

IP MOBILENET TEST REPORT

FOR THE

BASE STATION FOR MOBILE DATA RADIO NETWORK, B64450G25

FCC PART 90 AND RSS-119

COMPLIANCE

DATE OF ISSUE: SEPTEMBER 28, 2005

PREPARED FOR:

PREPARED BY:

IP MobileNet 16842 Von Karman Avenue Irvine, CA 92606 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: 004248-00 W.O. No.: 84044 Date of test: September 16-23, 2005

Report No.: FC05-058

This report contains a total of 64 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 64 Report No.: FC05-058

TABLE OF CONTENTS

Administrative Information	3
FCC to Canada Standard Correlation Matrix	4
Conditions for Compliance	4
Approvals	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Temperature and Humidity During Testing	6
FCC 2.1033(c)(3) User's Manual	6
FCC 2.1033(c)(4) Type of Emissions	6
FCC 2.1033(c)(5) Frequency Range	6
FCC 2.1033(c)(6) Operating Power	6
FCC 2.1033(c)(7) Maximum Power Rating	6
FCC 2.1033(c)(8) DC Voltages	
FCC 2.1033(c)(9) Tune-Up Procedure	6
FCC 2.1033(c)(10) Schematics and Circuitry Description	6
FCC 2.1033(c)(11) Label and Placement	6
FCC 2.1033(c)(12) Submittal Photos	6
FCC 2.1033(c)(13) Modulation Information	6
FCC 15.107 – AC Conducted Emissions	7
FCC 15.109 – Radiated Emissions	15
FCC 15.111 – Antenna Port Emissions for Receiver	24
FCC 2.1033(c)(14)/2.1046/90.205 - RF Power Output	32
FCC 2.1033(c)(14)/2.1049(i)/90.209 - Occupied Bandwidth	34
FCC 90210(c) Emissions Mask	38
FCC 2.1033(c)(14)/2.1051/90.210 - Spurious Emissions at Antenna Terminal	45
FCC 2.1033(c)(14)/2.1053/90.210 - Field Strength of Spurious Radiation	49
FCC 2.1033(c)(14)/2.1055/90.213 - Frequency Stability	54
FCC 90.214 Transient Frequency Behavior	56
RSS-119 99% Bandwidth	61

Page 2 of 64 Report No.: FC05-058

ADMINISTRATIVE INFORMATION

DATE OF TEST: September 16-23, 2005

DATE OF RECEIPT: September 16, 2005

FREQUENCY RANGE TESTED: 9 kHz-9 GHz

MANUFACTURER: IP MobileNet

16842 Von Karman Avenue

Irvine, CA 92606

REPRESENTATIVE: Eric Tanner

TEST LOCATION: CKC Laboratories, Inc.

110 Olinda Place Brea, CA 92621

TEST METHOD: FCC Part 90, ANSI/TIA/EIA-603-B (2002), ANSI

C63.4 (2003), FCC-MP5, RSS-Gen and RSS-119

PURPOSE OF TEST: To demonstrate the compliance of the Base Station

for Mobile Data Radio Network, B64450G25 with the requirements for FCC Part 90 and RSS-119

devices.

FCC TO CANADA STANDARD CORRELATION MATRIX

Canadian Standard	Canadian Section	FCC Standard	FCC Section	Test Description
RSS119	5.5	90	90.209	Bandwidth Limitations
RSS119	5.5.1	NA	NA	Specific Requirements for Channel BW > 12.5kHz
RSS119	5.5.7	90	90.217	Exemption from technical standards
RSS119	5.7	90	90.207	Authorized Modulation Types
RSS119	5.8	NA	NA	Equivalent Channels (>12.5kHz)
RSS119	6.2	90	90.205	Power Output
RSS119	6.3	90	90.210	Spurious Emissions OATS
RSS119	6.3	90	90.210	Spurious Emissions Ant Terminal
RSS119	6.4	90	90.210	Emissions Mask
RSS119	6.5	90	90.214	Transient Freq Behavior
RSS119	6.6	2	2.1047	Modulation Limiting
RSS119	6.9	NA	NA	Data Modem Requirements
RSS119	7	90	90.213	Frequency Stability
RSS119	8	15	Subpart B	Receiver Requirements
RSS119	9	OET	65 Sup. C	RF Exposure Requirements
	IC-3172D		100638	Site File No.

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

Joyce Walker, Quality Assurance Administrative

Manager

Stuart Yamamoto, EMC Engineer

Page 4 of 64 Report No.: FC05-058

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Base Station for Mobile Data Radio Network

Manuf: IP MobileNet Model: B64450G25 Serial: 05386432 FCC ID: pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop Computer DC Po	ower Supply
-----------------------	-------------

Manuf: Dell Corporation Manuf: Samlex America Model: PP02L Inspiron I2500 Model: SEC 1223

Serial: 5TZ6611 Serial: 03061-0D01-0632

<u>High Power Termination</u> <u>GPS Antenna</u>

Manuf: Weinschel Corporation Manuf: San Jose Navigation, Inc.

Model: 45-40-43 Model: SM-25 Serial: MN216 Serial: 2569790

> Page 5 of 64 Report No.: FC05-058

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS 20K0F1D

FCC 2.1033 (c)(5) FREQUENCY RANGE 450MHz – 507MHz.

FCC 2.1033 (c)(6) OPERATING POWER 40 Watts.

FCC 2.1033 (c)(7) MAXIMUM POWER RATING

450–470 MHz. (1) The maximum allowable station effective radiated power (ERP) is dependent upon the station's antenna HAAT and required service area and will be authorized in accordance with table 2 of Part 90.205(h). Applicants requesting an ERP in excess of that listed in table 2 must submit an engineering analysis based upon generally accepted engineering practices and standards that includes coverage contours to demonstrate that the requested station parameters will not produce coverage in excess of that which the applicant requires. 470–512 MHz. Power and height limitations are specified in §90.307 and 90.309.

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION

Frequency.

Page 6 of 64 Report No.: FC05-058

FCC 15.107 – AC CONDUCTED EMISSIONS

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer: IP MobileNet

Specification: FCC 15.107 Class B COND [AVE]

Work Order #: 84044 Date: 9/20/2005 Test Type: **Conducted Emissions** Time: 12:01:50 Sequence#: 3

Equipment: **Base Station for Mobile Data Radio**

Network

Tested By: Stuart Yamamoto Manufacturer: **IPMobileNet** Model: B64450G25 110 Vac 60 Hz

S/N: 05386432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Base Station for Mobile	IPMobileNet	B64450G25	05386432	
Data Radio Network*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	PP02L Inspiron I2500	5TZ6611
DC Power Supply	Samlex America	SEC 1223	03061-0D01-0632
High Power Termination	Weinschel Corporation	45-40-43	MN216
GPS Antenna	San Jose Navigation, Inc.	SM-25	2569790

Test Conditions / Notes:

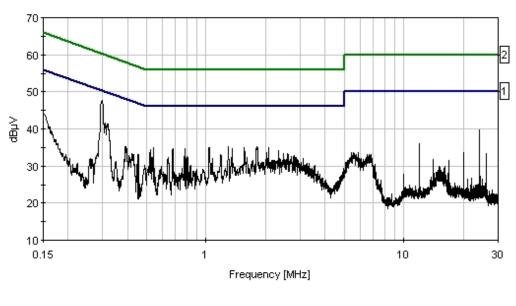
The EUT and support equipment are located on the table top. Connected to the EUT Tx port is one high powered termination. Connected to the EUT serial port is the laptop computer via a shielded serial cable. Connect to the EUT GPS port is a standard GPS antenna with 5 meter long coaxial cable. The EUT ethernet port is connected to the laptop computer using an unshielded cat. 5E cable. Connected to the EUT's three receive ports are shielded terminated coaxial cables. Connected to the EUT's DB-9 SLIP connection is a shielded unterminated cable. Connected to the EUT's BNC audio output port is a shielded unterminated coaxial cable. Power to the EUT is supplied by an external DC Power supply. The laptop computer is used to check the status of the EUT as well as send commands to have it transmit continuously. Voltage to the EUT is 13.8 VDC. Temperature: 21°C, Humidity: 60%, Pressure: 100kPa. Frequency 150kHz - 30MHz RBW=9kHz, VBW=9kHz. This data sheet is for the EUT transmitting at rated power (40 Watts) on Low (450MHz) channel.

Transducer Legend.

Transaucer Ecgena.		
T1=Cable #8 Conducted Site D	T2=HP Filter AN 02343	
T3=(L1) LISN Insertion Loss 02128		

4	Measui	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
	#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
Ī	1	298.000k	44.3	+0.0	+0.2	+0.1		+0.0	44.6	50.3	-5.7	Black
Ave												
Ī	٨	298.349k	47.4	+0.0	+0.2	+0.1		+0.0	47.7	50.3	-2.6	Black

Page 7 of 64 Report No.: FC05-058


3	24.018M	37.8	+0.4	+0.3	+1.3	+0.0	39.8	50.0	-10.2	Black
4	1.294M	35.0	+0.1	+0.2	+0.0	+0.0	35.3	46.0	-10.7	Black
5	1.808M	35.0	+0.1	+0.1	+0.1	+0.0	35.3	46.0	-10.7	Black
6	1.034M	34.7	+0.1	+0.2	+0.0	+0.0	35.0	46.0	-11.0	Black
7	1.557M	34.6	+0.1	+0.2	+0.1	+0.0	35.0	46.0	-11.0	Black
8	541.234k	34.5	+0.1	+0.2	+0.1	+0.0	34.9	46.0	-11.1	Black
9	2.068M	34.6	+0.1	+0.1	+0.1	+0.0	34.9	46.0	-11.1	Black
10	680.856k	34.3	+0.1	+0.3	+0.0	+0.0	34.7	46.0	-11.3	Black
11	781.937k	34.4	+0.1	+0.1	+0.0	+0.0	34.6	46.0	-11.4	Black
12	1.349M	34.3	+0.1	+0.2	+0.0	+0.0	34.6	46.0	-11.4	Black
13	523.781k	34.1	+0.0	+0.2	+0.1	+0.0	34.4	46.0	-11.6	Black
14	676.493k	33.9	+0.1	+0.3	+0.0	+0.0	34.3	46.0	-11.7	Black
15	2.332M	33.9	+0.1	+0.1	+0.1	+0.0	34.2	46.0	-11.8	Black
16	150.000k	40.8	+0.0	+3.3	+0.0	+0.0	44.1	56.0	-11.9	Black
17	517.236k	33.3	+0.0	+0.2	+0.1	+0.0	33.6	46.0	-12.4	Black
18	2.017M	33.2	+0.1	+0.1	+0.1	+0.0	33.5	46.0	-12.5	Black
19	2.476M	33.0	+0.1	+0.1	+0.1	+0.0	33.3	46.0	-12.7	Black
20	1.183M	32.9	+0.1	+0.2	+0.0	+0.0	33.2	46.0	-12.8	Black
21	390.703k	34.8	+0.0	+0.2	+0.1	+0.0	35.1	48.0	-12.9	Black
22	539.779k	32.7	+0.1	+0.2	+0.1	+0.0	33.1	46.0	-12.9	Black
23	799.390k	32.4	+0.1	+0.1	+0.0	+0.0	32.6	46.0	-13.4	Black
24	773.210k	32.2	+0.1	+0.2	+0.0	+0.0	32.5	46.0	-13.5	Black
25	643.769k	32.0	+0.1	+0.3	+0.0	+0.0	32.4	46.0	-13.6	Black
26	451.061k	32.9	+0.0	+0.2	+0.1	+0.0	33.2	46.9	-13.7	Black
27	805.934k	32.1	+0.1	+0.1	+0.0	+0.0	32.3	46.0	-13.7	Black

Page 8 of 64 Report No.: FC05-058

28	1.604M	31.9	+0.1	+0.2	+0.1	+0.0	32.3	46.0	-13.7	Black
29	531.780k	31.8	+0.1	+0.2	+0.1	+0.0	32.2	46.0	-13.8	Black
30	787.027k	31.9	+0.1	+0.1	+0.0	+0.0	32.1	46.0	-13.9	Black
31	3.106M	31.7	+0.1	+0.1	+0.1	+0.0	32.0	46.0	-14.0	Black

CKC Laboratories Inc. Date: 9/20/2005 Time: 12:01:50 IP MobileNet VVO#: 84044 FCC 15:107 Class B COND [AVE] Test Lead: Black 110 Vac 60 Hz Sequence#: 3 IP MobileNet, B64450G25

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer: IP MobileNet

Specification: FCC 15.107 Class B COND [AVE]

Work Order #: 84044 Date: 9/20/2005
Test Type: Conducted Emissions Time: 12:07:38
Equipment: Base Station for Mobile Data Radio Sequence#: 4

Network

Manufacturer: IPMobileNet Tested By: Stuart Yamamoto Model: B64450G25 110 Vac 60 Hz

S/N: 05386432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Base Station for Mobile	IPMobileNet	B64450G25	05386432	
Data Radio Network*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	PP02L Inspiron I2500	5TZ6611
DC Power Supply	Samlex America	SEC 1223	03061-0D01-0632
High Power Termination	Weinschel Corporation	45-40-43	MN216
GPS Antenna	San Jose Navigation, Inc.	SM-25	2569790

Test Conditions / Notes:

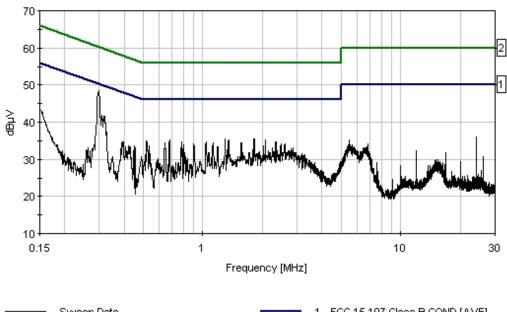
The EUT and support equipment are located on the table top. Connected to the EUT Tx port is one high powered termination. Connected to the EUT serial port is the laptop computer via a shielded serial cable. Connect to the EUT GPS port is a standard GPS antenna with 5 meter long coaxial cable. The EUT ethernet port is connected to the laptop computer using an unshielded cat. 5E cable. Connected to the EUT's three receive ports are shielded terminated coaxial cables. Connected to the EUT's DB-9 SLIP connection is a shielded unterminated cable. Connected to the EUT's BNC audio output port is a shielded unterminated coaxial cable. Power to the EUT is supplied by an external DC Power supply. The laptop computer is used to check the status of the EUT as well as send commands to have it transmit continuously. Voltage to the EUT is 13.8 VDC. Temperature: 21°C, Humidity: 60%, Pressure: 100kPa. Frequency 150kHz - 30MHz RBW=9kHz, VBW=9kHz. This data sheet is for the EUT transmitting at rated power (40 Watts) on Low (450MHz) channel.

Transducer Legend:

Transaucer Legena.		
T1=Cable #8 Conducted Site D	T2=HP Filter AN 02343	
T3=(L2) LISN Insertion Loss 02128		

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: White		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	297.000k	44.6	+0.0	+0.2	+0.0		+0.0	44.8	50.3	-5.5	White
	Ave										
^	296.894k	48.2	+0.0	+0.2	+0.0		+0.0	48.4	50.3	-1.9	White
3	1.817M	35.3	+0.1	+0.1	+0.1		+0.0	35.6	46.0	-10.4	White
4	1.298M	35.0	+0.1	+0.2	+0.1		+0.0	35.4	46.0	-10.6	White

Page 10 of 64 Report No.: FC05-058


5	1.349M	34.8	+0.1	+0.2	+0.1	+0.0	35.2	46.0	-10.8	White
6	2.072M	34.9	+0.1	+0.1	+0.1	+0.0	35.2	46.0	-10.8	White
7	680.856k	34.6	+0.1	+0.3	+0.1	+0.0	35.1	46.0	-10.9	White
8	518.690k	34.6	+0.0	+0.2	+0.1	+0.0	34.9	46.0	-11.1	White
9	521.599k	34.5	+0.0	+0.2	+0.1	+0.0	34.8	46.0	-11.2	White
10	780.482k	34.5	+0.1	+0.1	+0.1	+0.0	34.8	46.0	-11.2	White
11	1.039M	34.4	+0.1	+0.2	+0.1	+0.0	34.8	46.0	-11.2	White
12	1.124M	34.1	+0.1	+0.2	+0.1	+0.0	34.5	46.0	-11.5	White
13	1.579M	34.1	+0.1	+0.2	+0.1	+0.0	34.5	46.0	-11.5	White
14	641.587k	33.9	+0.1	+0.3	+0.1	+0.0	34.4	46.0	-11.6	White
15	1.562M	33.9	+0.1	+0.2	+0.1	+0.0	34.3	46.0	-11.7	White
16	902.518k	33.7	+0.1	+0.2	+0.1	+0.0	34.1	46.0	-11.9	White
17	804.480k	33.7	+0.1	+0.1	+0.1	+0.0	34.0	46.0	-12.0	White
18	538.325k	33.2	+0.1	+0.2	+0.1	+0.0	33.6	46.0	-12.4	White
19	150.727k	40.3	+0.0	+3.1	+0.1	+0.0	43.5	56.0	-12.5	White
20	1.187M	33.0	+0.1	+0.2	+0.1	+0.0	33.4	46.0	-12.6	White
21	773.210k	32.7	+0.1	+0.2	+0.1	+0.0	33.1	46.0	-12.9	White
22	391.430k	34.5	+0.0	+0.2	+0.1	+0.0	34.8	48.0	-13.2	White
23	452.515k	33.3	+0.0	+0.2	+0.1	+0.0	33.6	46.8	-13.2	White
24	801.571k	32.3	+0.1	+0.1	+0.1	+0.0	32.6	46.0	-13.4	White
25	796.481k	32.2	+0.1	+0.1	+0.1	+0.0	32.5	46.0	-13.5	White
26	24.018M	33.9	+0.4	+0.3	+1.4	+0.0	36.0	50.0	-14.0	White
27	448.879k	32.4	+0.0	+0.2	+0.1	+0.0	32.7	46.9	-14.2	White
28	1.068M	31.3	+0.1	+0.2	+0.1	+0.0	31.7	46.0	-14.3	White
29	3.157M	31.2	+0.1	+0.1	+0.2	+0.0	31.6	46.0	-14.4	White

Page 11 of 64 Report No.: FC05-058

30	509.964k	31.0	+0.0	+0.2	+0.1	+0.0	31.3	46.0	-14.7	White
31	3.263M	30.8	+0.1	+0.1	+0.2	+0.0	31.2	46.0	-14.8	White

CKC Laboratories Inc. Date: 9/20/2005 Time: 12:07:38 IP MobileNet WO#: 84044 FCC 15:107 Class B COND [AVE] Test Lead: White 110 Vac 60 Hz Sequence#: 4 IP MobileNet, B64450G25

Sweep Data 2 - FCC 15.107 Class B COND [QP] 1 - FCC 15.107 Class B COND [AVE]

15.107 Conducted Emissions Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	00989A	HP	8568A	2049A01287	040805	040807
RF Section						
Spectrum Analyzer	00034	HP	85662A	2349A06091	040805	040807
Display Section						
Quasi Peak Adapter	00200	HP	85650A	2043A00221	040805	040807
Coaxial Cable	-	Harbour	M17/60-	Cable #8	070204	070206
		Industries	RG142			
LISN	00848	EMCO	3816/2	1102	120804	120806
LISN	02128	EMCO	3816/2	1090	051605	051607
150kHZ HPF	02610	TTE	HB9615-	G7755	041604	041606
			150k-50-720			

Page 12 of 64 Report No.: FC05-058

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Front View

Page 13 of 64 Report No.: FC05-058

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Back View

Page 14 of 64 Report No.: FC05-058

FCC 15.109 – RADIATED EMISSIONS

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer: IP MobileNet

Specification: FCC 15.109 Class B

Work Order #: 84044 Date: 9/22/2005
Test Type: Maximized Emissions Time: 14:19:36
Equipment: Base Station for Mobile Data Radio Sequence#: 5

Network

Manufacturer: IPMobileNet Tested By: Stuart Yamamoto

Model: B64450G25 S/N: 05386432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Base Station for Mobile	IPMobileNet	B64450G25	05386432	
Data Radio Network*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	PP02L Inspiron I2500	5TZ6611
DC Power Supply	Samlex America	SEC 1223	03061-0D01-0632
High Power Termination	Weinschel Corporation	45-40-43	MN216
GPS Antenna	San Jose Navigation, Inc.	SM-25	2569790

Test Conditions / Notes:

The EUT and support equipment are located on the table top. Connected to the EUT Tx port is one high powered termination. Connected to the EUT serial port is the laptop computer via a shielded serial cable. Connect to the EUT GPS port is a standard GPS antenna with 5 meter long coaxial cable. The EUT ethernet port is connected to the laptop computer using an unshielded cat. 5E cable. Connected to the EUT's three receive ports are shielded terminated coaxial cables. Connected to the EUT's DB9 SLIP connection is a shielded unterminated cable. Connected to the EUT's BNC audio output port is a shielded unterminated coaxial cable. Power to the EUT is supplied by an external DC Power supply. The laptop computer is used to check the status of the EUT as well as send commands to have it transmit continuously. Voltage to the EUT is 13.8 VDC. Temperature: 21°C, Humidity: 60%, Pressure: 100kPa. Frequency 30MHz - 1000MHz RBW=120kHz, VBW=120kHz; 1000MHz - 6000MHz RBW=1MHz, VBW=1MHz. This data sheet is for the EUT transmitting at rated power (40 Watts) on Low (450MHz) channel. Frequency range scanned and maximized, 30 MHz to 5600 MHz.

Page 15 of 64 Report No.: FC05-058

Transducer Legend:

T1=Chase bilog a/n 00851, s/n 2629

T3=Cable #33 44ft RG-214(ant to Bulkhead)

T5=Preamp 8447D Asset 00010

T7=DRG Horn_01646_072206

T9=1-40 GHz Cable_122306

T2=Cable #22 080905 Preamp to SA

T4=Cable Heliax #17 84ft(10 meter) 100205

T6=Cable #19 54ft Heliax 081807

T8=HF Preamp Cal. HP-83017A,S/N- 3123A00282

	rement Data:			ted by ma					e: 3 Meters		
#	Freq	Rdng	T1 T5 T9	T2 T6	T3 T7	T4 T8	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	504.024M QP	47.4	+17.1 -27.8	+0.4	+2.5	+2.6	+0.0	42.2	46.0	-3.8	Horiz
٨	504.022M	48.0	+17.1 -27.8	+0.4	+2.5	+2.6	+0.0	42.8	46.0	-3.2	Horiz
3	520.799M	44.9	+17.6 -27.8	+0.4	+2.5	+2.6	+0.0	40.2	46.0	-5.8	Horiz
4	588.021M	43.1	+19.0 -28.0	+0.5	+2.8	+2.8	+0.0	40.2	46.0	-5.8	Vert
5	198.059M	50.4	+10.0 -26.6	+0.2	+1.5	+1.6	+0.0	37.1	43.5	-6.4	Vert
6	201.082M	50.4	+9.9 -26.6	+0.2	+1.5	+1.6	+0.0	37.0	43.5	-6.5	Vert
7	201.065M	49.9	+9.9 -26.6	+0.2	+1.5	+1.6	+0.0	36.5	43.5	-7.0	Horiz
8	195.084M	48.8	+10.2 -26.6	+0.2	+1.5	+1.6	+0.0	35.7	43.5	-7.8	Horiz
9	198.076M	48.9	+10.0 -26.6	+0.2	+1.5	+1.6	+0.0	35.6	43.5	-7.9	Horiz
10	453.603M	44.7	+15.8 -27.7	+0.4	+2.4	+2.4	+0.0	38.0	46.0	-8.0	Horiz
11	130.050M	47.6	+11.8 -26.8	+0.2	+1.2	+1.3	+0.0	35.3	43.5	-8.2	Vert
12	144.030M	46.8	+12.1 -26.8	+0.2	+1.2	+1.4	+0.0	34.9	43.5	-8.6	Vert
13	195.088M	47.6	+10.2	+0.2	+1.5	+1.6	+0.0	34.5	43.5	-9.0	Vert

Page 16 of 64 Report No.: FC05-058

14	537.586M	41.1	+18.0 -27.9	+0.5	+2.6	+2.7	+0.0	37.0	46.0	-9.0	Vert
15	537.604M	40.9	+18.0 -27.9	+0.5	+2.6	+2.7	+0.0	36.8	46.0	-9.2	Horiz
16	200.051M	47.6	+9.9 -26.6	+0.2	+1.5	+1.6	+0.0	34.2	43.5	-9.3	Vert
17	126.042M	46.2	+11.7 -26.8	+0.2	+1.1	+1.3	+0.0	33.7	43.5	-9.8	Vert
18	140.059M	45.7	+12.0 -26.8	+0.2	+1.2	+1.4	+0.0	33.7	43.5	-9.8	Vert
19	199.081M	46.9	+10.0 -26.6	+0.2	+1.5	+1.6	+0.0	33.6	43.5	-9.9	Vert
20	202.059M	46.9	+9.9 -26.6	+0.2	+1.5	+1.6	+0.0	33.5	43.5	-10.0	Vert
21	196.032M	46.6	+10.1 -26.6	+0.2	+1.5	+1.6	+0.0	33.4	43.5	-10.1	Horiz
22	520.795M	40.6	+17.6 -27.8	+0.4	+2.5	+2.6	+0.0	35.9	46.0	-10.1	Vert
23	194.047M	46.2	+10.2 -26.6	+0.2	+1.5	+1.6	+0.0	33.1	43.5	-10.4	Horiz
24	957.587M	31.6	+23.4 -27.4	+0.6	+3.7	+3.4	+0.0	35.3	46.0	-10.7	Vert
25	504.026M	40.5	+17.1 -27.8	+0.4	+2.5	+2.6	+0.0	35.3	46.0	-10.7	Vert
26	136.050M	44.9	+11.9 -26.8	+0.2	+1.2	+1.3	+0.0	32.7	43.5	-10.8	Vert
27	197.080M	45.9	+10.1 -26.6	+0.2	+1.5	+1.6	+0.0	32.7	43.5	-10.8	Vert
28	197.056M	45.8	+10.1 -26.6	+0.2	+1.5	+1.6	+0.0	32.6	43.5	-10.9	Horiz
29	436.783M	42.0	+15.4 -27.5	+0.4	+2.3	+2.4	+0.0	35.0	46.0	-11.0	Horiz
30	203.082M	45.7	+9.9 -26.6	+0.2	+1.5	+1.6	+0.0	32.3	43.5	-11.2	Horiz

Page 17 of 64 Report No.: FC05-058

31	200.053M	45.7	+9.9 -26.6	+0.2	+1.5	+1.6	+0.0	32.3	43.5	-11.2	Horiz
32	202.072M	45.6	+9.9 -26.6	+0.2	+1.5	+1.6	+0.0	32.2	43.5	-11.3	Horiz
33	120.050M	44.8	+11.5 -26.8	+0.2	+1.1	+1.3	+0.0	32.1	43.5	-11.4	Vert
34	204.051M	45.4	+10.0 -26.6	+0.2	+1.5	+1.6	+0.0	32.1	43.5	-11.4	Vert
35	554.403M	38.1	+18.4 -27.9	+0.5	+2.6	+2.7	+0.0	34.4	46.0	-11.6	Vert
36	470.386M	40.5	+16.2 -27.7	+0.4	+2.4	+2.5	+0.0	34.3	46.0	-11.7	Horiz
37	204.071M	45.0	+10.0 -26.6	+0.2	+1.5	+1.6	+0.0	31.7	43.5	-11.8	Horiz
38	186.056M	44.5	+10.7 -26.7	+0.2	+1.4	+1.5	+0.0	31.6	43.5	-11.9	Horiz
39	840.004M	32.8	+21.8 -27.8	+0.6	+3.5	+3.1	+0.0	34.0	46.0	-12.0	Vert
40	186.060M	44.3	+10.7 -26.7	+0.2	+1.4	+1.5	+0.0	31.4	43.5	-12.1	Vert
41	203.076M	44.5	+9.9 -26.6	+0.2	+1.5	+1.6	+0.0	31.1	43.5	-12.4	Vert
42	190.048M	43.8	+10.5 -26.6	+0.2	+1.5	+1.6	+0.0	31.0	43.5	-12.5	Vert
43	205.069M	44.2	+10.0 -26.6	+0.2	+1.5	+1.6	+0.0	30.9	43.5	-12.6	Horiz
44	192.063M	43.8	+10.4 -26.6	+0.2	+1.5	+1.6	+0.0	30.9	43.5	-12.6	Vert
45	192.058M	43.6	+10.4 -26.6	+0.2	+1.5	+1.6	+0.0	30.7	43.5	-12.8	Horiz
46	336.070M	42.1	+13.2 -26.8	+0.4	+2.0	+2.1	+0.0	33.0	46.0	-13.0	Vert
47	432.116M	40.1	+15.3 -27.5	+0.4	+2.3	+2.4	+0.0	33.0	46.0	-13.0	Horiz

Page 18 of 64 Report No.: FC05-058

48	369.617M	40.8	+14.3 -26.9	+0.4	+2.1	+2.3	+0.0	33.0	46.0	-13.0	Vert
49	193.055M	43.4	+10.3 -26.6	+0.2	+1.5	+1.6	+0.0	30.4	43.5	-13.1	Horiz
50	125.084M	42.7	+11.6 -26.8	+0.2	+1.1	+1.3	+0.0	30.1	43.5	-13.4	Vert
51	178.059M	42.5	+11.2 -26.7	+0.2	+1.4	+1.5	+0.0	30.1	43.5	-13.4	Vert
52	487.186M	38.0	+16.7 -27.8	+0.4	+2.5	+2.6	+0.0	32.4	46.0	-13.6	Horiz
53	403.220M	39.0	+14.7 -27.0	+0.4	+2.1	+2.4	+0.0	31.6	46.0	-14.4	Horiz
54	208.051M	42.1	+10.0 -26.6	+0.2	+1.5	+1.6	+0.0	28.8	43.5	-14.7	Vert
55	128.031M	41.0	+11.7 -26.8	+0.2	+1.1	+1.3	+0.0	28.5	43.5	-15.0	Vert
56	369.595M	38.8	+14.3 -26.9	+0.4	+2.1	+2.3	+0.0	31.0	46.0	-15.0	Horiz
57	386.381M	38.7	+14.5 -27.0	+0.4	+2.1	+2.3	+0.0	31.0	46.0	-15.0	Vert
58	470.400M	37.0	+16.2 -27.7	+0.4	+2.4	+2.5	+0.0	30.8	46.0	-15.2	Vert
59	403.195M	38.1	+14.7 -27.0	+0.4	+2.1	+2.4	+0.0	30.7	46.0	-15.3	Vert
60	806.436M	30.3	+21.0 -27.7	+0.6	+3.3	+3.1	+0.0	30.6	46.0	-15.4	Vert
61	386.391M	38.1	+14.5 -27.0	+0.4	+2.1	+2.3	+0.0	30.4	46.0	-15.6	Horiz
62	436.811M	37.3	+15.4 -27.5	+0.4	+2.3	+2.4	+0.0	30.3	46.0	-15.7	Vert
63	214.061M	40.6	+10.1 -26.6	+0.3	+1.6	+1.7	+0.0	27.7	43.5	-15.8	Vert
64	419.990M	37.1	+15.1 -27.3	+0.4	+2.2	+2.4	+0.0	29.9	46.0	-16.1	Vert

Page 19 of 64 Report No.: FC05-058

65	671.962M	30.9	+20.0	+0.6	+3.0	+2.9	+0.0	29.6	46.0	-16.4	Vert
			-27.8								
66	571.202M	32.9	+18.7	+0.5	+2.7	+2.7	+0.0	29.6	46.0	-16.4	Vert
			-27.9								
67	420.005M	36.6	+15.1	+0.4	+2.2	+2.4	+0.0	29.4	46.0	-16.6	Horiz
07	420.003111	30.0	-27.3	10.4	1 2.2	12.7	10.0	27.4	40.0	10.0	HOHZ
			-21.3								
(0)	CO 4 2001 M	21.7	. 10.2	.0.5	.20	12.0	. 0. 0	20.1	46.0	160	Vant
68	604.800M	31.7	+19.3	+0.5	+2.8	+2.8	+0.0	29.1	46.0	-16.9	Vert
			-28.0								
69	487.218M	34.7	+16.7	+0.4	+2.5	+2.6	+0.0	29.1	46.0	-16.9	Vert
			-27.8								
70	144.033M	37.7	+12.1	+0.2	+1.2	+1.4	+0.0	25.8	43.5	-17.7	Horiz
			-26.8								
71	132.021M	37.8	+11.8	+0.2	+1.2	+1.3	+0.0	25.5	43.5	-18.0	Horiz
			-26.8								
72	1008.001M	45.1	+0.0	+0.0	+0.0	+3.4	+0.0	33.5	54.0	-20.5	Vert
, 2	1000.001111	13.1	+0.0	+2.2	+23.2	-41.2	10.0	33.3	5 1.0	20.5	VOIT
			+0.8	12.2	123.2	71.2					
72	1041.636M	39.9	+0.0	+0.0	+0.0	+3.5	+0.0	28.9	54.0	-25.1	Vert
13	1041.030101	37.7					+0.0	20.9	34.0	-23.1	v er t
			+0.0	+2.2	+23.4	-41.0					
	1011 5013 5	265	+0.9	0.6	0.6	2.5		27.7	7.1. 0	20.5	** .
74	1041.601M	36.5	+0.0	+0.0	+0.0	+3.5	+0.0	25.5	54.0	-28.5	Horiz
			+0.0	+2.2	+23.4	-41.0					
			+0.9								
75	1007.998M	36.8	+0.0	+0.0	+0.0	+3.4	+0.0	25.2	54.0	-28.8	Horiz
			+0.0	+2.2	+23.2	-41.2					
			+0.8								

Page 20 of 64 Report No.: FC05-058

15.109 Radiated Emissions Test Equipment

15.109 Radiated Em		ı • •	3.6.11.11	G • 1 //	G ID 4	G ID
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	00989A	HP	8568A	2049A01287	040805	040807
RF Section						
Spectrum Analyzer	00034	HP	85662A	2349A06091	040805	040807
Display Section						
Quasi Peak Adapter	00200	HP	85650A	2043A00221	040805	040807
Bilog Antenna	00851	Schaffner-	CBL6111C	2629	031604	031606
		Chase EMC				
Antenna cable	NA	Andrew	LDF1-50	Cable#17	100204	100206
(10 meter site D)						
Antenna cable from	N/A	Pasternack	RG-214/U	Cable #33	040105	040106
bulkhead to antenna						
Preamp to SA Cable (3	NA	Pasternack	E100316-I	Cable #22	080904	080906
feet)						
Pre-amp	00010	HP	8447D	2727A05392	070204	070206
Antenna cable (Heliax)	NA	Andrew	LDF1-50	Cable#19	101303	101305
Horn Antenna	01646	EMCO	3115	9603-4683	072204	072206
Microwave Pre-amp	00787	HP	83017A	3123A00282	052705	052707
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032505	032507
24" SMA Cable (White)	P5183	Pasterneck	NA	1-	122304	122306
				40GHz_white		

Page 21 of 64 Report No.: FC05-058

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

Page 22 of 64 Report No.: FC05-058

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

Page 23 of 64 Report No.: FC05-058

FCC 15.111 – ANTENNA PORT EMISSIONS FOR RECEIVER

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer: IP MobileNet
Specification: FCC 15.111

Work Order #:84044Date:9/20/2005Test Type:Maximized EmissionsTime:11:16:16Equipment:Base Station for Mobile Data RadioSequence#:2

Network

Manufacturer: IPMobileNet Tested By: Stuart Yamamoto

Model: B64450G25 S/N: 05386432

Equipment Under Test (* = EUT):

1 1				
Function	Manufacturer	Model #	S/N	
Base Station for Mobile	IPMobileNet	B64450G25	05386432	
Data Radio Network*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	PP02L Inspiron I2500	5TZ6611
DC Power Supply	Samlex America	SEC 1223	03061-0D01-0632
High Power Termination	Weinschel Corporation	45-40-43	MN216
GPS Antenna	San Jose Navigation, Inc.	SM-25	2569790

Test Conditions / Notes:

The EUT, support equipment, and the test equipment are located on the table top. Connected to the EUT Tx port is one high powered termination. Connected to the EUT serial port is the laptop computer via a shielded serial cable. Connect to the EUT GPS port is a standard GPS antenna with 5 meter long coaxial cable. The EUT ethernet port is connected to the laptop computer using an unshielded cat. 5E cable. Power to the EUT is supplied by an external DC Power supply. The laptop computer is used to check the status of the EUT as well as send commands to have it transmit continuously and change between channels. Voltage to the EUT is 13.8 VDC. Temperature: 21°C, Humidity: 60%, Pressure: 100kPa. Frequency 150kHz - 30MHz RBW=9kHz, VBW=9kHz; 30MHz - 1000MHz RBW=120kHz, VBW=120kHz; 1000MHz - 6000MHz RBW=1MHz, VBW=1MHz. Frequency range scanned and maximized, 4 MHz to 5600 MHz. This data sheet is for the EUT transmitting at rated power (40 Watts) on Low (450 MHz), Mid (480MHz), and High (507 MHz) channels as well as the EUT in standby mode. Ports under test: RX1, RX2, and RX3.

Transducer Legend:

T1=1-40 GHz Cable_122306

Measi	urement Data:	Re	eading lis	ted by 1	nargin.						
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1640.005M	45.4	+1.1				+0.0	46.5	50.0	-3.5	None
									RX3		
2	820.015M	45.4	+0.8				+0.0	46.2	50.0	-3.8	None
									RX1		
3	2870.000M	44.0	+1.5				+0.0	45.5	50.0	-4.5	None
									RX1		

Page 24 of 64 Report No.: FC05-058

4	2200.000M	44.2	+1.3	+0.0	45.5	50.0 RX3	-4.5	None
5	2730.000M	43.9	+1.4	+0.0	45.3	50.0	-4.7	None
6	2200.000M	43.8	+1.3	+0.0	45.1	50.0	-4.9	None
7	450.003M	44.3	+0.7	+0.0	45.0	FX1 50.0	-5.0	None
						RX2		
8	2730.001M	43.4	+1.4	+0.0	44.8	50.0 RX1	-5.2	None
9	2640.000M	43.3	+1.4	+0.0	44.7	50.0 RX1	-5.3	None
10	2050.000M	43.0	+1.2	+0.0	44.2	50.0 RX1	-5.8	None
11	480.004M	43.4	+0.7	+0.0	44.1	50.0	-5.9	None
12	1640.000M	42.9	+1.1	+0.0	44.0	50.0	-6.0	None
12	10 4 0.000W1	42.9	⊤1.1	+0.0	44.0	RX1	-0.0	None
13	820.005M	43.1	+0.8	+0.0	43.9	50.0	-6.1	None
1/1	2200.000M	42.4	+1.3	+0.0	13.7	50.0	-6.3	None
14	2200.000WI	42.4	⊤1.5	+0.0	43.7	RX2	-0.5	None
15	3520.000M	42.0	+1.6	+0.0	43.6	50.0 RX1	-6.4	None
16	4100.000M	41.8	+1.8	+0.0	43.6	50.0	-6.4	None
17	2460.000M	41.4	+1.4	+0.0	42.8	50.0	-7.2	None
10	5460.000M	40.6	+2.1	+0.0	12.7	50.0	-7.3	None
10	J400.000WI	40.0	+2.1	+0.0	42.7	RX1	-7.5	TVOIC
19	3280.000M	41.1	+1.6	+0.0	42.7	50.0 RX1	-7.3	None
20	2460.000M	41.3	+1.4	+0.0	42.7	50.0	-7.3	None
21	5280.004M	40.6	+2.0	+0.0	42.6	50.0	-7.4	None
						RX1		
22	507.001M	41.8	+0.7	+0.0	42.5	50.0 RX2	-7.5	None
23	2275.000M	41.1	+1.3	+0.0	42.4	50.0 RX2	-7.6	None
24	2050.000M	41.1	+1.2	+0.0	42.3	50.0	-7.7	None
25	3280.000M	40.4	+1.6	+0.0	42.0	50.0	-8.0	None
26	1640.0003.5	40.0	. 1 . 1	0.0	41.0	RX3	0.1	NT.
26	1640.000M	40.8	+1.1	 +0.0	41.9	50.0 RX2	-8.1	None
27	450.003M	41.2	+0.7	+0.0	41.9	50.0 RX3	-8.1	None
28	3080.000M	40.1	+1.6	+0.0	41.7	50.0	-8.3	None
<u></u>				 		RX1		

Page 25 of 64 Report No.: FC05-058

29								
2)	4399.998M	39.6	+1.9	+0.	0 41.5	50.0 RX1	-8.5	None
30	4920.000M	39.5	+2.0	+0.	0 41.5	50.0	-8.5	None
31	2460.000M	40.0	+1.4	+0.	0 41.4	50.0	-8.6	None
						RX3 50.0		
	2640.000M	39.9	+1.4	+0.		RX3	-8.7	None
33	3640.001M	39.5	+1.7	+0.	0 41.2	50.0 RX1	-8.8	None
34	820.000M	40.0	+0.8	+0.	0 40.8	50.0 RX2	-9.2	None
35	455.017M	40.0	+0.7	+0.	0 40.7	50.0 RX1	-9.3	None
36	4100.000M	38.8	+1.8	+0.	0 40.6	50.0	-9.4	None
37	480.006M	39.9	+0.7	+0.	0 40.6	50.0	-9.4	None
						RX3		
38	1230.011M	39.2	+1.0	+0.	0 40.2	50.0 RX1	-9.8	None
39	4920.000M	38.2	+2.0	+0.	0 40.2	50.0 RX1	-9.8	None
40	3520.000M	38.5	+1.6	+0.	0 40.1	50.0	-9.9	None
41	3080.000M	38.5	+1.6	+0.	0 40.1	50.0	-9.9	None
						RX3		
				_				
42	910.022M	39.3	+0.8	+0.	0 40.1	50.0 RX3	-9.9	None
	910.022M 880.006M	39.3	+0.8	+0.		RX3 50.0	-9.9 -9.9	None None
43					0 40.1	50.0 RX3 50.0		
43	880.006M	39.3	+0.8	+0.	0 40.1 0 39.6	50.0 RX3 50.0 RX1 50.0	-9.9	None
43 44 45	880.006M 1320.015M 1760.000M	39.3 38.6 38.4	+0.8 +1.0 +1.1	+0. +0. +0.	0 40.1 0 39.6 0 39.5	50.0 RX3 50.0 RX1 50.0 RX1	-9.9 -10.4 -10.5	None None
43 44 45 46	880.006M 1320.015M 1760.000M 2730.000M	39.3 38.6 38.4 38.1	+0.8 +1.0 +1.1 +1.4	+0. +0. +0.	0 40.1 0 39.6 0 39.5 0 39.5	50.0 RX3 50.0 RX1 50.0 RX1 50.0 RX2	-9.9 -10.4 -10.5 -10.5	None None None
43 44 45 46	880.006M 1320.015M 1760.000M	39.3 38.6 38.4 38.1	+0.8 +1.0 +1.1	+0. +0. +0.	0 40.1 0 39.6 0 39.5 0 39.5	50.0 RX3 50.0 RX1 50.0 RX1 50.0 RX1 50.0 RX2	-9.9 -10.4 -10.5	None None
43 44 45 46 47	880.006M 1320.015M 1760.000M 2730.000M	39.3 38.6 38.4 38.1	+0.8 +1.0 +1.1 +1.4	+0. +0. +0.	0 40.1 0 39.6 0 39.5 0 39.5 0 39.4	50.0 RX3 50.0 RX1 50.0 RX1 50.0 RX2 50.0 RX1 50.0	-9.9 -10.4 -10.5 -10.5	None None None
43 44 45 46 47 48	880.006M 1320.015M 1760.000M 2730.000M 1365.019M	39.3 38.6 38.4 38.1 38.4	+0.8 +1.0 +1.1 +1.4 +1.0	+0. +0. +0. +0.	0 40.1 0 39.6 0 39.5 0 39.5 0 39.4 0 39.3	50.0 RX3 50.0 RX1 50.0 RX1 50.0 RX2 50.0 RX1 50.0 RX1 50.0 RX2	-9.9 -10.4 -10.5 -10.5 -10.6	None None None None
43 44 45 46 47 48	880.006M 1320.015M 1760.000M 2730.000M 1365.019M 4840.000M 5330.000M	39.3 38.6 38.4 38.1 38.4 37.4	+0.8 +1.0 +1.1 +1.4 +1.0 +1.9	+0. +0. +0. +0. +0.	0 40.1 0 39.6 0 39.5 0 39.5 0 39.4 0 39.3 0 39.2	50.0 RX3 50.0 RX1 50.0 RX1 50.0 RX2 50.0 RX1 50.0 RX2 50.0 RX1 50.0	-9.9 -10.4 -10.5 -10.5 -10.6	None None None None None
43 44 45 46 47 48 49 50	880.006M 1320.015M 1760.000M 2730.000M 1365.019M 4840.000M 5330.000M	39.3 38.6 38.4 38.1 38.4 37.4	+0.8 +1.0 +1.1 +1.4 +1.0 +1.9 +2.1	+0. +0. +0. +0. +0. +0.	0 40.1 0 39.6 0 39.5 0 39.5 0 39.4 0 39.3 0 39.2 0 39.0	50.0 RX3 50.0 RX1 50.0 RX1 50.0 RX2 50.0 RX1 50.0 RX2 50.0 RX2	-9.9 -10.4 -10.5 -10.5 -10.6 -10.7 -10.8	None None None None None None
43 44 45 46 47 48 49 50	880.006M 1320.015M 1760.000M 2730.000M 1365.019M 4840.000M 5330.000M 910.009M 3185.001M	39.3 38.6 38.4 38.1 38.4 37.4 37.1 38.2	+0.8 +1.0 +1.1 +1.4 +1.0 +1.9 +2.1 +0.8 +1.6	+0. +0. +0. +0. +0. +0. +0. +0. +0. +0.	0 40.1 0 39.6 0 39.5 0 39.5 0 39.4 0 39.3 0 39.2 0 39.0	50.0 RX3 50.0 RX1 50.0 RX1 50.0 RX2 50.0 RX1 50.0 RX1 50.0 RX1 50.0 RX1 50.0 RX1	-9.9 -10.4 -10.5 -10.5 -10.6 -10.7 -10.8 -11.0	None None None None None None None None
43 44 45 46 47 48 49 50	880.006M 1320.015M 1760.000M 2730.000M 1365.019M 4840.000M 5330.000M	39.3 38.6 38.4 38.1 38.4 37.4 37.1 38.2	+0.8 +1.0 +1.1 +1.4 +1.0 +1.9 +2.1 +0.8	+0. +0. +0. +0. +0. +0. +0. +0. +0. +0.	0 40.1 0 39.6 0 39.5 0 39.5 0 39.4 0 39.3 0 39.2 0 39.0	50.0 RX3 50.0 RX1 50.0 RX1 50.0 RX2 50.0 RX1 50.0 RX1 50.0 RX3 50.0 RX3 50.0 RX1	-9.9 -10.4 -10.5 -10.5 -10.6 -10.7 -10.8 -11.0	None None None None None None None
43 44 45 46 47 48 49 50 51	880.006M 1320.015M 1760.000M 2730.000M 1365.019M 4840.000M 5330.000M 910.009M 3185.001M	39.3 38.6 38.4 38.1 38.4 37.4 37.1 38.2	+0.8 +1.0 +1.1 +1.4 +1.0 +1.9 +2.1 +0.8 +1.6	+0. +0. +0. +0. +0. +0. +0. +0. +0. +0.	0 40.1 0 39.6 0 39.5 0 39.5 0 39.4 0 39.3 0 39.2 0 39.0 0 38.9	50.0 RX3 50.0 RX1 50.0 RX1 50.0 RX2 50.0 RX1 50.0 RX1 50.0 RX1 50.0 RX1 50.0 RX1	-9.9 -10.4 -10.5 -10.5 -10.6 -10.7 -10.8 -11.0	None None None None None None None None

Page 26 of 64 Report No.: FC05-058

54	3960.000M	36.6	+1.7	+0.0	38.3	50.0 RX1	-11.7	None
55	5460.000M	36.2	+2.1	+0.0	38.3	50.0 RX3	-11.7	None
56	3185.000M	36.7	+1.6	+0.0	38.3	50.0 RX3	-11.7	None
57	1365.005M	37.3	+1.0	+0.0	38.3		-11.7	None
58	1521.020M	37.1	+1.0	+0.0	38.1	50.0 RX1	-11.9	None
59	2275.000M	36.7	+1.3	+0.0	38.0	50.0	-12.0	None
60	880.023M	37.2	+0.8	+0.0	38.0	50.0 RX1	-12.0	None
61	2275.001M	36.5	+1.3	+0.0	37.8	50.0 RX1	-12.2	None
62	1760.000M	36.7	+1.1	+0.0	37.8	50.0 RX2	-12.2	None
63	4550.001M	35.7	+1.9	+0.0	37.6		-12.4	None
64	1820.001M	36.5	+1.1	+0.0	37.6	50.0 RX1	-12.4	None
65	4550.000M	35.7	+1.9	+0.0	37.6	50.0 RX2	-12.4	None
66	5460.000M	35.4	+2.1	+0.0	37.5	50.0 RX2	-12.5	None
67	3640.000M	35.8	+1.7	+0.0	37.5	50.0 RX3	-12.5	None
68	1320.005M	36.4	+1.0	+0.0	37.4	50.0 RX3	-12.6	None
69	3185.000M	35.6	+1.6	+0.0	37.2	50.0 RX2	-12.8	None
70	3520.000M	35.6	+1.6	+0.0	37.2	50.0 RX3	-12.8	None
71	4400.000M	35.2	+1.9	+0.0	37.1	50.0 RX2	-12.9	None
72	5280.000M	35.0	+2.0	+0.0	37.0	50.0 RX2	-13.0	None
73	440.020M	36.3	+0.7	+0.0	37.0	50.0 RX1	-13.0	None
74	3640.000M	35.2	+1.7	+0.0	36.9	50.0 RX2	-13.1	None
75	4400.000M	34.8	+1.9	+0.0	36.7	50.0 RX3	-13.3	None
76	2640.000M	35.0	+1.4	+0.0	36.4	50.0 RX2	-13.6	None
77	3960.000M	34.4	+1.7	+0.0	36.1	50.0 RX2	-13.9	None
78	480.023M	35.3	+0.7	+0.0	36.0	50.0 RX1	-14.0	None
L						11/11		

Page 27 of 64 Report No.: FC05-058

79	3080.000M	34.2	+1.6	+0.0	35.8	50.0 RX2	-14.2	None
80	4550.000M	33.9	+1.9	+0.0	35.8		-14.2	None
81	2050.000M	34.6	+1.2	+0.0	35.8	50.0	-14.2	None
82	910.001M	35.0	+0.8	+0.0	35.8	50.0	-14.2	None
92	1820.000M	34.6	+1.1	+0.0	35.7	50.0	-14.3	None
						RX2		
84	4095.001M	33.8	+1.8	+0.0	35.6	50.0 RX1	-14.4	None
85	3960.000M	33.9	+1.7	+0.0	35.6	50.0 RX3	-14.4	None
86	1760.000M	34.5	+1.1	+0.0	35.6	50.0 RX3	-14.4	None
87	5005.000M	33.5	+2.0	+0.0	35.5	50.0 RX2	-14.5	None
88	5005.000M	33.4	+2.0	+0.0	35.4	50.0	-14.6	None
89	507.004M	34.7	+0.7	+0.0	35.4	50.0	-14.6	None
90	4510.000M	33.4	+1.9	+0.0	35.3	50.0	-14.7	None
91	4840.001M	33.3	+1.9	+0.0	35.2	50.0	-14.8	None
02	2600 00014	22.5	. 1 7	.00	25.2	RX1	14.0	NI
92	3690.000M	33.5	+1.7	+0.0		50.0 RX2	-14.8	None
93	3280.000M	33.5	+1.6	+0.0	35.1	50.0 RX2	-14.9	None
94	1230.000M	34.1	+1.0	+0.0	35.1	50.0 RX2	-14.9	None
95	1365.003M	34.1	+1.0	+0.0	35.1	50.0 RX2	-14.9	None
96	880.000M	34.2	+0.8	+0.0	35.0	50.0 RX2	-15.0	None
97	1365.000M	33.9	+1.0	+0.0	34.9	50.0 RX2	-15.1	None
98	2870.000M	33.3	+1.5	+0.0	34.8	50.0 RX2	-15.2	None
99	4510.000M	32.8	+1.9	+0.0	34.7	50.0 RX1	-15.3	None
100			+1.0	+0.0	34.7	50.0	-15.3	None
	1230.004M	33.7	11.0			RXX		
101	1230.004M 1320.002M	33.7	+1.0	+0.0	34.6	50.0 RX2	-15.4	None
				+0.0	34.6	50.0 RX2 50.0	-15.4 -15.5	None None
102	1320.002M	33.6	+1.0			50.0 RX2		

Page 28 of 64 Report No.: FC05-058

104	1058.428M	33.4	+0.9	+0.0	34.3	50.0 RX1	-15.7	None
105	1521.008M	33.2	+1.0	+0.0	34.2	50.0	-15.8	None
106	3690.000M	32.4	+1.7	+0.0	34.1		-15.9	None
107	507.007M	33.4	+0.7	+0.0	34.1	50.0	-15.9	None
						RX1		
108	1013.998M	33.2	+0.8	+0.0	34.0	50.0 RX3	-16.0	None
109	1521.001M	32.8	+1.0	+0.0	33.8		-16.2	None
110	756.020M	33.0	+0.8	+0.0	33.8	50.0	-16.2	None
111	960.002M	32.9	+0.8	+0.0	33.7		-16.3	None
						RX2		
112	4920.000M	31.4	+2.0	+0.0	33.4	50.0 RX3	-16.6	None
113	924.001M	32.6	+0.8	+0.0	33.4	50.0 RX3	-16.6	None
114	789.603M	32.6	+0.8	+0.0	33.4		-16.6	None
115	789.606M	32.5	+0.8	+0.0	33.3	50.0 RX2	-16.7	None
116	1075.193M	32.4	+0.9	+0.0	33.3	50.0	-16.7	None
117	2600,000M	21.5	.1.7	.00	22.2	RX1	16.0	Mana
	3690.000M	31.5	+1.7	+0.0		50.0 RX3	-16.8	None
118	910.006M	32.4	+0.8	+0.0	33.2	50.0 RX2	-16.8	None
119	1024.806M	32.2	+0.9	+0.0	33.1	50.0 RX3	-16.9	None
120	1108.803M	32.1	+0.9	+0.0	33.0	50.0 RX1	-17.0	None
121	910.000M	32.1	+0.8	+0.0	32.9	50.0	-17.1	None
122						RX2		
1 1 2 2	1041.598M	31.9	+0.9	+0.0	32.8	50.0	-17.2	None
						RX3		
	1041.598M 1075.201M	31.9	+0.9	+0.0	32.8 32.5		-17.2 -17.5	None
123						50.0 RX3 50.0		
123	1075.201M	31.6	+0.9	+0.0	32.5	50.0 RX3 50.0 RX3 50.0 RX3	-17.5	None
123 124 125	1075.201M 1058.404M	31.6	+0.9	+0.0	32.5	50.0 RX3 50.0 RX3 50.0 RX3 50.0 RX2 50.0	-17.5 -17.6	None None
123 124 125 126	1075.201M 1058.404M 1014.001M 1108.804M	31.6 31.5 31.6 31.3	+0.9 +0.9 +0.8 +0.9	+0.0 +0.0 +0.0 +0.0	32.5 32.4 32.4 32.2	50.0 RX3 50.0 RX3 50.0 RX2 50.0 RX2 50.0 RX3	-17.5 -17.6 -17.6 -17.8	None None None
123 124 125 126 127	1075.201M 1058.404M 1014.001M 1108.804M 1008.003M	31.6 31.5 31.6 31.3	+0.9 +0.9 +0.8 +0.9 +0.8	+0.0 +0.0 +0.0 +0.0 +0.0	32.5 32.4 32.4 32.2 32.1	50.0 RX3 50.0 RX3 50.0 RX2 50.0 RX3 50.0 RX3	-17.5 -17.6 -17.6 -17.8 -17.9	None None None None
123 124 125 126	1075.201M 1058.404M 1014.001M 1108.804M 1008.003M	31.6 31.5 31.6 31.3	+0.9 +0.9 +0.8 +0.9	+0.0 +0.0 +0.0 +0.0	32.5 32.4 32.4 32.2	50.0 RX3 50.0 RX3 50.0 RX2 50.0 RX3 50.0	-17.5 -17.6 -17.6 -17.8	None None None

Page 29 of 64 Report No.: FC05-058

129	890.401M	30.9	+0.8	+0.0 31.7 50.0 -18.3	None
				RX3	
130	16.801M	31.3	+0.3	+0.0 31.6 50.0 -18.4	None
				RX2	
131	440.006M	30.8	+0.7	+0.0 31.5 50.0 -18.5	None
				RX3	
132	789.622M	29.4	+0.8	+0.0 30.2 50.0 -19.8	None
				RX1	
133	410.010M	28.2	+0.6	+0.0 28.8 50.0 -21.2	None
				RX1	
134	1014.003M	27.2	+0.8	+0.0 28.0 50.0 -22.0	None
				RX1	

FCC 15.111 Antenna Power Conduction for Receivers Test Equipment

Tee 15.111 Antenna I ower conduction for Receivers Test Equipment											
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due					
Spectrum Analyzer	00989A	HP	8568A	2049A01287	040805	040807					
RF Section											
Spectrum Analyzer	00034	HP	85662A	2349A06091	040805	040807					
Display Section											
Quasi Peak Adapter	00200	HP	85650A	2043A00221	040805	040807					
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032205	032207					
24" SMA Cable	P5183	Pasterneck	NA	1-40GHz_white	122304	122306					
(White)											

Page 30 of 64 Report No.: FC05-058

FCC 15.111

Page 31 of 64 Report No.: FC05-058

FCC 2.1033(c)(14)/2.1046/90.205 - RF POWER OUTPUT

IP MobileNet, Model B64450G25, Serial 05386432

Test conditions for the EUT are as follows:

The EUT's DB9 serial port was also connected to the laptop computer via a shielded serial cable. The laptop computer was used to command the EUT to begin transmitting or stop transmitting as well as to change the EUT from channel to channel utilizing both interface ports. Also connected to the EUT was a GPS antenna. This GPS antenna was placed outside the room so that it had no obstructions to the sky. A separate DC power supply was used to provide the EUT with 13.8 Vdc/10A. On the RF output of the EUT was placed a high power attenuator and a coaxial cable connected to either a power meter or a spectrum analyzer to measure the RF output power.

Measured Values from the EUT:

Low Channel (450 MHz). Measured value was 40.0 Watts (ERP).

Middle Channel (480 MHz). Measured value was 40.0 Watts (ERP).

High Channel (507 MHz). Measured value was 40.0 Watts (ERP).

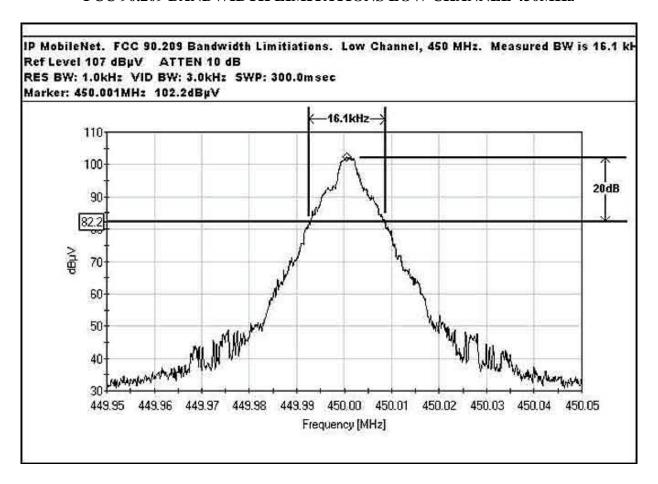
FCC 90.205 RF Power Output Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
RF Power meter	02082	HP	435B	2445A11881	061704	061706
Power Sensor	02036	HP	8482A	1551A01004	061804	061806
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	011405	011407
High Power Attenuator	N/A	JFW	50FH-040- 100-2N	(none)	NCR	NCR

NCR = No Cal Required because check of the attenuator insertion loss was performed just prior to this test at the discrete frequencies used (450 MHz, 480 MHz, and 505.5 MHz).

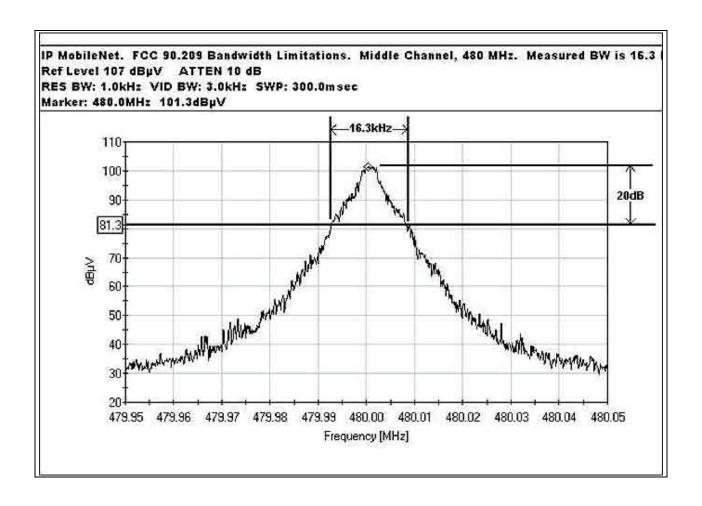
Page 32 of 64 Report No.: FC05-058

FCC 90.205 RF POWER OUTPUT

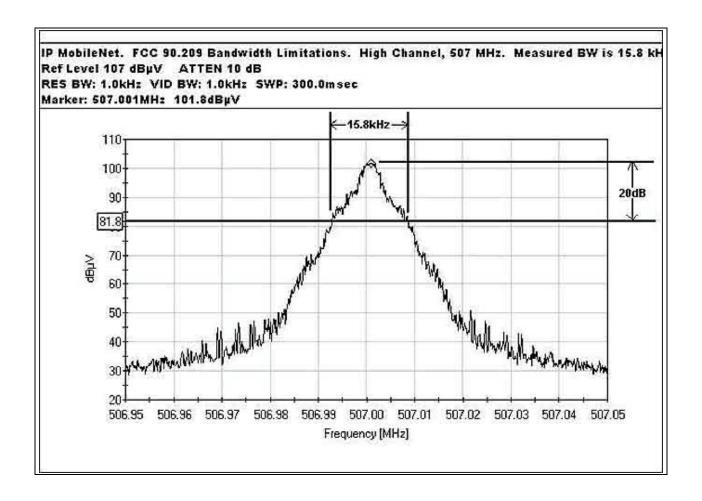

Page 33 of 64 Report No.: FC05-058

FCC 2.1033(c)(14)/2.1049(i)/90.209- OCCUPIED BANDWIDTH

Test Conditions: The EUT's ethernet port was connected to a laptop computer via an unshielded cat 5E cable. The EUT's DB9 serial port was also connected to the laptop computer via a shielded serial cable. The laptop computer was used to command the EUT to begin transmitting or stop transmitting as well as to change the EUT from channel to channel utilizing both interface ports. Also connected to the EUT was a GPS antenna. This GPS antenna was placed outside the room so that it had no obstructions to the sky. A separate DC power supply was used to provide the EUT with 13.8 VDC/10A. On the RF output of the EUT was placed a high power attenuator and a coaxial cable connected to a spectrum analyzer to measure the EUT fundamental emission. The EUT was configured to output its rated output power (40Watts).


FCC 90.209 BANDWIDTH LIMITATIONS LOW CHANNEL 450MHz

Page 34 of 64 Report No.: FC05-058


FCC 90.209 BANDWIDTH LIMITATIONS MIDDLE CHANNEL 480MHz

Page 35 of 64 Report No.: FC05-058

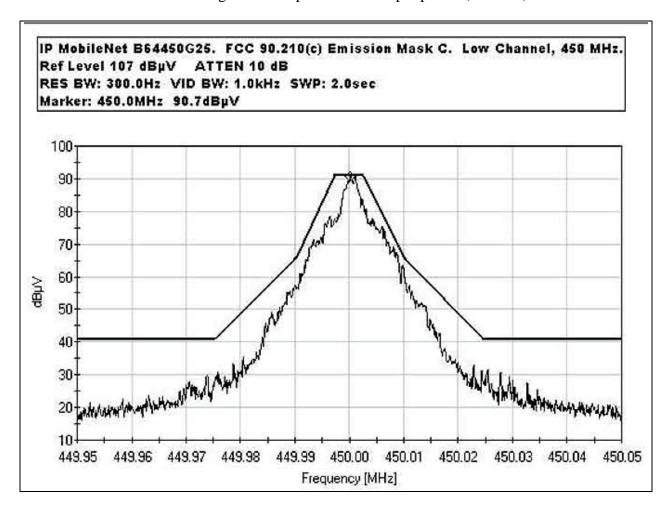
FCC 90.209 BANDWIDTH LIMITATIONS HIGH CHANNEL 507MHz

Page 36 of 64 Report No.: FC05-058

FCC 90.209 Bandwidth Limitations Test Equipment

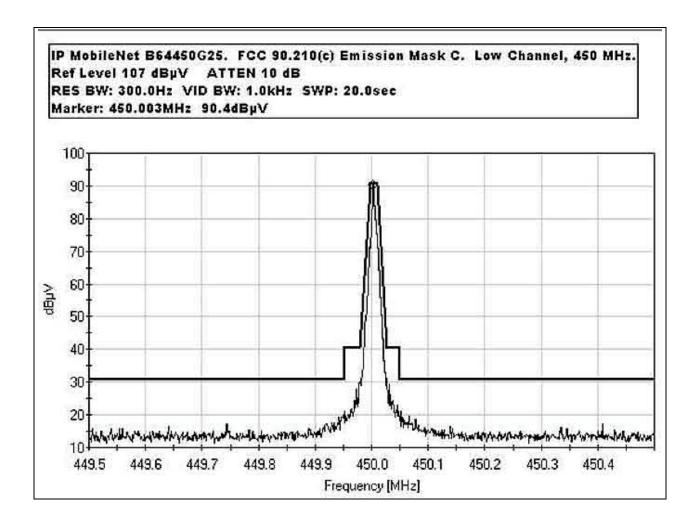
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	00989A	HP	8568A	2049A01287	040805	040807
RF Section						
Spectrum Analyzer	00034	HP	85662A	2349A06091	040805	040807
Display Section						
Quasi Peak Adapter	00200	HP	85650A	2043A00221	040805	040807

FCC 90.209

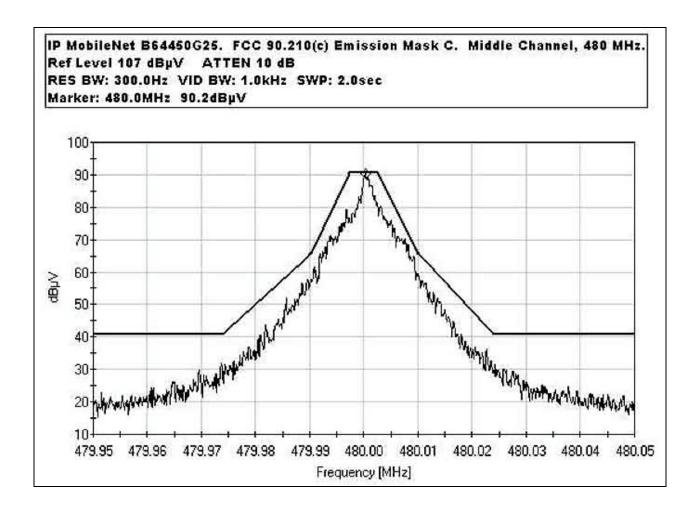


Page 37 of 64 Report No.: FC05-058

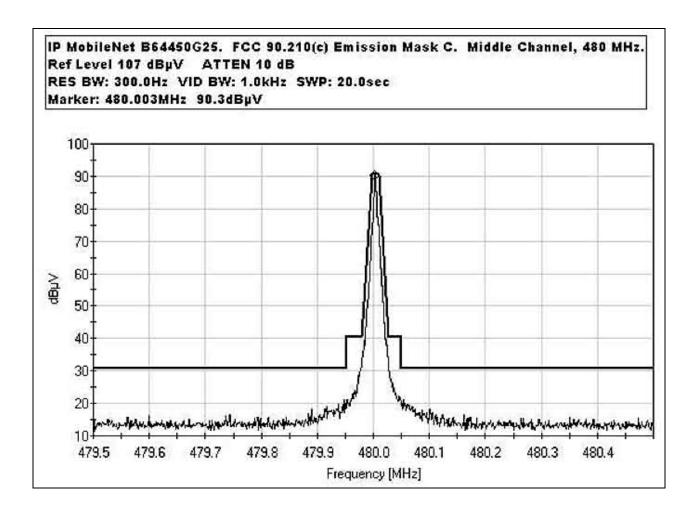
FCC 90210(c) EMISSIONS MASK LOW CHANNEL 405MHz SMALLSPAN


Test Conditions: The EUT's ethernet port was connected to a laptop computer via an unshielded cat 5E cable. The EUT's DB9 serial port was also connected to the laptop computer via a shielded serial cable. The laptop computer was used to command the EUT to begin transmitting or stop transmitting as well as to change the EUT from channel to channel utilizing both interface ports. Also connected to the EUT was a GPS antenna. This GPS antenna was placed outside the room so that it had no obstructions to the sky. A separate DC power supply was used to provide the EUT with 13.8 VDC/10A. On the RF output of the EUT was placed a high power attenuator and a coaxial cable connected to a spectrum analyzer to measure the EUT fundamental emission. The EUT was configured to output its rated output power (40Watts).

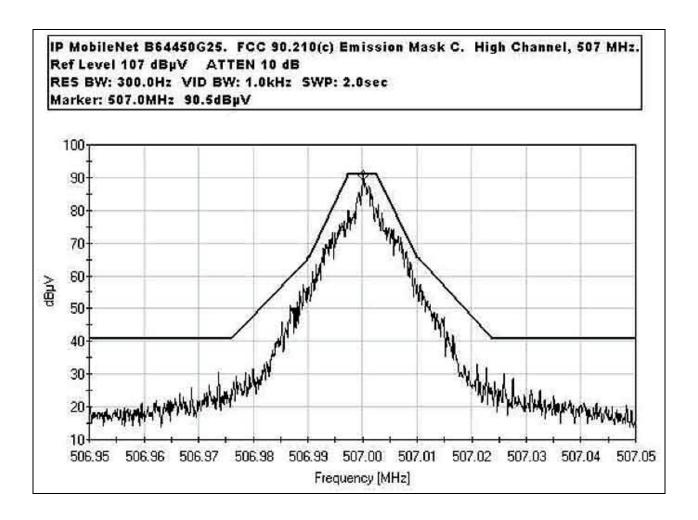
Page 38 of 64 Report No.: FC05-058


FCC 90210(c) EMISSIONS MASK LOW CHANNEL 405MHz BIGSPAN

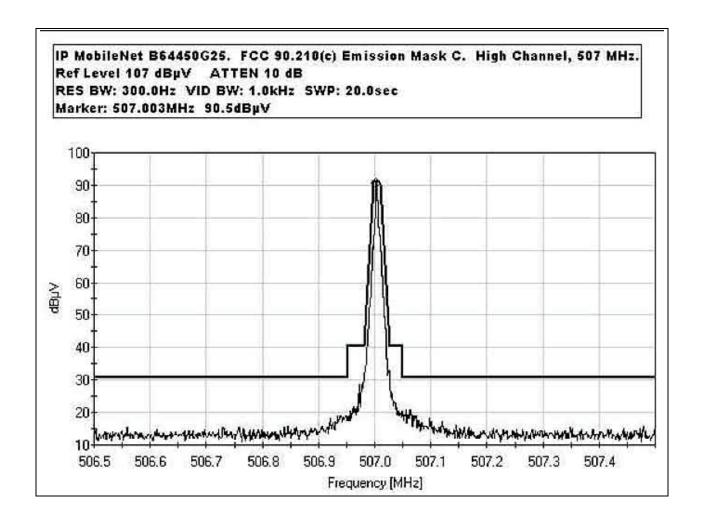
Page 39 of 64 Report No.: FC05-058


FCC 90210(c) EMISSIONS MASK MIDDLE CHANNEL 480MHz SMALLSPAN

Page 40 of 64 Report No.: FC05-058


FCC 90210(c) EMISSIONS MASK MIDDLE CHANNEL 480MHz BIGSPAN

Page 41 of 64 Report No.: FC05-058


FCC 90210(c) EMISSIONS MASK HIGH CHANNEL 507MHz SMALLSPAN

Page 42 of 64 Report No.: FC05-058

FCC 90210(c) EMISSIONS MASK HIGH CHANNEL 507MHz BIGSPAN

Page 43 of 64 Report No.: FC05-058

FCC 90.210(c) Occupied Bandwidth/Emission Mask Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	00989A	HP	8568A	2049A01287	040805	040807
RF Section						
Spectrum Analyzer	00034	HP	85662A	2349A06091	040805	040807
Display Section						
Quasi Peak Adapter	00200	HP	85650A	2043A00221	040805	040807

FCC 90.209(c) EMISSIONS MASK

Page 44 of 64 Report No.: FC05-058

FCC 2.1033(c)(14)/2.1051/90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer: IP MobileNet

Specification: FCC 90.210 Antenna Spurious Emission

Work Order #: 84044 Date: 9/19/2005
Test Type: Maximized Emissions Time: 10:50:29
Equipment: Base Station for Mobile Data Radio Sequence#: 1

Network

Manufacturer: IPMobileNet Tested By: Stuart Yamamoto

Model: B64450G25 S/N: 05386432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Base Station for Mobile	IPMobileNet	B64450G25	05386432
Data Radio Network*			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	PP02L Inspiron I2500	5TZ6611
DC Power Supply	Samlex America	SEC 1223	03061-0D01-0632
High Power Termination	Weinschel Corporation	45-40-43	MN216
GPS Antenna	San Jose Navigation, Inc.	SM-25	2569790

Test Conditions / Notes:

The EUT, support equipment, and the test equipment are located on the table top. The EUT's ethernet port was connected to a laptop computer via an unshielded cat 5E cable. The EUT's DB9 serial port was also connected to the laptop computer via a shielded serial cable. The laptop computer was used to command the EUT to begin transmitting or stop transmitting as well as to change the EUT from channel to channel utilizing both interface ports. Also connected to the EUT was a GPS antenna. This GPS antenna was placed outside the room so that it had no obstructions to the sky. A separate external DC power supply was used to provide the EUT with 13.8 Vdc/10A. On the RF output of the EUT was placed a high power attenuator and a coaxial cable connected to a spectrum analyzer. The laptop computer is used to check the status of the EUT as well as send commands to have it transmit continuously and change between channels. Voltage to the EUT is 13.8 VDC. Temperature: 22°C, Humidity: 55%, Pressure: 100kPa. Frequency 150kHz - 30MHz RBW=9kHz, VBW=9kHz; 30MHz - 1000MHz RBW=120kHz, VBW=120kHz; 1000MHz - 6000MHz RBW=1MHz, VBW=1MHz. Frequency range scanned and maximized, 4 MHz to 5600 MHz. This data sheet is for the EUT transmitting at rated power (40 Watts) on Low (450 MHz), Mid (480MHz), and High (507 MHz) channels.

Transducer Legend:

T1=1-40 GHz Cable_122306	T2=40dB Attenuator JFW

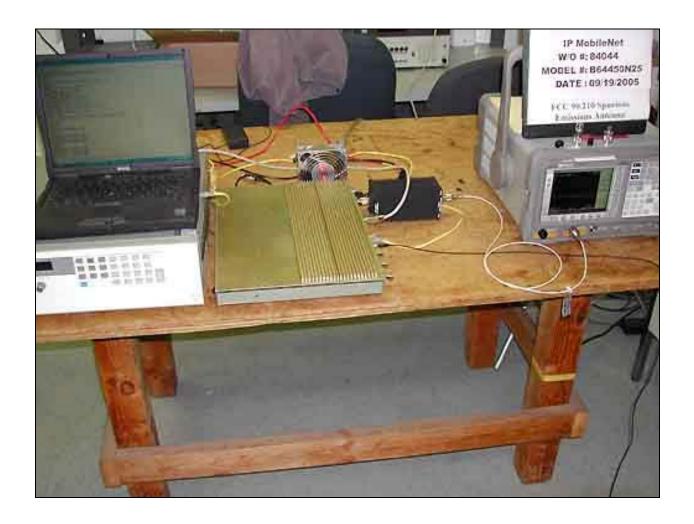
Measurement Data: Reading listed by margin.					argin.		Te	st Distance	e: None			
	#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
		MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
	1	900.001M	50.2	+0.8	+40.0			+0.0	91.0	94.0	-3.0	None
	2	490.200M	50.1	+0.7	+40.0			+0.0	90.8	94.0	-3.2	None

Page 45 of 64 Report No.: FC05-058

3	463.202M	49.3	+0.7	+40.0	+0.0	90.0	94.0	-4.0	None
4	466.801M	49.2	+0.7	+40.0	+0.0	89.9	94.0	-4.1	None
5	960.000M	48.1	+0.8	+40.0	+0.0	88.9	94.0	-5.1	None
6	1014.000M	47.8	+0.8	+40.0	+0.0	88.6	94.0	-5.4	None
7	3549.000M	42.8	+1.6	+44.1	+0.0	88.5	94.0	-5.5	None
8	496.798M	47.5	+0.7	+40.0	+0.0	88.2	94.0	-5.8	None
9	469.301M	47.5	+0.7	+40.0	+0.0+	88.2	94.0	-5.8	None
10	496.300M	47.3	+0.7	+40.0	+0.0	88.0	94.0	-6.0	None
11	3360.004M	43.3	+1.6	+43.0	+0.0	87.9	94.0	-6.1	None
12	523.799M	47.0	+0.7	+40.0	+0.0	87.7	94.0	-6.3	None
13	1350.001M	46.3	+1.0	+40.0	+0.0	87.3	94.0	-6.7	None
14	433.207M	46.2	+0.7	+40.0	+0.0	86.9	94.0	-7.1	None
15	540.599M	46.0	+0.7	+40.0	+0.0	86.7	94.0	-7.3	None
16	517.200M	46.0	+0.7	+40.0	+0.0	86.7	94.0	-7.3	None
17	473.404M	45.9	+0.7	+40.0	+0.0	86.6	94.0	-7.4	None
18	1440.000M	45.5	+1.0	+40.0	+0.0	86.5	94.0	-7.5	None
19	439.301M	45.5	+0.7	+40.0	+0.0	86.2	94.0	-7.8	None
20	3840.004M	40.4	+1.7	+43.8	+0.0	85.9	94.0	-8.1	None
21	530.411M	45.2	+0.7	+40.0	+0.0	85.9	94.0	-8.1	None
22	3042.000M	43.2	+1.5	+40.8	+0.0	85.5	94.0	-8.5	None
23	550.800M	44.8	+0.7	+40.0	+0.0	85.5	94.0	-8.5	None
24	2400.000M	44.1	+1.3	+40.0	+0.0	85.4	94.0	-8.6	None
25	416.401M	44.7	+0.6	+40.0	+0.0	85.3	94.0	-8.7	None
26	483.600M	44.5	+0.7	+40.0	+0.0	85.2	94.0	-8.8	None
27	500.395M	44.2	+0.7	+40.0	+0.0	84.9	94.0	-9.1	None
-									

Page 46 of 64 Report No.: FC05-058

28	547.198M	44.1	+0.7	+40.0	+0.0	84.8	94.0	-9.2	None
29	534.000M	44.0	+0.7	+40.0	+0.0	84.7	94.0	-9.3	None
30	4056.000M	42.4	+1.8	+40.4	+0.0	84.6	94.0	-9.4	None
31	446.399M	43.9	+0.7	+40.0	+0.0	84.6	94.0	-9.4	None
32	513.598M	43.6	+0.7	+40.0	+0.0	84.3	94.0	-9.7	None
33	3600.000M	38.9	+1.7	+43.7	+0.0	84.3	94.0	-9.7	None
34	1521.000M	42.9	+1.0	+40.0	+0.0	83.9	94.0	-10.1	None
35	2535.000M	42.0	+1.4	+40.1	+0.0	83.5	94.0	-10.5	None
36	2028.000M	42.3	+1.2	+40.0	+0.0	83.5	94.0	-10.5	None
37	2880.004M	41.9	+1.5	+40.1	+0.0	83.5	94.0	-10.5	None
38	3150.000M	40.3	+1.6	+41.6	+0.0	83.5	94.0	-10.5	None
39	439.804M	42.4	+0.7	+40.0	+0.0	83.1	94.0	-10.9	None
40	382.801M	42.5	+0.6	+40.0	+0.0	83.1	94.0	-10.9	None
41	4563.000M	41.6	+1.9	+39.5	+0.0	83.0	94.0	-11.0	None
42	1920.000M	41.8	+1.2	+40.0	+0.0	83.0	94.0	-11.0	None
43	349.200M	42.1	+0.6	+40.0	+0.0	82.7	94.0	-11.3	None
44	456.604M	41.6	+0.7	+40.0	+0.0	82.3	94.0	-11.7	None
45	4500.000M	37.9	+1.9	+41.3	+0.0	81.1	94.0	-12.9	None
46	2250.002M	39.1	+1.3	+39.9	+0.0	80.3	94.0	-13.7	None
47	2700.000M	38.5	+1.4	+39.9	+0.0	79.8	94.0	-14.2	None
48	4050.000M	37.1	+1.8	+40.7	+0.0	79.6	94.0	-14.4	None
49	1800.002M	37.5	+1.1	+40.0	+0.0	78.6	94.0	-15.4	None
L									


Page 47 of 64 Report No.: FC05-058

FCC 90.210(c) Spurious Emissions Antenna Terminal Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032205	032207
24" SMA Cable	P5183	Pasterneck	NA	1-40GHz_white	122304	122306
(White)						

FCC 90.210(c) ANTENNA CONDUCTED SPURIOUS EMISSIONS

Page 48 of 64 Report No.: FC05-058

FCC 2.1033(c)(14)/2.1053/90.210 - FIELD STRENGTH OF SPURIOUS RADIATION

Test Location: CKC Laboratories Inc. •180 N Olinda Place • Brea CA, 92823 • 714-993-6112

Customer: IP MobileNet

Specification: FCC 90.210 Radiated Spurious Emissions

Work Order #: 84044 Date: 9/22/2005 Test Type: **Maximized Emissions** Time: 16:32:06 Sequence#: 6

Equipment: **Base Station for Mobile Data Radio**

Network

Manufacturer: **IPMobileNet** Tested By: Stuart Yamamoto

Model: B64450G25 S/N: 05386432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Base Station for Mobile	IPMobileNet	B64450G25	05386432	
Data Radio Network*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop Computer	Dell Corporation	PP02L Inspiron I2500	5TZ6611
DC Power Supply	Samlex America	SEC 1223	03061-0D01-0632
High Power Termination	Weinschel Corporation	45-40-43	MN216
GPS Antenna	San Jose Navigation, Inc.	SM-25	2569790

Test Conditions / Notes:

The EUT and support equipment are located on the table top. Connected to the EUT Tx port is one high powered termination. Connected to the EUT serial port is the laptop computer via a shielded serial cable. Connect to the EUT GPS port is a standard GPS antenna with 5 meter long coaxial cable. The EUT ethernet port is connected to the laptop computer using an unshielded cat. 5E cable. Connected to the EUT's three receive ports are shielded terminated coaxial cables. Connected to the EUT's DB9 SLIP connection is a shielded unterminated cable. Connected to the EUT's BNC audio output port is a shielded unterminated coaxial cable. Power to the EUT is supplied by an external DC Power supply. The laptop computer is used to check the status of the EUT as well as send commands to have it transmit continuously. Voltage to the EUT is 13.8 VDC. Temperature: 23°C, Humidity: 45%, Pressure: 100kPa. Frequency 150kHz - 30MHz RBW=9kHz, VBW=9kHz; 30MHz - 1000MHz RBW=120kHz, VBW=120kHz; 1000MHz - 6000MHz RBW=1MHz, VBW=1MHz. This data sheet is for the EUT transmitting at rated power (40 Watts) on Low (450MHz), Middle (480 MHz), and High (507 MHz) channels. Frequency range scanned and maximized, 4 MHz to 5600 MHz.

> Page 49 of 64 Report No.: FC05-058

Operating Frequency: 450MHz - 507MHz

Channels:
Highest Measured Output Power: 46.02 ERP(dBm)= 40 ERP(Watts)
Distance: 3 meters

Limit: 43+10Log(P) 59.02 dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
2,028.00	-29.9	Vert	75.92
900.02	-30	Horiz	76.02
1,521.00	-30.1	Horiz	76.12
2,028.00	-30.5	Horiz	76.52
2,250.00	-30.7	Vert	76.72
1,349.98	-31.9	Vert	77.92
1,440.01	-33	Horiz	79.02
2,535.00	-33.6	Horiz	79.62
2,400.00	-33.8	Horiz	79.82
900.01	-33.8	Vert	79.82
439.31	-34.9	Horiz	80.92
1,350.00	-35.8	Horiz	81.82
3,042.00	-35.9	Vert	81.92
2,535.00	-36	Vert	82.02
2,700.00	-36.7	Horiz	82.72
3,549.00	-37.4	Vert	83.42
3,042.00	-39.2	Horiz	85.22
3,360.00	-39.7	Horiz	85.72
469.31	-39.7	Vert	85.72
3,360.00	-40.3	Vert	86.32
3,549.00	-40.6	Horiz	86.62
439.31	-40.7	Vert	86.72
469.31	-40.7	Horiz	86.72
3,600.00	-40.8	Horiz	86.82
2,400.00	-41.5	Vert	87.52

Page 50 of 64 Report No.: FC05-058

FCC 90.210(c) Spurious Emissions OATS Test Equipment

				~		
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	00989A	HP	8568A	2049A01287	040805	040807
RF Section						
Spectrum Analyzer	00034	HP	85662A	2349A06091	040805	040807
Display Section						
Quasi Peak Adapter	00200	HP	85650A	2043A00221	040805	040807
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	032205	032207
Bilog Antenna	00851	Schaffner-	CBL6111C	2629	031604	031606
		Chase EMC				
Antenna cable	NA	Andrew	LDF1-50	Cable#17	100204	100206
(10 meter site D)						
Antenna cable from	N/A	Pasternack	RG-214/U	Cable #33	040105	040106
bulkhead to antenna						
Preamp to SA Cable	NA	Pasternack	E100316-I	Cable #22	080904	080906
(3 feet)						
Pre-amp	00010	HP	8447D	2727A05392	070204	070206
Antenna cable	NA	Andrew	LDF1-50	Cable#19	101303	101305
(Heliax)						
Horn Antenna	01646	EMCO	3115	9603-4683	072204	072206
Microwave Pre-amp	00787	HP	83017A	3123A00282	052705	052707
Magnetic Loop	00314	Emco	6502	2014	072804	072806
Antenna						
24" SMA Cable	P5183	Pasterneck	NA	1-40GHz_white	122304	122306
(White)						

Page 51 of 64 Report No.: FC05-058

FCC 90.210(c) OATS SPURIOUS EMISSIONS

Page 52 of 64 Report No.: FC05-058

FCC 90.210(c) OATS SPURIOUS EMISSIONS

Page 53 of 64 Report No.: FC05-058

FCC 2.1033(c)(14)/2.1055/90.213- FREQUENCY STABILITY

Test Conditions: The EUT is placed in the temperature chamber. All support equipment is located outside the chamber. The EUT's ethernet port was connected to a laptop computer via an unshielded cat 5E cable. The EUT's serial port was also connected to the laptop computer via a shielded DB-9 cable. The laptop computer was used to command the EUT to begin transmitting or stop transmitting as well as to change the EUT from channel to channel utilizing both interface ports. Also connected to the EUT was a GPS antenna. This GPS antenna was placed outside the room so that it had no obstructions to the sky. A separate DC power supply was used to provide the EUT with 13.8 VDC/10A. On the RF output of the EUT was placed a high power attenuator and a coaxial cable connected to a spectrum analyzer to measure the EUT's frequency stability. The EUT was configured to output its rated output power (40Watts).

Customer: IP MobileNet WO#: 84044
Test Engineer: S. Yamamoto

Device Model #:

B64450G25

Operating Voltage:

13.8 Vdc

Frequency Limit: 2.5 ppm

Temperature Variations

		Channel 0 (MHz)	Dev (ppm)
Channel Frequency:		450.000000000	
Temp (C)	Voltage		
-30	13.8	449.999559000	-0.980001
-20	13.8	449.999550000	-1.000001
-10	13.8	449.999560000	-0.977779
0	13.8	449.999560000	-0.977779
10	13.8	449.999565000	-0.966668
20	13.8	449.999675000	-0.722223
30	13.8	449.999665000	-0.744445
40	13.8	449.999905000	-0.211111
50	13.8	450.000130000	0.288889

Channel 1 (MHz)	Dev (ppm)
480.000000000	
480.000040000	0.083333
479.999935000	-0.135417
480.000065000	0.135417
480.000160000	0.333333
480.000190000	0.395833
480.000155000	0.322917
480.000155000	0.322917
480.000135000	0.281250
480.000055000	0.114583

2.5 **ppm**

	Channel 2 (MHz) 507.000000	Dev (ppm)
	507.000090	0.177515
ı	506.999990	-0.019724
ı	507.000170	0.335306
ı	507.000125000	0.246548
ı	507.000190000	0.374753
ı	507.000135	0.266272
ı	507.000110000	0.216962
ı	507.000090000	0.177515
ı	507.000145000	0.285996

2.5 **ppm**

Voltage Variations (±15%)

Temp (C)	Voltage	Channel 0 (MHz)	Dev. (ppm)
20	11.7	450.000095000	0.211111
20	13.8	449.999675000	-0.722223
20	15.9	450.000140000	0.311111

Channel 1 (MHz)	Dev. (ppm)
480.000080000	0.166667
480.000105000	0.218750
480.000155000	0.322917

Channel 2 (MHz)	Dev. (ppm)
507.000135	0.266272
507.000025	0.049310
507.000060	0.118343

Max Deviation (ppm)	+	0.31111
Max Deviation (ppm)	-	1.00000
		PASS

+	0.39583
-	0.13542
	PASS

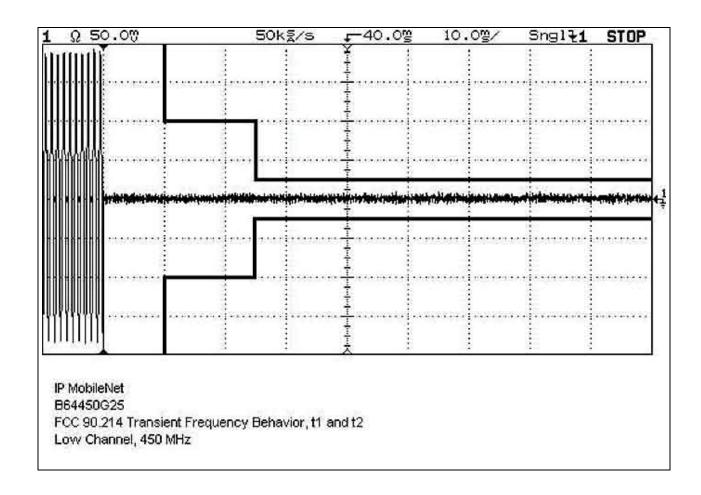
+	0.37475
-	0.01972
	PASS

Page 54 of 64 Report No.: FC05-058

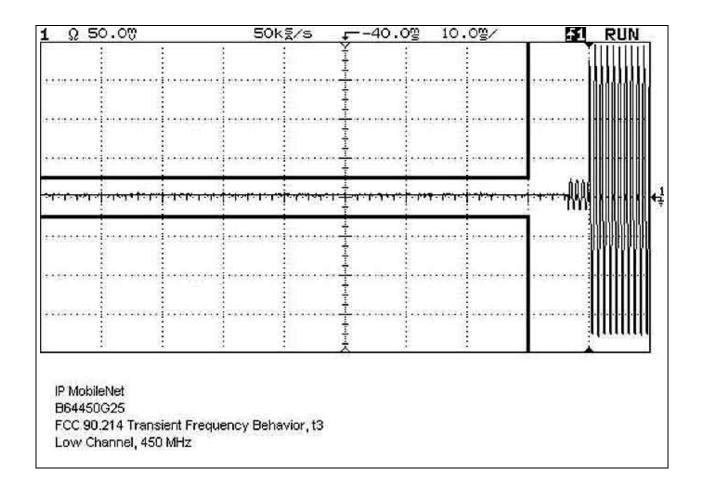
FCC 90.213 Frequency Stability Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	00989A	HP	8568A	2049A01287	040805	040807
RF Section						
Spectrum Analyzer	00034	HP	85662A	2349A06091	040805	040807
Display Section						
Quasi Peak Adapter	00200	HP	85650A	2043A00221	040805	040807
Temperature	01878	Thermotron	S1.2 Mini	(none)	071904	071906
Chamber			Max			
Digital Multimeter	01830	Fluke	45	6949042	012405	012406

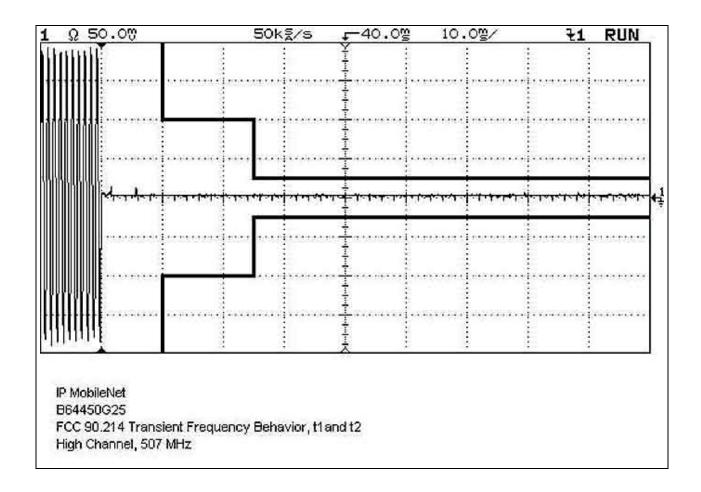
FCC 90.213 FREQUENCY STABILITY



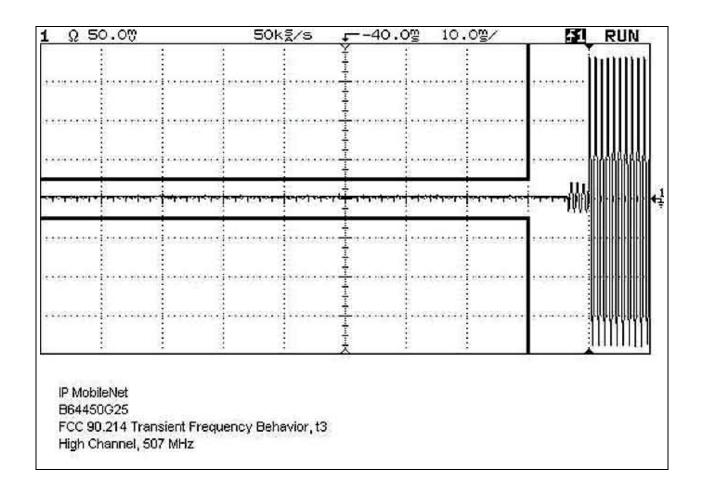
Page 55 of 64 Report No.: FC05-058


FCC 90.214 TRANSIENT FREQUENCY BEHAVIOR LOW CHANNEL t1 AND t2

Test Conditions: The EUT's ethernet port was connected to a laptop computer via an unshielded cat 5E cable. The EUT's DB9 serial port was also connected to the laptop computer via a shielded DB9 cable. The laptop computer was used to command the EUT to begin transmitting or stop transmitting as well as to change the EUT from channel to channel utilizing both interface ports. Also connected to the EUT was a GPS antenna. This GPS antenna was placed outside the room so that it had no obstructions to the sky. A separate DC power supply was used to provide the EUT with 13.8 VDC/10A. The EUT was configured to output its rated output power (40Watts). On the RF output of the EUT was placed a high power attenuator and then a coaxial cable to the combiner. The signal generators output was set to the EUT transmit frequency with 25kHz deviation 1kHz FM and connected to the combiner. The top port of the combiner was connected to the input of the modulation analyzer and the modulation analyzers output to the oscilloscope. The remaining two ports of the combiner were terminated into fifty ohm loads. The EUT was configured to output its rated output power and measurement were made for the low and high channels.



FCC 90.214 TRANSIENT FREQUENCY BEHAVIOR LOW CHANNEL t3



FCC 90.214 TRANSIENT FREQUENCY BEHAVIOR HIGH CHANNEL t1 AND t2

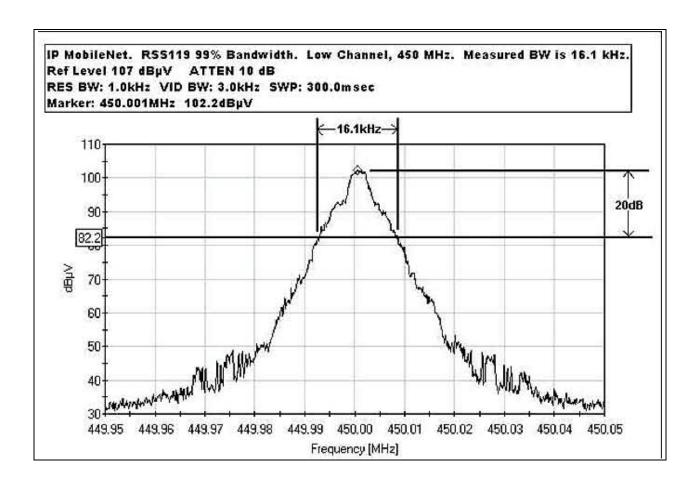
FCC 90.214 TRANSIENT FREQUENCY BEHAVIOR HIGH CHANNEL t3

FCC 90.214 Transient Frequency Behavior Test Equipment

<u>Equipment</u>	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Power Meter	02082	HP	435B	2445A11881	061704	061706
Power Sensor	02036	HP	8482A	1551A01004	061804	061806
Signal Generator	02227	Marconi	2024	112282/515	081805	081807
Digital Oscilloscope	00320	HP	54615B	US35420826	081204	081206
Modulation	02072	HP	8901A	2751A05181	102504	102506
Analyzer						
Combiner	P01313	Motorola	(none)	549TR18HQ	NCR	NCR

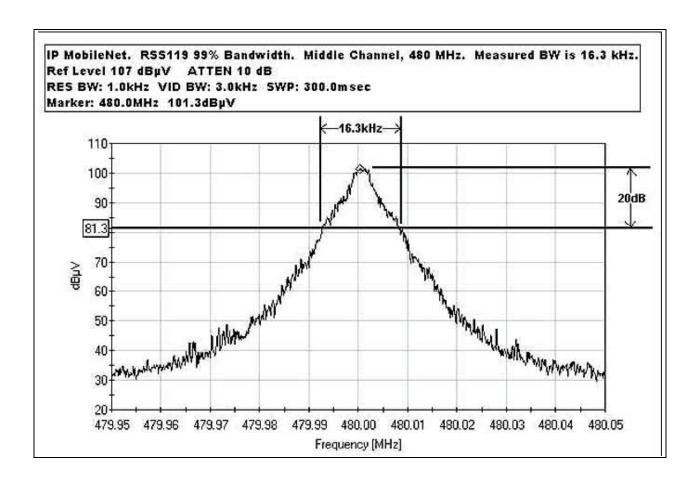
NCR = No Cal Required

FCC 90.214 TRANSIENT FREQUENCY BEHAVIOR

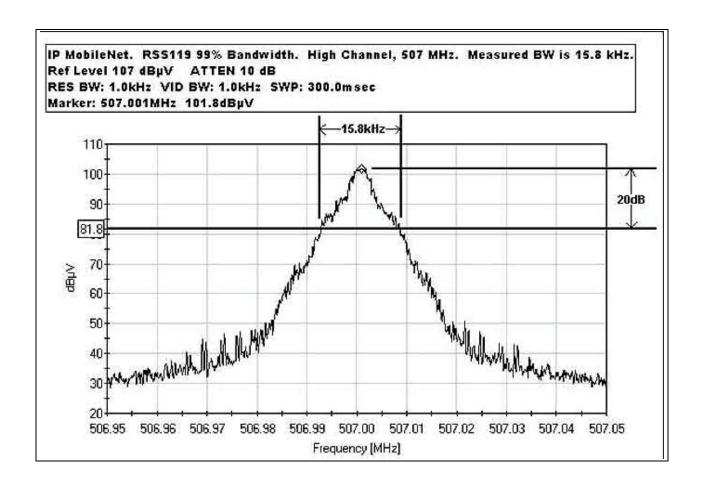


Page 60 of 64 Report No.: FC05-058

RSS-119 99% BANDWIDTH LOW CHANNEL 450MHz


Test Conditions: The EUT's ethernet port was connected to a laptop computer via an unshielded cat 5E cable. The EUT's DB9 serial port was also connected to the laptop computer via a shielded serial cable. The laptop computer was used to command the EUT to begin transmitting or stop transmitting as well as to change the EUT from channel to channel utilizing both interface ports. Also connected to the EUT was a GPS antenna. This GPS antenna was placed outside the room so that it had no obstructions to the sky. A separate DC power supply was used to provide the EUT with 13.8 VDC/10A. On the RF output of the EUT was placed a high power attenuator and a coaxial cable connected to a spectrum analyzer to measure the EUT fundamental emission. The EUT was configured to output its rated output power (40Watts).

Page 61 of 64 Report No.: FC05-058


RSS-119 99% BANDWIDTH MIDDLE CHANNEL 480MHz

Page 62 of 64 Report No.: FC05-058

RSS-119 99% BANDWIDTH HIGH CHANNEL 507MHz

RSS119 99% Bandwidth Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	00989A	HP	8568A	2049A01287	040805	040807
RF Section						
Spectrum Analyzer	00034	HP	85662A	2349A06091	040805	040807
Display Section						
Quasi Peak Adapter	00200	HP	85650A	2043A00221	040805	040807

Page 63 of 64 Report No.: FC05-058

RSS-119 99% BANDWIDTH

Page 64 of 64 Report No.: FC05-058