

## MEASUREMENT AND TECHNICAL REPORT

# ADCOM INFORMATION SERVICES, INC. 700 West Hillsboro Boulevard Deerfield Beach, FL 33441

**DATE: 25 March 2002** 

| This Report Concerns:                                                                                                                                    | Original Grant: X             | Class II Chan     | ge:   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|-------|--|--|--|--|--|
| Equipment Type: VM                                                                                                                                       | M105, Master Base Unit (MBU   | ), Model 10182    |       |  |  |  |  |  |
| Deferred grant requested                                                                                                                                 | per 47 CFR 0.457(d)(1)(ii)?   | Yes: Defer until: | No: X |  |  |  |  |  |
| Company Name agrees to notify the Commission by:  N/A  of the intended date of announcement of the product so that the grant can be issued on that date. |                               |                   |       |  |  |  |  |  |
| Transition Rules Request                                                                                                                                 | per 15.37? Yes:               | *No: X            |       |  |  |  |  |  |
| (*) FCC Part 15, Paragra                                                                                                                                 | aphs 15.207(a); 15.109(a); 1. | 5.249             |       |  |  |  |  |  |
| Report Prepared by:  TÜV PRODUCT SERVICE  10040 Mesa Rim Road  San Diego, CA 92121-2912  Phone: 858 546 3999  Fax: 858 546 0364                          |                               |                   |       |  |  |  |  |  |



# **TABLE OF CONTENTS**

|     |                                    | Pages |
|-----|------------------------------------|-------|
| 1   | GENERAL INFORMATION                |       |
| 1.1 | Product Description                |       |
| 1.2 | Related Submittal Grant            |       |
| 1.3 | Tested System Details              |       |
| 1.4 | Test Methodology                   |       |
| 1.5 | Test Facility                      |       |
|     |                                    |       |
| 2   | SYSTEM TEST CONFIGURATION          |       |
|     | 2.1 Justification                  |       |
|     | 2.2 EUT Exercise Software          |       |
|     | 2.3 Special Accessories            |       |
|     | 2.4 Equipment Modifications        |       |
|     | 2.5 Configuration of Tested System |       |
| 3   | RADIATED EMISSION EQUIPMENT/DATA   |       |
|     | Field Strength Calculation         |       |
| 4   | CONDUCTED EMISSION EQUIPMENT/DATA  |       |
| 5   | Attestation Statement              |       |

Rev.No 1.0



### 1 GENERAL INFORMATION

## 1.1 Product Description

| NAME, MODEL OF EUT:           | VM105, Master Base Unit (MBU), Model 10182                              |
|-------------------------------|-------------------------------------------------------------------------|
| POWE4 REQUIREMENTS:           | 120 Vac, 1 Phase, 0.1 A; uses 9 Vdc @.5A wall transformer               |
| TYPICAL INSTALLATION:         | Home                                                                    |
| EUT POWER CABLE:              | Removable, unshielded 2 meters                                          |
| EUT INTERFACE PORTS & CABLES: | RS232, 1; digital; shielded; foil; Termination: Dsub-9; Connector type: |
|                               | mini-DIN4; Port termination: None; 1 m; removable                       |
|                               | RJ112, 1; Analog; not shielded; Connector type: RJ11; Port              |
|                               | termination: 600 Ohm; 2 m; removable                                    |
|                               | Power, 1; analog; not shielded; Connector type: 5.5 x 2.1 power jack; 2 |
|                               | m                                                                       |
| OPERATING MODE:               | Data transmit mode; data receive mode & modem active                    |
| EUT SYSTEM COMPONENTS:        | Power Supply, Model Jame Co DC905F12                                    |
| SUPPORT EQUIPMENT:            | Phone line simulator                                                    |
| OSCILLATOR FREQUENCIES:       | 11.0592 MHz; Location: U3, crystal osc.; Description of use: micro      |
|                               | oscillator                                                              |
|                               | 16 MHz; Location: U12, socket modem module; Description of use:         |
|                               | micro oscillator                                                        |
|                               | 32.768 MHz; Location: U7, real time clock crystal osc.; Description of  |
|                               | use: clock chip                                                         |
| POWER SUPPLY:                 | Jame Co, Model DC905F12, Linear                                         |
| POWER LINE FILTERS:           | N/A                                                                     |
| EMC CRITICAL RETAIL.          | Antonno Liny Tachnologica O16 MHz 1/ ways whin                          |



### 1 GENERAL INFORMATION (continued)

#### 1.2 Related Submittal/Grant

None

### 1.3 Tested System Details

The FCC IDs for all equipment, plus descriptions of all cables used in the tested system are:

None

#### 1.4 Test Methodology

Purpose of Test:

To demonstrate compliance with the ANSI C63.4 setup.

| TEST                | FCC CFR 47 #      | PASS/FAIL |  |  |
|---------------------|-------------------|-----------|--|--|
| Radiated            | 15.109(a); 15.249 | Pass      |  |  |
| Conducted Emissions | 15.107(a)         | Pass      |  |  |

Test Performed: X 1. Conducted Emissions, FCC Part 15, 15.107(a)

- 2. Radiated Emissions EN55022: 1992 Class B limit, 30 1,000 MHz, 10 meters
- X 3. Radiated Emission per FCC Part 15, Paragraph 15.109(a); 15.249
  - 4. Engineering evaluations
  - 5. Frequency Stability, Part 2, Paragraph 2.995, and Part 87, Paragraph 87.133

RF Output Power, Part 2, Paragraph 2.985, Part 22, Paragraph 22.917

Both Conducted and radiated testing were performed according to the procedures in FCC/ANSI C63.4 and CSA 108.8 - M1983. Radiated testing was performed at an antenna-to-EUT distance of 3 meters (1 - 25 GHz).

### 1.5 Test Facility

The open area test site and conducted measurement data were tested by:

TÜV PRODUCT SERVICE 10040 Mesa Rim Road San Diego, CA 92121-2912 Phone: 858 546 3999

Fax: 858 546 0364

The Test Site Data and performance comply with ANSI 63.4 and are registered with the FCC, 7435 Oakland Mills Rd, Columbia Maryland 21046. All Measurement Data is acquired according to the content of FCC Measurement Procedure and ANSI C63.4, unless supplemented with additional requirements as noted in the test report.



## 2. SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was initially tested for FCC emission in the following configuration:

See Block Diagram.

2.2 EUT Exercise Software

None

2.3 Special Accessories

None

2.4 Modification

None

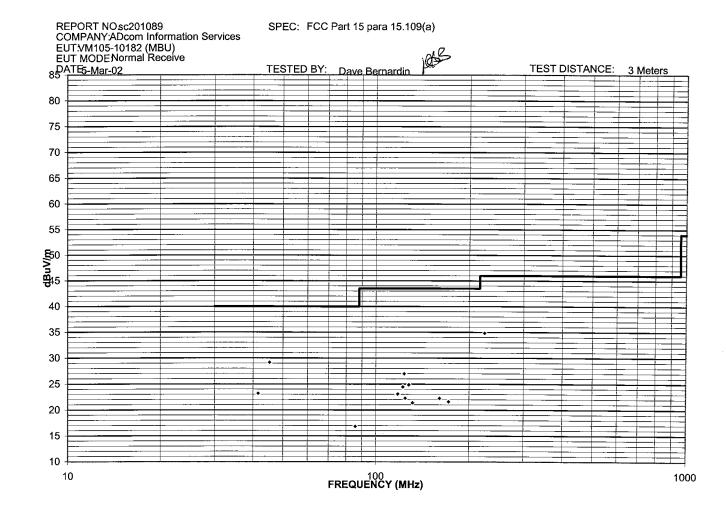
2.5 Configuration of Tested System

See Block Diagram.

Report No. 201089-08



## 3 RADIATED EMISSION EQUIPMENT/DATA


The following data lists the significant emission frequencies, measured levels, correction factor (which includes cable and antenna corrections), the corrected reading, and the limit.

See following page(s).

REPORT No: SC201089 TESTER: Dave Bernardin SPEC: FCC 15.249 CUSTOMER: ADcom Information Services TEST DIST: 3 Meters EUT: VM105-10182 (MBU) TEST SITE: Roof EUT MODE: Transmit Mode BICONICAL: N/A DATE: 8.March2002 LOG: 244 NOTES: OTHER: 251

above 1GHz: RBW & VBW 1 MHz for Pk; RBW 1MHz and VBW 10Hz for AVG
below 1GHz: RBW & VBW 100 kHz for Pk; RBW 100kHz and VBW 10Hz for AVG
CE = Antenna Earlor + Cable Incs - Pragnifier Gain + Pracelector Incs

|               |                |      |      |                     |           |      |                      |    |                      |       |                   | v.beta       | _              |             |
|---------------|----------------|------|------|---------------------|-----------|------|----------------------|----|----------------------|-------|-------------------|--------------|----------------|-------------|
| FREQ<br>(MHz) | VER1<br>(dBuv) | pk   |      | ONTAL<br>Buv)<br>av | CF (dB/m) |      | LEVEL<br>IV/m)<br>av |    | LIMIT<br>1V/m)<br>av |       | RGIN<br>IB)<br>av | EUT Rotation | Antenna Heighi | Notes       |
| 916.54        | 69.9           | 69.8 | 65.8 | 65.7                | 22.8      | 92.7 | 92.6                 | 94 | 94                   | -1.32 | -1.42             | 189          | 1.9            | Fundamental |
| 1833.08       | 49.4           | 42   | 47.7 | 38.7                | -6.8      | 42.6 |                      | 74 | 54                   | -31.4 | -18.8             | 192          | 1              |             |
| 2749.62       | 48.9           | 40.7 | 50.1 | 48                  | -2.2      | 47.9 | 45.8                 | 74 | 54                   | -26.1 | -8.2              | 209          | 1              |             |
| 3666.16       | 41.8           |      | 39   |                     | 1.2       | 43.0 | 1.2                  | 74 | 54                   | -31   | -52.8             |              |                | noise level |
| 4582.7        | 44.1           |      | 44.3 |                     | 1.5       | 45.8 | 1.5                  | 74 | 54                   | -28.2 | -52.5             |              |                | noise level |
| 5499.24       | 41.3           |      | 42   |                     | 6.5       | 48.5 | 6.5                  | 74 | 54                   | -25.5 | -47.5             |              | -              | noise level |
| 415.78        | 44             |      | 45.5 |                     | 7.8       | 53.3 | 7.8                  | 74 | 54                   | -20.7 | -46.2             |              |                | noise level |
| 7332.32       | 42.3           |      | 44.1 |                     | 10.7      | 54.8 | 10.7                 | 74 | 54                   | -19.2 | -43.3             |              |                | noise level |
| 3248.86       | 44.4           |      | 42.9 |                     | 12.3      | 56.7 | 12.3                 | 74 | 54                   | -17.3 | -41.7             |              |                | noise level |
| 9165.4        | 42.8           |      | 43.7 |                     | 13.6      | 57.3 | 13.6                 | 74 | 54                   | -16.7 | -40.4             |              |                | noise level |
|               |                |      |      |                     |           |      |                      |    |                      |       |                   |              |                |             |
|               | $\sqcup$       |      |      |                     |           |      |                      |    |                      |       |                   |              |                |             |
|               |                |      |      |                     |           |      |                      |    |                      |       |                   |              |                |             |
|               |                |      |      |                     |           |      |                      |    |                      |       |                   |              |                |             |
|               |                | T    | T    | Т                   |           |      |                      |    |                      | -T    |                   |              |                |             |



## Report No. 201089-08



REPORT No: sc201089

SPEC: FCC Part 15 para 15.109(a)

**CUSTOMER: ADcom Information Services** 

TEST DIST: 3 Meters

EUT:

VM105-10182 (MBU)

TEST SITE: 1

EUT MODE: Normal Receive

BICONICAL: 738

DATE:

5-Mar-02

TESTED BY: Dave Bernardin

LOG PERIODIC:

NOTES:

Quasi-Peak with 120 KHz measurement bandwidth.

RCVR:

738 466

110Vac 60Hz

Temperature: 26 Relative Humidity: 46% **EUT MARGIN** -10.9 dB at 45.32 MHz ver 1.8a VERTICAL HORIZONTAL CORRECTION MAXIMUM SPECIFIED EUT FREQUENCY **EUT ANTENNA** measured measured **FACTOR** CORRECTED MARGIN ROTATION LIMIT (MHz) HEIGHT (dBuv) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (degrees) (meters) 41.60 4.3 2 18.9 23.2 40 -16.8 224 45.32 11.2 -3 17.9 -10.9 29.1 40 180 1 85.60 6.7 -1.5 10.1 16.8 40 -23.2 188 1 117.80 4.9 8.7 14.4 23.1 43.5 -20.4 164 2.3 122.36 5.9 10 14.4 24.4 43.5 -19.1 166 2.3 123.45 7.7 12.6 14.4 27.0 43.5 -16.5 173 2.4 124.50 4.3 8 14.3 22.3 43.5 -21.2 165 2.4 127.90 10.8 7.2 14.0 24.8 43.5 -18.7 165 2.4 131.45 4.7 7.7 13.7 21.4 43.5 -22.1 195 2.5 160.65 10.9 8.9 11.4 22.3 43.5 -21.2 257 2 171.45 4.8 9.4 12.2 21.6 43.5 -21.9 189 2 224.00 11.6 19.3 15.5 34.8 46 -11.2 178 1



# Emissions Test Conditions: RADIATED EMISSIONS, FCC Part 15, Paragraphs 15.109(a); 15.249

The RADIATED EMISSIONS measurements were performed at the following test location :

### □ - Test not applicable

- ■- Roof (Small Open Area Test Site)
- ■- Canyon #1 (10- and 30-Meter Open Area Test Site), Carroll Canyon, San Diego

### Testing was performed at a test distance of:

- □ 1 meters
- - 3 meters
- □ 10 meters

### **Test Equipment Used:**

| Model No.       | Prop. No. | Description                  | Manufacturer     | Serial No.  | Cal Date |
|-----------------|-----------|------------------------------|------------------|-------------|----------|
| 3115            | 251       | Antenna, Horn                | EMCO             | 2595        | 10/20/02 |
| 3146            | 244       | Antenna, Log Periodic Dipole | EMCO             | 1063        | 03/21/02 |
| 8566B           | 823       | Spectrum Analyzer            | Hewlett Packard  | 2332A027511 | 07/24/02 |
| 8445B           | 809       | Automatic Preselector        | Hewlett Packard  | 1442A01127  | N/A      |
| PreAmp 2-20 GHz | 719       | Pre Amplifier                | TUV PS           | 549460      | N/A      |
| LPB 2520/A      | 738       | LPB                          | Antenna Research | 1169        | 06/28/02 |
| ESVS30          | 466       | EMI Test Receiver            | Rhode \$ Schwarz | 833825/003  | 03/20/02 |
| Remarks:        |           |                              |                  |             |          |



### Field Strength Calculation

If a preamplifier was used during the Radiated Emission Testing, it is required that the amplifier gain must be subtracted from the Spectrum Analyzer (Meter) Reading. In addition, a correction factor for the antenna, cable used and a distance factor, if any, must be applied to the Meter Reading before a true field strength reading can be obtained. In the automatic measurement, these considerations are automatically presented as a part of the print out. In the case of manual measurements and for greater efficiency and convenience, instead of using these correlation factors for each meter reading, the specification limit was modified to reflect these correlation factors at each frequency value so that the meter readings can be compared directly to the modified specification limit. This modified specification limit is referred to as the "Corrected Meter Reading Limit" or simply the CMRL, which is the actual field strength present at the antenna. The quantity can be derived in the following manner:

Corrected Meter Reading Limit (CMRL) = SAR + AF + CL - AG - DC

Where, SAR = Spectrum Analyzer Reading

AF = Antenna Factor

CL = Cable Loss

AG = Amplifier Gain (if any)

DC = Distance Correction (if any)

Assume the following situation: A meter reading of 29.4 dBuV was obtained from a Class A computing device measured at 83 MHz. Assume an antenna factor of 9.2 dB, a cable loss of 1.4 dB and amplifier gain of 20.0 dB at 83 MHz. The final field strength would be determined as follows:

CMRL = 29.4 dBuV + 9.2dB = 1.4 dB - 20 dB/M - 0.0 dBCMRL = 20.0 dBuV/M

This result is well below the FCC and CSA Class A limit of 29.5 dbuV/m at 83 MHz.

For the manual mode of measurement, a table of corrected meter reading limit was used to permit immediate comparison of the meter reading to determine if the measure emission amplitude exceeded the specification limit at that specific frequency.

Report No. 201089-08



# 4 CONDUCTED EMISSION EQUIPMENT/DATA

See following page(s).



TUV Product Service Conducted Emissions

EUT:

VM105-10182 (MBU)

Manuf:

ADcom Information Services

Op Cond: Operator:

Receive Mode Dave Bernardin

Test Spec:

FCC Part 15.207(a) 115VAC 60Hz Line 1

Comment:

SC-201089

Date:

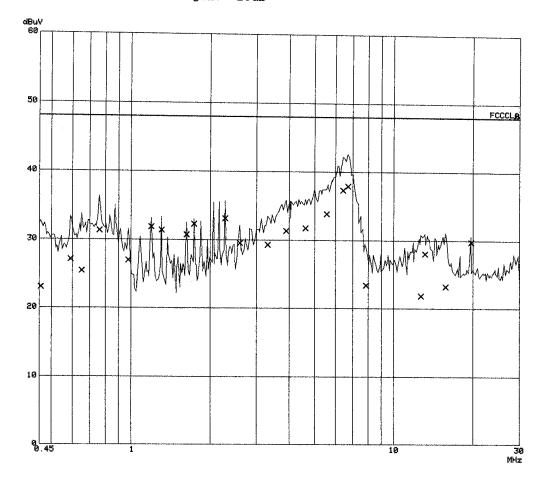
05. Mar 02 14:46

Scan Settings (2 Ranges)

IF BW Detector M-Time Atten Preamp OpRge Step 450k 1M 5k 10k PK 100ms AUTO LN OFF 60dB 1M 30M 5k 10k PK

Transducer No. Start 1

Stop 30M


Name 20dBLISN

2ms AUTO LN OFF

60dB

Final Measurement: x QP

Meas Time: 1 s Subranges: 25 Acc Margin: 20dB





TUV Product Service Conducted Emissions EUT: VM105-10182 (MBU)

Manuf:

ADcom Information Services

Comment:

Op Cond: Receive Mode
Operator: Dave Bernardin (B)
FCC Part 15.207(a) 115VAC 60Hz Line 1 SC-201089

Date:

05. Mar 02 14:46

## Final Measurement Results:

| Frequency<br>MHz                                                                                                          | QP Level<br>dBuV                                                                     | QP Limit<br>dBuV                                             |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 0.45500<br>0.59000<br>0.65000<br>0.76000<br>0.97500<br>1.19500<br>1.30500<br>1.62500<br>1.73500<br>2.27500<br>2.59500     | 23.0<br>27.1<br>25.4<br>31.3<br>26.9<br>31.9<br>31.4<br>30.7<br>32.3<br>33.1<br>29.5 | 48.0<br>48.0<br>48.0<br>48.0<br>48.0<br>48.0<br>48.0<br>48.0 |
| 3.31000<br>3.89000<br>4.61000<br>5.54500<br>6.41500<br>6.70500<br>7.84500<br>12.70000<br>13.13500<br>15.75500<br>19.68500 | 29.3<br>31.3<br>31.7<br>33.8<br>37.3<br>37.9<br>23.4<br>21.8<br>28.0<br>23.2<br>29.8 | 48.0<br>48.0<br>48.0<br>48.0<br>48.0<br>48.0<br>48.0<br>48.0 |

<sup>\*</sup> limit exceeded



TUV Product Service Conducted Emissions

EUT:

VM105-10182 (MBU)

Manuf:

ADcom Information Services

Op Cond:

Receive Mode

Operator:

Dave Bernardin

Test Spec:

FCC Part 15.207(a)

Comment:

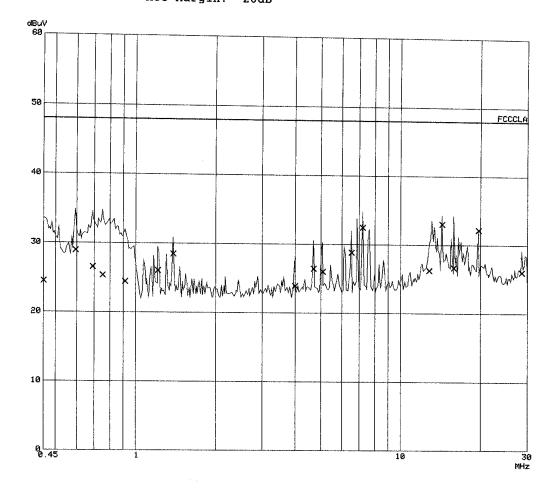
115VAC 60Hz Line 2

Date:

SC-201089 05. Mar 02 15:03

Scan Settings (2 Ranges)

|----- Frequencies ------||------ Receiver Settings ------Step IF BW Detector M-Time Atten Preamp OpRge 450k 1.M 5k 10k PK 100ms AUTO LN OFF 1M 30M 60dB 5k 10k PK 2ms AUTO LN OFF 60dB


Transducer No. Start

1

Stop Name 30M 20dBLISN

Final Measurement: x QP

Meas Time: 1 s Subranges: 25 Acc Margin: 20dB





TUV Product Service Conducted Emissions

EUT:

VM105-10182 (MBU)

Manuf:

ADcom Information Services

Manuf:
Op Cond:
Operator:
Test Spec:
Comment:

ADCOM INTORMATION BEING
Receive Mode
Dave Bernardin
Dave Bernard

05. Mar 02 15:03

# Final Measurement Results:

| Frequency<br>MHz | QP Level<br>dBuV | QP Limit<br>dBuV |
|------------------|------------------|------------------|
| 0.45000          | 24.5             | 48.0             |
| 0.59500          | 29.0             | 48.0             |
| 0.69000          | 26.6             | 48.0             |
| 0.75000          | 25.4             | 48.0             |
| 0.91000          | 24.5             | 48.0             |
| 1.21000          | 26.1             | 48.0             |
| 1.38500          | 28.4             | 48.0             |
| 3.98500          | 23.9             | 48.0             |
| 4.69000          | 26.4             | 48.0             |
| 5.08000          | 26.0             | 48.0             |
| 6.53000          | 28.8             | 48.0             |
| 7.20000          | 32.5             | 48.0             |
| 12.84500         | 26.3             | 48.0             |
| 14.31500         | 33.0             | 48.0             |
| 15.85500         | 26.7             | 48.0             |
| 19.68500         | 32.2             | 48.0             |
| 28.63000         | 26.0             | 48.0             |

<sup>\*</sup> limit exceeded



# Emissions Test Conditions: CONDUCTED EMISSIONS, FCC Part 15, Paragraphs 15.107(a)

The RADIATED EMISSIONS measurements were performed at the following test location :

☐ - Test not applicable

■ - SR-3, Shielded Room, 12' x 20' x 8', Metal Chamber

**Test Equipment Used:** 

| Model No.        | Prop. No. | Description              | Manufacturer         | Serial No. | Cal Date |
|------------------|-----------|--------------------------|----------------------|------------|----------|
| ESHS 30          | 459       | <b>EMI Test Receiver</b> | Rohde & Schwarz      | 832354/004 | 02/26/03 |
| CAT-20           | 606       | 20 dB Attenuator         | Mini-Circuits        |            | N/A      |
| FCC-LISN-50-25-2 | 552       | LISN                     | Fischer Custom Comm. | 113        | 03/26/02 |
| Remarks:         |           |                          |                      |            |          |
|                  |           |                          |                      |            |          |



### ATTESTATION STATEMENT

### **GENERAL REMARKS:**

### **SUMMARY:**

All tests were performed per CFR 47, Part 15, Paragraphs 15.207(a); 15.109(a); 15.249.

■ - Performed

The Equipment Under Test

- - Fulfills the requirements of CFR 47, Part 15, Paragraphs 15.207(a); 15.109(a); 15.249.
- TÜV PRODUCT SERVICE, INC. -

Responsible Engineer:

David B. Breaklan

Dave Bernardin EMC Engineer