

A D T

RF EXPOSURE REPORT

REPORT NO.: SA130412E08

MODEL NO.: T77H446

FCC ID: MCLT77H446

RECEIVED: Apr. 12, 2013

TESTED: May 02, 2013

ISSUED: May 10, 2013

APPLICANT: Hon Hai PRECISION IND.CO.,LTD

ADDRESS: 5F-1, Hsin-An Road, Hsinchu, Science
Industrial Park, Taiwan, R.O.C.

ISSUED BY : Bureau Veritas Consumer Products Services
(H.K.) Ltd., Taoyuan Branch Hsin Chu
Laboratory

LAB ADDRESS : No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung
Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307,
Taiwan, R.O.C.

This report should not be used by the client to claim
product certification, approval, or endorsement by any
government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

A D T

TABLE OF CONTENTS

RELEASE CONTROL RECORD	3
1. CERTIFICATION	4
2. RF EXPOSURE LIMIT	5
3. MPE CALCULATION FORMULA	5
4. CLASSIFICATION	5
5. CALCULATION RESULT OF MAXIMUM CONDUCTED POWER	6

A D T

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
SA130412E08	Original release	May 10, 2013

A D T

1.CERTIFICATION

PRODUCT: NFC 13.56MHz RFID transceiver module
BRAND NAME: FOXCONN
MODEL NO.: T77H446
TEST SAMPLE: ENGINEERING SAMPLE
APPLICANT: Hon Hai PRECISION IND.CO.,LTD
TESTED: May 02, 2013
STANDARDS: FCC Part 2 (Section 2.1091)
FCC OET Bulletin 65, Supplement C (01-01)
IEEE C95.1

The above equipment (Model: T77H446) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : Phoenix Huang , **DATE:** May 10, 2013
(Phoenix Huang, Specialist)

APPROVED BY : May Chen , **DATE:** May 10, 2013
(May Chen, Manager)

2. RF EXPOSURE LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

FREQUENCY RANGE (MHz)	ELECTRIC FIELD STRENGTH (V/m)	MAGNETIC FIELD STRENGTH (A/m)	POWER DENSITY (mW/cm ²)	AVERAGE TIME (minutes)
LIMITS FOR GENERAL POPULATION / UNCONTROLLED EXPOSURE				
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	F/1500	30
1500-100,000	1.0	30

F = Frequency in MHz

3. MPE CALCULATION FORMULA

$$Pd = (Pout \cdot G) / (4 \cdot \pi \cdot r^2)$$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

pi = 3.1416

r = distance between observation point and center of the radiator in cm

4. CLASSIFICATION

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as **Mobile Device**.

A D T

5. CALCULATION RESULT OF MAXIMUM CONDUCTED POWER

Channel Frequency (MHz)	Electric field (dBuV/m)	Electric field (V/m)	Limit of Electric field (V/m)
13.56	40.43	0.000105	60.76

Note: Limit of Electric field=824/f

$$\begin{aligned}\text{Electric field} &= 40.43 \text{ dBuV/m} & 10 \text{ m} \\ &= 40.43 + 20 \log(10/0.2)^2 & 0.2 \text{ m} \\ &= 108.4 \text{ dBuV/m} & 0.2 \text{ m} \\ &= 262688 \mu\text{V/m} & 0.2 \text{ m} \\ &= 0.262688 \text{ V/m} & 0.2 \text{ m}\end{aligned}$$

--- END ---