass
	460000741	+49	+10	Pass
	460000639	-53	startup	Pass
Ucc=4.14V	460000611	-81	+2	Pass
	460000597	-95	+5	Pass
	460000583	-109	+10	Pass

Reference frequency: 460000692 Hz

Table 4.4.4
Frequency stability test results vs ambient temperature
Reference frequency: 460000692 Hz, limit: ±1150 Hz

Temperature, °C	Frequency, Hz	Displacement, Hz	Time, min	Pass/ Fail
	460000680	-12	startup	Pass
t°=30°C	460000583	-109	+2	Pass
	460000552	-140	+5	Pass
	460000541	-151	+10	Pass
	460000196	-496	startup	Pass
t°=40°C	460000121	-571	+2	Pass
	460000121	-571	+5	Pass
	460000114	-578	+10	Pass
	459999974	-718	startup	Pass
t°=50°C	460000014	-678	+2	Pass
	460000025	-667	+5	Pass
	460000041	-651	+10	Pass
	460001050	358	startup	Pass
t°=10°C	460001075	383	+2	Pass
	460001075	383	+5	Pass
	460001075	383	+10	Pass
	460000836	144	startup	Pass
t°=0°C	460000941	249	+2	Pass
	460000924	232	+5	Pass
	460000938	246	+10	Pass
	460000863	171	startup	Pass
t°=-10°C	460001054	362	+2	Pass
	460001126	434	+5	Pass
	460001002	310	+10	Pass
	460000590	-102	startup	Pass
t°=-20°C	460001084	392	+2	Pass
	460001132	440	+5	Pass
	460001120	428	+10	Pass
	459999782	-910	startup	Pass
t°=-30°C	460000611	-81	+2	Pass
	460000703	11	+5	Pass
	460000711	19	+10	Pass

Table 4.4.5
Frequency stability test results vs supply voltage
Frequency: 469.600 MHz, limit: ±1174 Hz

Temperature: 22°C

Voltage, V	Frequency, Hz	Displacement, Hz	Time, min	Pass/ Fail
	469600899	+140	startup	Pass
Ucc=3.6V	469600813	+54	+2	Pass
	469600768	+9	+5	Pass
	469600759	0	+10	Pass
	469600903	+144	startup	Pass
Ucc=3.2V	469600850	+91	+2	Pass
	469600818	+59	+5	Pass
	469600808	+49	+10	Pass
	469600882	+123	startup	Pass
Ucc=4.14V	469600760	+1	+2	Pass
	469600706	-53	+5	Pass
	469600674	-85	+10	Pass

Reference frequency: 469600759 Hz

Table 4.4.6 Frequency stability test results vs ambient temperature Reference frequency: 469600759 Hz, limit: ±1174 Hz

Temperature, °C	Frequency, Hz	Displacement, Hz	Time, min	Pass/ Fail
	469600696	-63	startup	Pass
t°=30°C	469600604	-155	+2	Pass
	469600568	-191	+5	Pass
	469600552	-207	+10	Pass
	469600195	-564	startup	Pass
t°=40°C	469600142	-617	+2	Pass
	469600114	-645	+5	Pass
	469600106	-653	+10	Pass
	469599949	-810	startup	Pass
t°=50°C	469600021	-738	+2	Pass
	469600039	-720	+5	Pass
	469600048	-711	+10	Pass
	469601073	314	startup	Pass
t°=10°C	469601083	324	+2	Pass
	469601089	330	+5	Pass
	469601087	328	+10	Pass
	469600746	-13	startup	Pass
t°=0°C	469600816	57	+2	Pass
	469600888	129	+5	Pass
	469600897	138	+10	Pass
	469600682	-77	startup	Pass
t°=-10°C	469600921	162	+2	Pass
	469600743	-16	+5	Pass
	469600774	15	+10	Pass
	469600650	-109	startup	Pass
t°=-20°C	469600830	71	+2	Pass
	469600868	109	+5	Pass
	469600880	121	+10	Pass
	469599250	-1050	startup	Pass
t°=-30°C	469600116	-643	+2	Pass
	469600310	-449	+5	Pass
	469600370	-389	+10	Pass

4.5 Radiated emission measurements according to FCC part 15 subpart B §15.109

4.5.1 General

This test was performed to measure radiated emissions from the incorporated digital device of the EUT and also to verify the EUT full compliance with §15.109.

Radiated emission measurements specification limits are given in Table 4.5.1 below:

Table 4.5.1
Limits for electric field strength, quasi-peak detector @3 meter distance

Frequency MHz	Class B equipment dB(μV/m)
30 - 88	40
88 - 216	43.5
216 - 960	46
960 - 5000	54

4.5.2 Test procedure

The radiated emissions measurements of the EUT digital part were performed in the anechoic chamber at 3 meter measuring distance in the frequency range from 30 MHz to 1 GHz with the biconilog antenna.

The EUT in stand-by mode was placed on the wooden table as shown in Figure 4.5.1. To find maximum radiation the turntable was rotated 360° , the measuring antennas height changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

The measurements were performed with the EMI receiver settings: RBW=120 kHz, peak detector. The results of measurements are shown in Plot 4.5.1. All the found emissions were at least 20 dB below the specified limit.

Reference numbers of test equipment used

0465 0521 0589 1004

Full description is in Appendix A.

Plot 4.5.1 Radiated emission measurements test results, electric field, frequency range 30 MHz - 1000 MHz

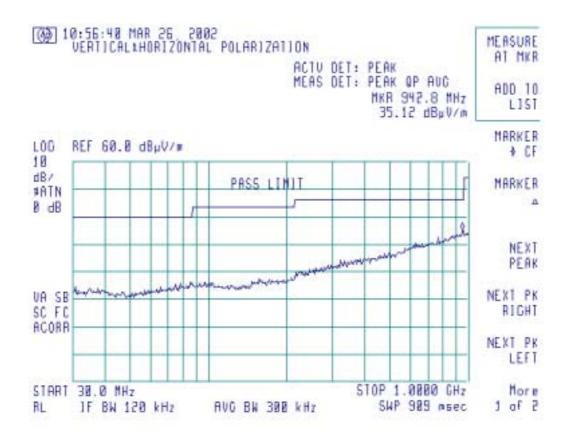


Figure 4.5.1 Radiated emissions test setup for table-top equipment

4.6 Transient Frequency Behavior according to FCC part 90 Paragraph 214

4.6.1 General

This test was performed to determine the maximum frequency difference limits during the time intervals as defined in part 90 paragraph 214.

4.6.2 Test Procedure

The transmitter was tested for transient frequency behavior using the test methodology defined in TIA/EIA-603-A (2.2.19.3). The test set up is depicted below in Figure 4.6.1. The functions of the RF power meter and the test receiver were performed by a Marconi FM Detector (HL793). The scope (HL 670) was triggered by a signal from the transmitter.

TRANSMITTER DIRECTIONAL RF **UNDER TEST COUPLER DETECTOR** HL 101 **RF POWER METER RF SIGNAL COMBINING STORAGE** OSCILLOSCOPE **GENERATOR NETWORK** HL 1882 HL 1907 HL 670 TEST **RECEIVER FM DETECTOR** HL 793

Figure 4.6.1
Transient Frequency Behavior Test Set Up

The test results as per 90.214 are recorded in Table 4.6.1 and shown in Plots 4.6.1 - 4.6.2.

Table 4.6.1
Transient Frequency Measurements

Time Intervals	Maximum Frequency Difference KHz.	Pass / Fail
$t_1 = 10 \text{ msec.}$	±12.5*	Pass
$t_2 = 25 \text{ msec.}$	±6.25*	Pass
During the time from the end of the frequency difference must not ex 90.213 (±2.5 PPM x 460 MHz. =	Pass	
$t_3 = 10 \text{ msec.}$	±12.5*	Pass

^{*} The frequency difference during this time period may exceed the defined maximum frequency difference because the transmitter carrier output power rating is less than 6 watts

Reference numbers of test equipment used

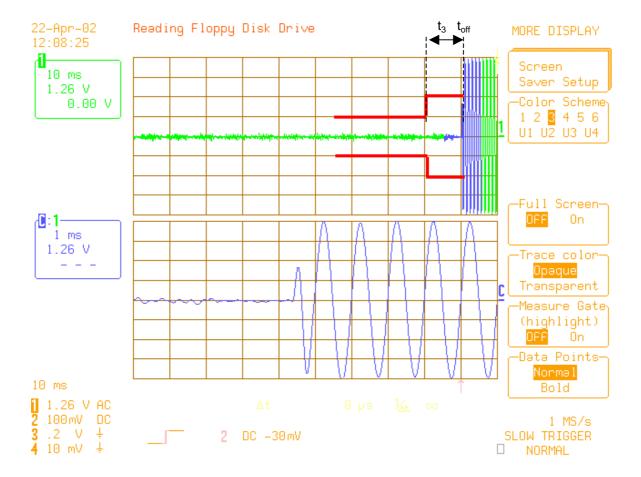
HL 670	HL 1907	HL 101	HL 793	HL 1882
--------	---------	--------	--------	---------

Full description is in Appendix A.

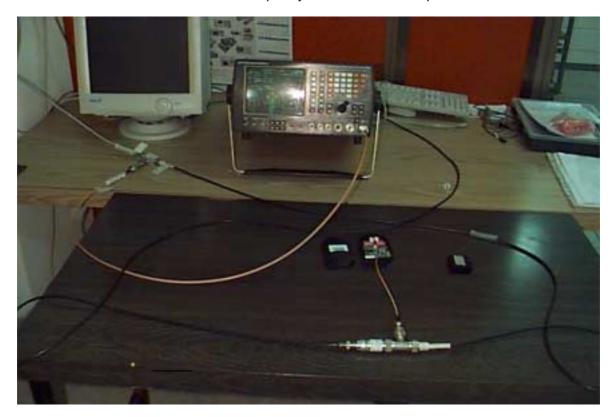
Plot 4.6.1 Turn On test results

Date/Time: April 22 2002 11:57:01 AM

Test Name: Turn On
Customer: Miltel
EUT: Speed HPTx



Plot 4.6.2 Turn Off test results


Date/Time: April 22 2002 12:08:25 PM

Test Name: Turn Off Customer: Miltel

EUT: Speed HPTx

Transient Frequency Behavior Test Set Up

APPENDIX A - Test equipment and ancillaries used for tests

No.	Description Manufacturer information			tion	Due	
		Name	Model No.	Serial No.	calibr.	
0041	Double ridged guide antenna, 1-18 GHz	Electro-Metrics	RGA 50/60	2811	3/03	
0101	Detector crystal, 0.01 – 12.4 GHz	Hewlett Packard	420A	101	11/02 Check	
0446	Active Loop Antenna 10 kHz-30 MHz	Electro- Mechanics	6502	2857	10/02	
0465	Anechoic Chamber 9 (L) x 6.5 (W) x 5.5 (H) m	HL	AC-1	023	3/03	
0493	Oven temperature	Thermotron	S-1.2 Mini- Max	4016	9/02	
0521	Spectrum Analyzer with RF filter section (EMI Receiver 9 kHz - 6.5 GHz)	Hewlett Packard	8546A	0319	9/02	
0558	Multimeter Digital	Fluke	76	0904	10/02	
0589	Cable Coaxial, A2POL118.2, 3m	GORE	GORE-3	589	12/02	
0591	Attenuator 10 dB, 50 Ohm, N-type, 2W	Elisra Electronic Systems	MW2100-N- Type	3	1/03	
0604	Antenna Biconilog Log- Periodic/T Bow-Tie, 26 - 2000 MHz	EMCO	3141	9611-1011	1/03	
0614	Antenna Dipole Tunable 200 –1000 MHz	Electro-Metrics	TDS 30-1/30- 2	334	1/03	
0661	Generator Swept Signal, 10 MHz to 40GHz+ 10dBm	Hewlett Packard	83640B	0266	9/02	
0670	Oscilloscope, Digital storage 500MHz, 2Gs/s, 4ch with Telecom Mask Tester	LeCroy Corporation	LC 334A+MT01/ 02	2387	8/02	
0758	Power supply, 36 V, 1 A	Horizon Electronics	DHR 36-1	5361231	6/02 Check	
0793	Radio communication test set	Marconi Instruments	2955	9507/179	2/03	
8080	Analyzer spectrum, 100 Hz to 2.2 GHz, AM/FM modulator	Anritsu	MS2601B	M178731	3/03	
1004	Cable coaxial, PSWJ4, 6 m	ANDREW	ANDREW-6	163	12/02	
1424	Spectrum analyzer, 30 Hz - 40 GHz	Agilent Technologies	8564EC	3946A00219	8/02	
1425	EMI Receiver System, 9 kHz - 2.9 GHz	Agilent Technologies	8542E	3710A00222	9/02	
1536	Cable RF, 2 m	Alpha Wire	RG-58C/U	NA	9/02	
1620	Attenuator, 50 Ohm, 2 W, DC to 8 GHz, 10 dB	Midwest Microwave	0217-10- NNN-02	NA	1/03	
1882	Generator signal, 0.1 – 990 MHz	Hewlett Packard	8656A	2228A03615	9/02	
1907	Power splitter/combiner, 5-500 MHz	Mini-Circuits	ZFSCC-2-1	NA	7/02	
1940	Cable 40 GHz, 1.5 m, blue	Rhophase Microwave Ltd.	KPS-1503A- 1500-KPS	T4663	10/02	
1947	Cable 18 GHz, 6.5 m, blue	Rhophase Microwave Ltd	NPS-1803A- 6500-NPS	T4974	10/02	

APPENDIX B-Test equipment correction factors

Biconilog antenna factor, EMCO, model 3141 Ser.No.1011

	Ser.
Frequency, MHz	Antenna Factor, dB(1/m)
26	7.8
28	7.8
30	7.8
40	7.2
60	7.1
70	8.5
80	9.4
90	9.8
100	9.7
110	9.3
120	8.8
130	8.7
140	9.2
150	9.8
160	10.2
170	10.4
180	10.4
190	10.3
200	10.6
220	11.6
240	12.4
260	12.8
280	13.7
300	14.7
320	15.2
340	15.4
360	16.1
380	16.4
400	16.6
420	16.7
440	17.0
460	17.7
480	18.1
500	18.5
520	19.1
540	19.5 19.8
560 580	
	20.6
600	21.3
620 640	21.5 21.2
660	21.4
680	21.9
700	22.2
700	22.2
740	22.1
760	22.3
780	22.6
800	22.7
820	22.7
840	23.1
860	23.4
880	23.8
900	24.1
920	24.1

.1011	
Frequency, MHz	Antenna Factor, dB(1/m)
940	24.0
960	24.1
980	24.5
1000	24.9
1020	25.0
1040	25.2
1060	25.4
1080	25.6
1100	25.7
1120	26.0
1140	26.4
1160	27.0
1180	27.0
1200	26.7
1220	26.5
1240	26.5
1260	26.5
1280	26.6
1300	27.0
1320	27.8
1340	28.3
1360	28.2
1380	27.9
1400	27.9
1420	27.9
1440	27.8
1460	27.8
1480	28.0
1500	28.5
1520	28.9
1540	29.6
1560	29.8
1580	29.6
1600	29.5
1620	29.3
1640	29.2
1660	29.4
1680	29.6
1700	29.8
1720	30.3
1740	30.8
1760	31.1
1780	31.0
1800	30.9
1820	30.7
1840	30.6
1860	30.6
1880	30.6
1900	30.6
1920	30.7
1940	30.9
1960	31.2
1980	31.6
2000	32.0

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field intensity in $dB(\mu V/meter)$.