




# **RF** Measurement Report

Prepared by:

# **National Certification Laboratory**

8370 Court Avenue, Suite B-1 Ellicott City, Maryland 21043 (410) 461-5548

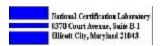
In Support of:

#### FCC REPORT OF RADIO INTERFERENCE

For:

NU-METRICS University Drive Box 518 Uniontown, Pennsylvania 15401

Model: G1-2400 Transmitter


FCCID: MIK-NUMET24G1

**Demonstration of Compliance with FCC Rules Part 15.247** 

No part of this report may be reproduced without written approval of National Certification Laboratory

**April 9, 2001** 

FCC ID: MIK-NUMET24G1 Page 2 of 23



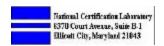
# TABLE OF CONTENTS

| 1.0 | G  | eneral Information                                                                       | 5 |
|-----|----|------------------------------------------------------------------------------------------|---|
| 1   | .1 | Summary                                                                                  | 5 |
| 1   | .2 | Test Methodology                                                                         | 5 |
| 1   | .3 | Test Facility                                                                            | 5 |
| 2.0 | D  | escription of Equipment Under Test (EUT)                                                 | б |
| 2   | .1 | EMI Countermeasure                                                                       | 7 |
| 3.0 | T  | est Program                                                                              | 7 |
| 4.0 | T  | est Configuration For Antenna Terminal Conducted                                         | 8 |
| 4   | .1 | Peak Power Test Results                                                                  | 9 |
| 4   | .2 | 6 dB Emission Bandwidth Test Results                                                     | 0 |
|     | 4. | 2.1 6 dB Bandwidth Emission (100 kHz Res. BW) Plot                                       | 1 |
| 4   | .3 | Power Spectral Density                                                                   | 2 |
|     | 4. | 3.1 FCC Part 15.247(c) Power Spectral Density Plot                                       | 3 |
| 4   | .4 | FCC Part 15.247(c) Conducted Spurious, 2451.00 MHz Frequency of Carrier                  | 4 |
|     | 4. | 4.1 FCC Part 15.247(c) Conducted Spurious, 2451.00 MHz Frequency of Carrier Data Table 1 | 5 |
| 5.0 | T  | est Configuration For Conducted And Radiated Emissions                                   | б |
| 6.0 | A  | .C. Conducted Emissions Scheme                                                           | 7 |
| 6   | .1 | AC Conducted Emissions Data Table                                                        | 8 |
| 7.0 | R  | adiated Emissions Scheme                                                                 | 9 |
| 7   | .1 | Radiated Emissions Data Table                                                            | 0 |

FCC ID: MIK-NUMET24G1



# **TABLES**


| Table 1 | EUT Accessories.           | 21 |
|---------|----------------------------|----|
| Table 2 | Support Equipment          | 22 |
| Table 3 | Measurement Equipment Used | 23 |

# **EXHIBITS**

| Exhibit 1   | Measurement Photographs                        | Error! Bookmark not defined. |
|-------------|------------------------------------------------|------------------------------|
| Exhibit 1.1 | AC Conducted Emissions Measurement Photographs | Error! Bookmark not defined. |
| Exhibit 1.2 | Radiated Emissions Measurement Photographs     | Error! Bookmark not defined. |
| Exhibit 2   | Schematic                                      | Error! Bookmark not defined. |
| Exhibit 3   | User's Manual                                  | Error! Bookmark not defined. |

NCL PROJ.# Nu-Metrics-586

FCC ID: MIK-NUMET24G1 Page 4 of 23



#### **1.0** General Information:

This report has been prepared on behalf of **Nu-Metrics**, to support the attached Application for Certification of a Part 15 Spread Spectrum Transmitter. The Equipment Under Test (EUT) was the **Model: G1-2400 Transceiver.** The EUT configuration consisted of G2-2400 Transmitter. The test results reported in this document relate only to the item that was tested.

Radio-Noise Emissions tests were performed according to *FCC Public Notice* 54797, *titled "Guidance on Measurement for Direct Sequence SST"*. The measuring equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

#### 1.1 Summary:

The Nu-Metrics, **G1-2400 Transceiver**, complies with the FCC limits (15.247) for a Direct Sequence SST. Tests were performed on a single radio channel.

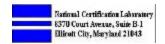
#### 1.2 Test Methodology;

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 1992. Radiated testing was performed at an antenna to EUT distance of three (3) meters.

#### 1.3 Test Facility:

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of National Certification Laboratory 8370 Court Avenue, Suite B-1, Ellicott City, Maryland 21043. This site has been fully described in a report dated May 26, 1993, submitted to and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing.

FCC ID: MIK-NUMET24G1 Page 5 of 23




## **2.0** Description of Equipment Under Test (EUT):

The EUT features:

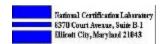
Permanent Attached PCB Antenna per 15.203
+10 dBm Max RF Output
2451.00 MHz Center Frequency
16.4 MHz 6 dB Emission Bandwidth
Single Channel Only
10 kbps Max Data Rate (BPSK)
5.25 MHz Data Clock

FCC ID: MIK-NUMET24G1 Page 6 of 23



#### **2.1 EMI Countermeasure:**

The following modifications were made to the EUT, by the project engineer to assure compliance to specifications:

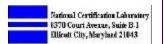

None.

#### 3.0 Test Program:

This report contains measurement charts and data as evidence for the following tests performed:

- 1. (15.247b) Peak RF output power.
- 2. (15.247a) 6 dB Emission Bandwidth.
- 3. (15.247d) Power Spectral Density (3kHz Bandwidth).
- 4. (15.247c) RF Antenna Conducted output of harmonics and spurious out-of-band emissions.
- 5. (15.247c) Field Strength of harmonics and spurious out-of-band emissions.
- 6. (15.207) AC Power Line Conducted Emissions.

FCC ID: MIK-NUMET24G1 Page 7 of 23




## **4.0** Test Configuration for Antenna Terminal Conducted:

RF antenna conducted output tests such as Bandwidth, Spurious/Harmonics, Power Spectral Density, and Power output were taken with the antenna connector feeding directly into the spectrum analyzer via external **20 dB attenuator**, or into the **Peak RF meter** as appropriate. The analyzer's internal attenuator was adjusted to prevent overloading of the front end. The transmitter is modulated at 10 kbps that is the highest available data rate.

Field strength measurements were taken with the transmitter operating at maximum RF power output.

FCC ID: MIK-NUMET24G1 Page 8 of 23



## **4.1** Peak Power Test Results:

Limit: 1 watt (30 dBm)

Condition: Transmitter is set to a single modulated channel at full RF power.

Readings from Peak RF Power meter.

Channel: 2451 MHz - (+9.8 dBm)

FCC ID: MIK-NUMET24G1 Page 9 of 23



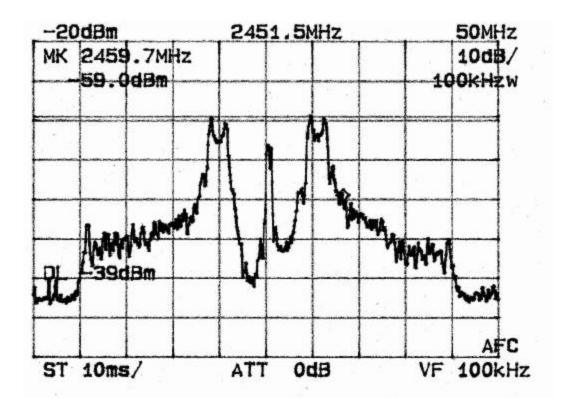
## **4.2** 6 dB Emission Bandwidth Test Results:

Minimum 6 dB BW: 0.500 MHz RBW Setting on S.A.: 100 kHz

Condition: Transmitter is set to a single modulated channel at 10 kbps at full RF

power.

Readings from Spectrum Analyzer:


Channel: 2451.00 MHz - (16.8 MHz)

SEE FOLLOWING PLOT OF MODULATED CARRIER

FCC ID: MIK-NUMET24G1 Page 10 of 23

## 4.2.1 6 dB Bandwidth Emission (100 kHz Res. BW) Plot:

6 dB EMISSION BANDWIDTH – MODULATED CARRIER



FCC ID: MIK-NUMET24G1 Page 11 of 23



# **4.3 Power Spectral Density:**

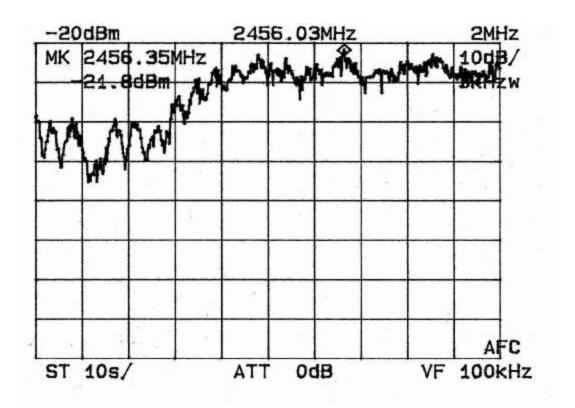
Limit: 8 dBm Resolution BW: 3 kHz

Actual Time Interval used for testing:: 1.5 second/3kHz MHz

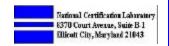
Condition: Transmitter is set to a single channel modulated at 10 kbps at full RF

power.

Note: 20 dB front-end attenuator on analyzer


Reading from spectrum analyzer:

Channel: 2451.00 MHz - -1.8 dBm


SEE FOLLOWING PLOT & DATA TABLES

FCC ID: MIK-NUMET24G1 Page 12 of 23

#### 4.3.1 FCC Part 15.247(c) Power Spectral Density Plot:



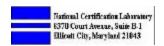
FCC ID: MIK-NUMET24G1 Page 13 of 23



#### 4.4 FCC Part 15.247(c) Conducted Spurious, 2451 MHz Frequency Of Carrier:

Frequency of Carrier = 2451 MHz

Limit Below Fc Level = 20 dB below Carrier Level Measured with 100


kHz RBW

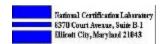
Condition: Transmitter is set to a single modulated channel at full RF

power.

SEE FOLLOWING DATA TABLE

FCC ID: MIK-NUMET24G1 Page 14 of 23

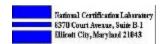



# **4.4.1** FCC Part 15.247(c) Conducted Spurious, 2451 MHz Frequency of Carrier Data Table:

#### **TEST RESULTS**

LIMIT: -20 dBc

| Component | Frequency (MHz) | Result (dB Below Peak) |
|-----------|-----------------|------------------------|
|           |                 |                        |
| Harmonic  | 4902.00         | -59.0                  |
| Harmonic  | 7353.00         | -61.0                  |
| Harmonic  | 9804.00         | -62.0                  |
| Harmonic  | 12255.00        | -65.0                  |
| Harmonic  | 14706.00        | -70.0                  |
| Harmonic  | 17157.00        | -71.0                  |
| Harmonic  | 19608.00        | -73.0                  |
| Harmonic  | 22059.00        | -75.0                  |
| Harmonic  | 24510.00        | -75.0                  |
|           |                 |                        |

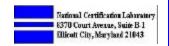

FCC ID: MIK-NUMET24G1 Page 15 of 23



## **5.0** Test Configuration for Conducted and Radiated Emissions:

The EUT was set up on the center of the test table, in a manner which follows the general guidelines of ANSI C63.4, Section 6 "General Operating Conditions and Configurations". The transmitter is turned on and automatically begins transmission at full RF power output, once initialized.

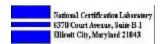
FCC ID: MIK-NUMET24G1 Page 16 of 23




#### **6.0** A.C. Conducted Emissions Scheme:

The EUT is placed on an 80 cm high 1 X 1.5 m non-conductive table. Power to the RF amplifier is provided through a Solar Corporation 50  $\Omega$  / 50 uH Line Impedance Stabilization Network bonded to a 2.2 X 2 meter horizontal ground plane, and a 2.2 X 2 meter vertical ground plane. The LISN has its AC input supplied from a filtered AC power source. A separate LISN provides AC power to the peripheral equipment. I/O cables are moved about to obtain maximum emissions.

The 50  $\Omega$  output of the LISN is connected to the input of the spectrum analyzer and emissions in the frequency range of 450 kHz to 30 MHz are searched. The detector function is set to Quasi-Peak and the resolution bandwidth is set at 9 kHz, with all post detector filtering no less than 10 times the resolution bandwidth for final measurements. All emissions within 20 dB of the limit are recorded in the data tables.


FCC ID: MIK-NUMET24G1 Page 17 of 23



#### **6.1 AC Conducted Emissions Data Table**

EUT is battery powered only.

FCC ID: MIK-NUMET24G1 Page 18 of 23



#### **7.0 Radiated Emissions Scheme:**

The EUT is placed on an 80 cm high 1 X 1.5 meter non-conductive motorized turntable for radiated testing on the 3 meter open area test site. The emissions from the EUT are measured continuously at every azimuth by rotating the turntable. Guided horn and log periodic broadband antennas are mounted on an antenna mast to determine the height of the maximum emissions. The heights of the antennas are varied between 1 and 4 meters. Both the horizontal and vertical field components are measured.

The RF spectrum is searched from 30 MHz to 24 GHz.

The output from the antenna is connected to the input of the preamplifier. The pre-amp out is connected to the spectrum analyzer. The detector function is set to PEAK. The resolution bandwidth of the spectrum analyzer is set at 120 kHz for the frequency range of 30-1000 MHz, and 1 MHz for the frequency range of 1-24 GHz. A 10Hz video BW setting is used to average readings above 1 GHz when applicable. All emissions within 20 dB of the limit are recorded in the data tables.

To convert the spectrum analyzer reading into a quantified E-field level to allow comparison with the FCC limits, it is necessary to account for various calibration factors. These factors include cable loss (CL) and antenna factors (AF). The AF/CL in dB/m is algebraically added to the Spectrum Analyzer Voltage in dB $\mu$ V/m. This level is then compared to the FCC limit.

# **EXAMPLE**

Spectrum Analyzer Voltage: VdBmV

Composite Factor: AF/CL dB/m

Electric Field: E dBmV/m = V dBmV + AF/CL dB/m

Linear Conversion: E mV/m = Antilog (E dBmV/m / 20)

FCC ID: MIK-NUMET24G1 Page 19 of 23



#### **7.1** Radiated Emissions Data Table:

## FCC RADIATED EMISSIONS DATA

CLIENT: Nu-Metrics EUT: S1-2400

FREQ.: 2451.00 MHZ

POWER: 10 dBm

3 METER TEST DETECTOR - PEAK DATE: 06/17/2001

| FREQUENCY | POLARITY |              | SPEC A | AF/C  | AMP     | Average   | PEAK<br>E-Field | Average<br>Limit | MARGIN | CONDITION |
|-----------|----------|--------------|--------|-------|---------|-----------|-----------------|------------------|--------|-----------|
| MHz       | Н        | $\mathbf{V}$ | dBuV   | dB/m  | Gain dB | Factor dB | dbuV/m          | dBuV/m           | dB     |           |
|           |          |              |        |       |         |           |                 |                  |        |           |
| 4,902.00  |          | V            | 37.00  | 35.00 | 25.00   | 0.00      | 47.00           | 54.00            | 7.00   | PASS      |
| 12,255.00 | Н        |              | 32.00  | 40.00 | 25.00   | 0.00      | 47.00           | 54.00            | 7.00   | PASS      |
| 14,706.00 |          | V            | 27.00  | 43.00 | 25.00   | 0.00      | 45.00           | 54.00            | 9.00   | PASS      |
| 19,608.00 | Н        |              | 28.00  | 36.00 | 25.00   | 0.00      | 39.00           | 54.00            | 15.00  | PASS      |
|           |          |              |        |       |         |           |                 |                  |        |           |
|           |          |              |        |       |         |           |                 |                  |        |           |
|           |          |              |        |       |         |           |                 |                  |        |           |
|           |          |              |        |       |         |           |                 |                  |        |           |

**TEST ENGINEER:** 

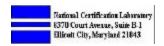
**Brian Haghtalab** 

FCC ID: MIK-NUMET24G1 Page 20 of 23



# TABLE 1 – EUT ACCESSORIES

| None Used |
|-----------|
|           |
|           |
|           |
|           |


FCC ID: MIK-NUMET24G1 Page 21 of 23



# TABLE 2 SUPPORT EQUIPMENT

| MANUFACTURER | FCC ID# | SERIAL# |
|--------------|---------|---------|
|              |         |         |
| None Used    |         |         |
|              |         |         |
|              |         |         |
|              |         |         |
|              |         |         |
|              |         |         |
|              |         |         |
|              |         |         |

FCC ID: MIK-NUMET24G1 Page 22 of 23



# TABLE 3 MEASUREMENT EQUIPMENT USED

The following equipment is used to perform measurements:

| EQUIPMENT                               | SERIAL #    |
|-----------------------------------------|-------------|
| HP 434A RF Peak Power Meter             | 1362016     |
| EMCO Model 3110 Biconical Antenna       | 1619        |
| Antenna Research MWH-1825B Horn Antenna | 1005        |
| EMCO Model 3115 Ridged Horn Antenna     | 3007        |
| HP 8348A Pre-Amplifier                  | 197-2564A   |
| Solar 8012-50-R-24-BNC LISN             | 924867      |
| Bird 8306-300-N-30dB Attenuator         | 29198391515 |
| HP 14IT w/8555A Spectrum Analyzer       | 6-95-1124   |
| 4 Meter Antenna Mast                    |             |
| Motorized Turntable                     |             |
| Heliax FSJ1-50A ¼" Superflex Coax Cable |             |
|                                         |             |

FCC ID: MIK-NUMET24G1 Page 23 of 23