

Specific Absorption Rate (SAR) Test Report

for

MiTAC Technology Corp.

on the

Notebook PC

Report No. : FA841815A
Trade Name : MTC; GETAC
Model Name : E100 / E100N
FCC ID : MAUE03
Date of Testing : May 29, 2008 ~ Jan. 08, 2009
Date of Report : Jan. 08, 2009
Date of Review : Jan. 08, 2009

- The test results refer exclusively to the presented test model / sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 10

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

1. Statement of Compliance	1
2. Administration Data	2
2.1 Testing Laboratory	2
2.2 Detail of Applicant	2
2.3 Detail of Manufacturer	2
2.4 Application Details	2
3. General Information	3
3.1 Description of Device Under Test (DUT).....	3
3.2 Basic Description of Device under Test	4
3.3 Configuration of the Equipment	5
3.4 Product Photos	5
3.5 Applied Standards	6
3.6 Device Category and SAR Limits	6
3.7 Test Conditions	6
4. Specific Absorption Rate (SAR).....	8
4.1 Introduction	8
4.2 SAR Definition	8
5. SAR Measurement Setup	9
5.1 DASY5 E-Field Probe System	10
5.2 DATA Acquisition Electronics (DAE)	12
5.3 Robot.....	12
5.4 Measurement Server	12
5.5 SAM Twin Phantom	13
5.6 Device Holder for SAM Twin Phantom	14
5.7 Data Storage and Evaluation	15
5.8 Test Equipment List	17
6. Tissue Simulating Liquids.....	18
7. Uncertainty Assessment	20
8. SAR Measurement Evaluation	22
8.1 Purpose of System Performance check	22
8.2 System Setup	22
8.3 Validation Results	24
9. Description for DUT Testing Position.....	25
10. Measurement Procedures	26
10.1 Spatial Peak SAR Evaluation.....	26
10.2 Scan Procedures	27
10.3 SAR Averaged Methods	27
11. SAR Test Results	28
11.1 Conducted Power.....	28
11.2 Test Records for Body SAR.....	29
11.3 Volume Scan	30
12. References.....	31

Appendix A - System Performance Check Data

Appendix B - SAR Measurement Data

Appendix C - Calibration Data

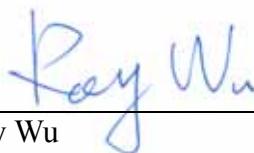
Appendix D - Product Photos

Appendix E - Test Setup Photos

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum results found during testing for the **MiTAC Technology Corp. Notebook PC MTC; GETAC E100 / E100N** are as follows (with expanded uncertainty 21.9%):

<Standalone SAR>


Model	GSM850 Body SAR (W/kg)	GSM1900 Body SAR (W/Kg)	WCDMA Band V Body SAR (W/kg)	WCDMA Band II Body SAR (W/kg)
E100N	1.08	1.15	1.26	0.449
E100	1.06	0.868	1.24	0.425

<Volume Scan SAR>

Position	Mode	Channel	Multi Band 1g SAR (W/kg)
Rear Face with Holster 0cm Gap	WCDMA Band V (RMC 12.2K)	4182	1.32
	802.11b	6	
Rear Face with Holster 0cm Gap	WCDMA Band V (RMC 12.2K)	4182	1.31
	Bluetooth	39	

They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Roy Wu
Manager

2. Administration Data

2.1 Testing Laboratory

Company Name : Sporton International Inc.
Department : Antenna Design/SAR
Address : No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C.
Telephone Number : 886-3-327-3456
Fax Number : 886-3-328-4978

2.2 Detail of Applicant

Company Name : MiTAC Technology Corp.
Address : 9th. FL., No. 75, Ming Sheng E. Rd., Sec.3, Taipei, Taiwan

2.3 Detail of Manufacturer

Company Name : GeTAC Technology(Kunshan) LTD.
Address : No.269, 2nd Road, Export Processing Zone, Changjiang South Road, Kunshan, Jiangsu, P.R.C

2.4 Application Details

Date of reception of application: Apr. 18, 2008
Start of test : May 29, 2008
End of test : Jan. 08, 2009

3. General Information

3.1 Description of Device Under Test (DUT)

Product Feature & Specification	
DUT Type :	Notebook PC
Trade Name :	MTC; GETAC
Model Name :	E100 / E100N
FCC ID :	MAUE03
Tx Frequency :	GSM850 : 824 MHz ~ 849 MHz GSM1900 : 1850 MHz ~ 1910 MHz WCDMA Band V : 824 MHz ~ 849 MHz WCDMA Band II : 1850 MHz ~ 1910 MHz
Rx Frequency :	GSM850 : 869 MHz ~ 894 MHz GSM1900 : 1930 MHz ~ 1990 MHz WCDMA Band V : 869 MHz ~ 894 MHz WCDMA Band II : 1930 MHz ~ 1990 MHz
Maximum Output Power to Antenna :	GSM850 : 31.88 dBm GSM1900 : 28.76 dBm WCDMA Band V : 22.82 dBm WCDMA Band II : 23.22 dBm
Antenna Type :	Retractable Antenna
HW Version :	R03
SW Version :	R102 (BIOS)
Type of Modulation :	GSM / GPRS : GMSK EDGE : 8PSK WCDMA : QPSK HSDPA : QPSK / 16QAM HSUPA : BPSK
DUT Stage :	Identical Prototype
Application Type :	Certification

3.2 Basic Description of Device under Test

DUT Name		Notebook PC
Trade Name		MTC; GETAC
Model Name		E100 / E100N
FCC ID		MAUE03
AC Adapter	Brand Name	FSP
	Model Name	FSP050-1AD101C
	Power Rating	I/P: 100-240Vac, 50-60Hz, 1.3A O/P: 12Vdc, 4.16A
	AC Power Cord Type	1.8 meter non-shielded cable without ferrite core
Battery	Brand Name	Sayno
	Model Name	BP2S2P2600(S)
	Power Rating	7.4Vdc, 5200mAh, 4cell
	Type	Li-ion

Remark:

1. E100 is almost the same as E100N. The differences between these models are panel and keyboard as follows:
 - a. Panel of E100 is 8.4 inch, and E100N is 8.9 inch.
 - b. E100N doesn't have the number key on the keyboard, but E100.
2. Above EUT's information was declared by manufacturer. Please refer to the specifications of manufacturer or User's Manual for more detailed features description.

3.3 Configuration of the Equipment

Model Name: E100 (Sample A)

Notebook Specification				
Item	Brand	Model	P/N	Specification
CPU	Intel Stealey	TDP 3W	---	800 MHz
LCD	AUO 8.4" SVGA	G084SN02 V0 for digitizer option	G084SN02 V0	8.4 inch SVGA Color TFT LCD Module 800x600
HDD	Toshiba	MK1011GAH	---	100GB
Memory	HYNIX	HYMP512S64CP8-Y5	---	DDR2 667 1GB
Adapter	FSP	PS050-1AD101C	---	---
Battery	Sayno	Sayno BP2S2P2600(S)	---	DC 7.4V, Li-ION/ Sayno cell - 5200mAH/4cell, (P)
WLAN	Billionton, MiniCard (USB I/F)	GMEWLGR	---	802.11b/g
Bluetooth	Billionton (USB I/F)	GUBTCR42M	---	V2.0 + EDR
GPS	GlobalSat	ET-312	---	RS232
3G	SIERRA WIRELESS	MC8785V	---	---

Model Name: E100N (Sample B)

Notebook Specification				
Item	Brand	Model	P/N	Specification
CPU	Intel Stealey	TDP 3W	---	800 MHz
LCD	Toshiba	Toshiba 8.9 inch TFT-LCD MODULE LTD089EXYM 1024x768	LTD089EXYM	8.9 inch TFT-LCD Module 1024x768
HDD	Toshiba	MK1011GAH	---	100 GB
Memory	Qimonda	HYS64T128021EDL-3S-B2	---	DDR2 667 1GB
Adapter	FSP	PS050-1AD101C	---	---
Battery	Sayno	Sanyo BP2S2P2600(S)	---	DC 7.4V, Li-ION/ Sayno cell - 5200mAH/4cell,(P)
WLAN	Billionton, MiniCard (USB I/F)	GMEWLGR	---	802.11b/g
Bluetooth	Billionton (USB I/F)	GUBTCR42M	---	V2.0 + EDR
GPS	GlobalSat	ET-312	---	RS232
3G	SIERRA WIRELESS	MC8785V	---	---

3.4 Product Photos

Please refer to Appendix D.

3.5 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Notebook PC is in accordance with the following standards:

47 CFR Part 2 (2.1093),

IEEE C95.1-1999,

IEEE C95.3-2002,

IEEE P1528-2003, and

OET Bulletin 65 Supplement C (Edition 01-01)

Preliminary Guidance for Reviewing Applications for Certification of 3G Device

KDB 941225 D01 v02 SAR test for 3G devices

KDB 447498 D01 v03r01 Mobile and Portable Device RF Exposure Procedures

3.6 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.7 Test Conditions

3.7.1 Ambient Condition

Item	MSL_850	MSL_850	MSL_850	MSL_850	MSL_1900	MSL_1900
Date	May 30, 2008	Jun. 11, 2008	Jul. 11, 2008	Aug. 06, 2008	May 29, 2008	Jun. 11, 2008
Tissue simulating liquid temperature (°C)	21.3°C	21.3°C	21.4°C	21.3°C	21.6°C	21.5°C
Ambient Temperature (°C)				20-24		
Humidity (%)				<60 %		

3.7.2 Test Configuration

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

Measurements were performed on the lowest, middle, and highest channel for each testing position. However, measurements were performed only on the middle channel if the SAR is below 3 dB of limit.

For SAR testing, EUT is in GPRS/EDGE or WCDMA/HSUPA link mode. In GPRS/EDGE link mode, its crest factor is 2 because EUT is GPRS/EDGE class 12 device. In WCDMA/HSUPA link mode, its crest factor is 1.

3.7.3 FCC 3G SAR Measurement Procedures

The EUT was tested according to the requirements of the FCC 3G procedures and the TS 34.121. For details, please find it at separate report.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific heat capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

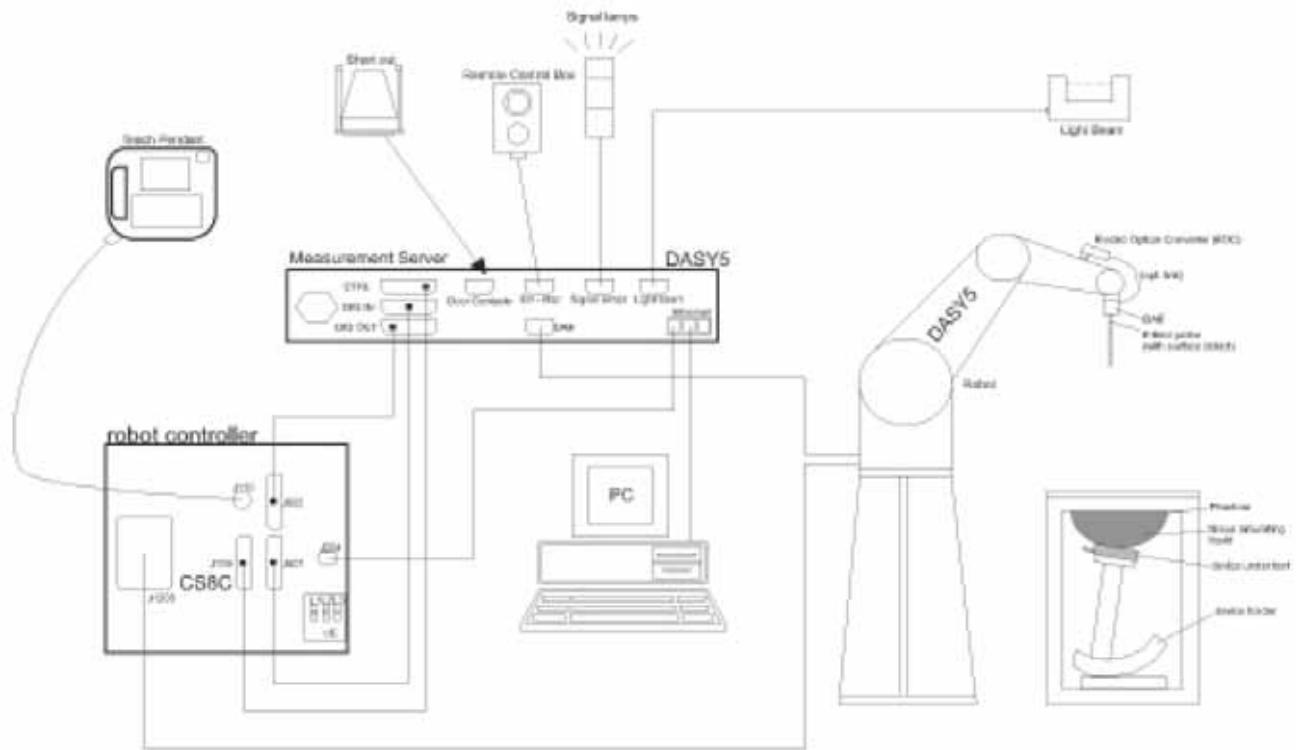


Fig. 5.1 DASY5 System

The DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY5 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY5 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 ET3DV6 E-Field Probe Specification

<ET3DV6>

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents)
Frequency	10 MHz to 3 GHz
Directivity	± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation perpendicular to probe axis)
Dynamic Range	5 μ W/g to 100mW/g; Linearity: ± 0.2 dB
Surface Detection	± 0.2 mm repeatability in air and clear liquids on reflecting surface
Dimensions	Overall length: 330mm Tip length: 16mm Body diameter: 12mm Tip diameter: 6.8mm Distance from probe tip to dipole centers: 2.7mm
Application	General dosimetry up to 3GHz Compliance tests for mobile phones and Wireless LAN Fast automatic scanning in arbitrary phantoms

Fig. 5.2 Probe Setup on Robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within $\pm 0.25\text{dB}$. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

➤ ET3DV6 sn1788

Sensitivity	X axis : 1.72 μV		Y axis : 1.66 μV	Z axis : 1.70 μV
Diode compression point	X axis : 91 mV		Y axis : 93 mV	Z axis : 94 mV
Conversion factor (Head / Body)	Frequency (MHz)	X axis	Y axis	Z axis
	800~1000	6.54 / 6.37	6.54 / 6.37	6.54 / 6.37
Boundary effect (Head / Body)	Frequency (MHz)	Alpha	Depth	
	800~1000	0.22 / 0.28	3.28 / 2.94	
	1710~1910	0.59 / 0.63	2.15 / 2.39	

➤ ET3DV6 sn1787

Sensitivity	X axis : 1.63 μV		Y axis : 1.67 μV	Z axis : 2.18 μV
Diode compression point	X axis : 90 mV		Y axis : 93 mV	Z axis : 92 mV
Conversion factor (Head / Body)	Frequency (MHz)	X axis	Y axis	Z axis
	800~1000	6.06 / 5.91	6.06 / 5.91	6.06 / 5.91
Boundary effect (Head / Body)	Frequency (MHz)	Alpha	Depth	
	800~1000	0.30 / 0.31	2.80 / 2.98	
	1650~1850	0.53 / 0.60	2.11 / 2.20	
	1850~2050	0.59 / 0.68	1.96 / 1.95	
	2350~2550	0.77 / 0.90	1.57 / 1.51	

NOTE: The probe parameters have been calibrated by the SPEAG.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used. The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

5.4 Measurement Server

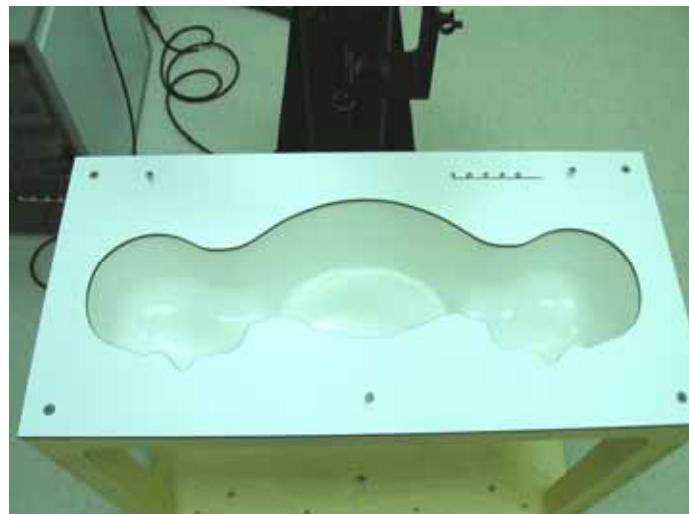
The DASY5 measurement server is based on a PC/104 CPU board with
400 MHz CPU
128 MB chipdisk and
128 MB RAM.

Communication with
the DAE3 electronic box
the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:


- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

*Water-sugar based liquid

*Glycol based liquids

Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of $\pm 0.5\text{mm}$ would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA5. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-less media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY5 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp _i
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as :

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with
 V_i = compensated signal of channel i ($i = x, y, z$)
 U_i = input signal of channel i ($i = x, y, z$)
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated :

$$\text{E-field probes : } E_i = \sqrt{\frac{V_i}{Norm_i ConvF}}$$

$$\text{H-field probes : } H_i = \sqrt{V_i} \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with
 V_i = compensated signal of channel i ($i = x, y, z$)
 $Norm_i$ = sensor sensitivity of channel i ($i = x, y, z$)
 μ V/(V/m)² for E-field Probes
 $ConvF$ = sensitivity enhancement in solution
 a_{ij} = sensor sensitivity factors for H-field probes
 f = carrier frequency [GHz]
 E_i = electric field strength of channel i in V/m
 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$\text{SAR} = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with
 SAR = local specific absorption rate in mW/g
 E_{tot} = total field strength in V/m
= conductivity in [mho/m] or [Siemens/m]
= equivalent tissue density in g/cm³

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770} \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with
 P_{pwe} = equivalent power density of a plane wave in mW/cm²
 E_{tot} = total electric field strength in V/m
 H_{tot} = total magnetic field strength in A/m

5.8 Test Equipment List

Manufacture	Name of Equipment	Type/Model	Serial Number	Calibration	
				Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1787	Aug. 26, 2008	Aug. 25, 2009
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Sep. 26, 2007	Sep. 26, 2008
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 17, 2008	Mar. 17, 2010
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 28, 2008	Mar. 28, 2010
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 16, 2007	Nov. 16, 2008
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 12, 2008	Nov. 11, 2009
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1303	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1383	NCR	NCR
SPEAG	Robot	Staubli TX90XL	F03/5W15A1/A/01	NCR	NCR
SPEAG	Measurement Server	SE UMS 011 AA	1014	NCR	NCR
Agilent	PNA Series Network Analyzer	E8358A	US40260131	Apr. 02, 2008	Apr. 01, 2009
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Dec. 22, 2006	Dec. 22, 2008
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR
R&S	Power Meter	NRVD	101394	Oct. 31, 2007	Oct. 30, 2008
R&S	Power Sensor	NRV-Z1	100130	Oct. 31, 2007	Oct. 30, 2008
R&S	Power Meter	NRVD	101394	Oct. 20, 2008	Oct. 19, 2009
R&S	Power Sensor	NRV-Z1	100130	Oct. 20, 2008	Oct. 19, 2009

Table 5.1 Test Equipment List

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY5, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

The following ingredients for tissue simulating liquid are used:

- **Water:** deionized water (pure H₂O), resistivity 16M - as basis for the liquid
- **Sugar:** refined sugar in crystals, as available in food shops – to reduce relative permittivity
- **Salt:** pure NaCl – to increase conductivity
- **Cellulose:** Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- **Preservative:** Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.

DGMBE: Deithlenglycol-monobutyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 – to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of body tissue simulating liquid for frequency band 850MHZ and 1900 MHz.

Ingredient	MSL-850	MSL-1900
Water	631.68 g	716.56 g
Cellulose	0 g	0 g
Salt	11.72 g	4.0 g
Preventol D-7	1.2 g	0 g
Sugar	600.0 g	0 g
DGMBE	0 g	300.67 g
Total amount	1 liter (1.3 kg)	1 liter (1.0 kg)
Dielectric Parameters at 22°	f=835 MHz $\epsilon_r = 55.2 \pm 5\%$, $\sigma = 0.97 \pm 5\% \text{ S/m}$	f= 1900 MHz $\epsilon_r = 53.3 \pm 5\%$, $\sigma = 1.52 \pm 5\% \text{ S/m}$

Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Table 6.2 shows the measuring results for muscle simulating liquid.

Band	Frequency (MHz)	Permittivity (ϵ_r)	Conductivity (σ)	Measurement Date
GSM850	824.2	56.3	0.976	May 30, 2008
	836.4	56.3	0.988	
	848.8	56.1	0.997	
	824.2	56.3	0.976	Jun. 11, 2008
	836.4	56.3	0.988	
	848.8	56.1	0.997	
	824.2	53.6	0.957	Jan. 08, 2009
GSM1900	1850.2	51.3	1.47	May 29, 2008
	1880.0	51.2	1.50	
	1909.8	51.1	1.53	
	1850.2	52.6	1.47	Jan. 08, 2009
WCDMA Band V	826.4	56.3	0.978	May 30, 2008
	836.4	56.3	0.988	
	846.6	56.1	0.996	
	826.4	56.3	0.978	Jun. 11, 2008
	836.4	56.3	0.988	
	846.6	56.1	0.996	
	826.4	56.3	0.962	Jul. 11, 2008
	836.4	56.3	0.972	
	846.6	56.2	0.980	
	826.4	56.6	0.969	Aug. 06, 2008
	836.4	56.3	0.978	
	846.6	56.1	0.987	
	836.4	53.5	0.970	Jan. 08, 2009
WCDMA Band II	1852.4	51.2	1.47	May 29, 2008
	1880.0	51.2	1.50	
	1907.6	51.1	1.53	
	1852.4	51.0	1.47	Jun. 11, 2008
	1880.0	50.9	1.50	
	1907.6	50.9	1.53	
	1880.0	52.5	1.50	Jan. 08, 2009

Table 6.2 Measuring Results for Simulating Liquid

The measuring data are consistent with $\epsilon_r = 55.2 \pm 5\%$ and $\sigma = 0.97 \pm 5\%$ for body SAR of GSM850 and WCDMA Band V, and $\epsilon_r = 53.3 \pm 5\%$ and $\sigma = 1.52 \pm 5\%$ for body SAR of GSM1900 and WCDMA Band II.

7. Uncertainty Assessment

The component of uncertainty may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainty by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacturer's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	1/k ^(b)	1/ 3	1/ 6	1/ 2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) is the coverage factor

Table 7.1 Multiplying Factors for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY5 uncertainty Budget is showed in Table 7.2.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement Equipment						
Probe Calibration	±5.9 %	Normal	1	1	±5.9 %	∞
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	∞
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	±2.7 %	∞
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	∞
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	∞
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	±1.5 %	∞
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Probe Positioner	±0.4 %	Rectangular	$\sqrt{3}$	1	±0.2 %	∞
Probe Positioning	±2.9 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Max. SAR Eval.	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9	145
Device Holder	±3.6 %	Normal	1	1	±3.6	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9	∞
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6	∞
Liquid Permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5	∞
Combined Standard Uncertainty						
Coverage Factor for 95 %		K=2			±10.9	387
Expanded uncertainty (Coverage factor = 2)					±21.9	

Table 7.2 Uncertainty Budget of DASY5

8. SAR Measurement Evaluation

Each DASY5 system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY5 software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

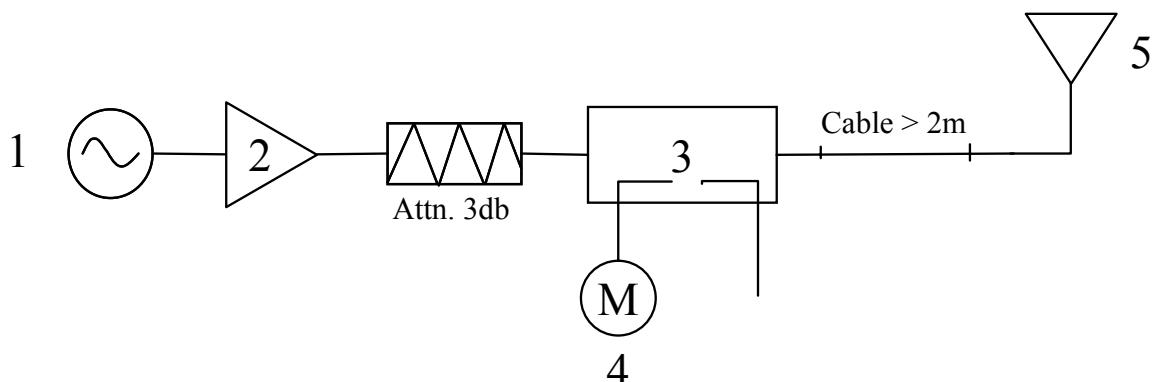


Fig. 8.1 System Setup for System Evaluation

1. Signal Generator
2. Amplifier
3. Directional Coupler
4. Power Meter
5. 835 MHz or 1900 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Frequency (MHz)	SAR	Target (W/kg)	Measurement Data (W/kg)	Variation	Measurement Date
835	SAR (1g)	9.52	10.1	6.1 %	May 30, 2008
	SAR (10g)	6.37	6.6	3.6 %	
	SAR (1g)	9.52	9.35	-1.8 %	Jun. 11, 2008
	SAR (10g)	6.37	6.14	-3.6 %	
	SAR (1g)	9.52	9.38	-1.5 %	Jul. 11, 2008
	SAR (10g)	6.37	6.17	-3.1 %	
	SAR (1g)	9.52	10.2	7.1 %	Aug. 06, 2008
	SAR (10g)	6.37	6.71	5.3 %	
	SAR (1g)	9.52	9.57	0.5 %	Jan. 08, 2009
	SAR (10g)	6.37	6.31	-0.9 %	
1900	SAR (1g)	40.1	38.0	-5.2 %	May 29, 2008
	SAR (10g)	21.3	20.2	-5.2 %	
	SAR (1g)	40.1	42.2	5.2 %	Jun. 11, 2008
	SAR (10g)	21.3	22.5	5.6 %	
	SAR (1g)	40.1	41.5	3.5 %	Jan. 08, 2009
	SAR (10g)	21.3	21.9	2.8 %	

Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in three different positions. They are “Rear Face with Holster 0cm Gap”, “Rear Face without Holster 0cm Gap” and “Bottom Side with Holster 0cm Gap” as illustrated below:

- 1) “Body Worn”
 - i) To position the device parallel to the phantom surface.
 - ii) To adjust the phone parallel to the flat phantom.
 - iii) To adjust the distance between the EUT surface and the flat phantom to 0 cm.

Remark: Please refer to Appendix E for the test setup photos.

10. Measurement Procedures

The measurement procedures are as follows:

- Linking DUT with base station simulator CMU200 in middle channel
- Setting CMU200 to allow DUT to radiate maximum output power
- Measuring output power through RF cable and power meter
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY5 software
- Taking data for the middle channel on each testing position
- Finding out the largest SAR result on these testing positions of each band
- Measuring output power and SAR results for the lowest and highest channels in this worst case testing position

According to the OET Bulletin 65 Supplement C standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Verification of the power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the OET Bulletin 65 Supplement C standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values from the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY5, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Conducted Power

Mode	Band Channel	GSM 850 (dBm)			GSM 1900 (dBm)		
		128	189	251	512	661	810
GSM		31.88	31.86	31.75	28.55	28.64	28.76
GPRS 10		31.71	31.78	31.68	28.37	28.47	28.60
GPRS 12		25.82	25.81	25.73	28.27	28.37	28.48
EGPRS 12		26.83	26.81	26.70	25.47	25.58	25.72

WCDMA SAR Test mode - Conducted Power							
Mode	Setup	Cell band (850)			PCS band (1900)		
		CH4132	CH4182	CH4233	CH9262	CH9400	CH9538
		826.4 (MHz)	836.4 (MHz)	846.6 (MHz)	1852.4 (MHz)	1880.0 (MHz)	1907.6 (MHz)
R99- WCDMA	RMC 12.2Kbps	22.23	22.82	22.22	22.74	23.22	23.16
R5-HSDPA Only	HSDPA - subtest 1	22.00	22.58	22.12	22.89	23.17	23.03
	HSDPA - subtest 2	21.60	22.08	21.69	22.29	22.72	22.48
	HSDPA - subtest 3	21.35	21.97	21.63	22.37	22.80	22.60
	HSDPA - subtest 4	20.92	21.55	21.10	21.84	22.29	22.14
R6- HSPA (HSUPA&HSDPA)	HSUPA - subtest 1	21.80	21.93	22.21	22.23	22.40	22.23
	HSUPA - subtest 2	19.62	20.17	19.84	20.48	20.70	20.46
	HSUPA - subtest 3	20.61	21.19	20.88	21.34	21.79	21.60
	HSUPA - subtest 4	20.06	20.67	20.33	20.88	21.23	20.97
	HSUPA - subtest 5	21.88	21.92	22.25	22.05	22.26	22.13

11.2 Test Records for Body SAR

Position	Band	Mode	Ch.	Freq. (MHz)	Modulation Type	Antenna	EUT	Measured 1g SAR	Power Drift	Limit (W/kg)	Result	App. Plot
Bottom Side with 0cm Gap	GSM850	GPRS12	189	836.4	GMSK	Out	E100N	0.035	-0.194	1.6	Pass	1
Bottom Side with 0cm Gap	GSM850	GPRS12	189	836.4	GMSK	In	E100N	0.000038	-0.14	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM850	GPRS12	189	836.4	GMSK	Out	E100N	0.888	-0.164	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM850	GPRS12	189	836.4	GMSK	In	E100N	0.000225	-0.147	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM850	GPRS12	189	836.4	GMSK	Out	E100N	1.02	0.135	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM850	EDGE12	189	836.4	GMSK	Out	E100N	1.05	-0.04	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM850	EDGE12	128	824.2	GMSK	Out	E100N	1.08	0.056	1.6	Pass	2
Rear Face with Holster 0cm Gap	GSM850	EDGE12	251	848.8	GMSK	Out	E100N	1.05	0.143	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM850	GPRS12	128	824.2	GMSK	Out	E100N	0.899	-0.045	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM850	GPRS12	251	848.8	GMSK	Out	E100N	0.746	-0.012	1.6	Pass	-
Rear Face without Holster 0cm Gap	GSM850	EDGE12	128	824.2	GMSK	Out	E100N	1	-0.128	1.6	Pass	14
Rear Face with Holster 0cm Gap	GSM850	EDGE12	128	824.2	GMSK	Out	E100	1	-0.035	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM850	EDGE12	189	836.4	GMSK	Out	E100	1.05	0.065	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM850	EDGE12	251	848.8	GMSK	Out	E100	1.06	0.12	1.6	Pass	3
Rear Face with Holster 0cm Gap	WCDMA850	12.2K	4132	826.4	QPSK	Out	E100N	1.14	-0.112	1.6	Pass	-
Rear Face with Holster 0cm Gap	WCDMA850	12.2K	4182	836.4	QPSK	Out	E100N	1.26	0.113	1.6	Pass	4
Rear Face with Holster 0cm Gap	WCDMA850	12.2K	4233	846.6	QPSK	Out	E100N	1.19	0.156	1.6	Pass	-
Rear Face with Holster 0cm Gap	WCDMA850	HSUPA (Sub-1)	4182	836.4	QPSK	Out	E100N	1.13	0.0063	1.6	Pass	-
Rear Face with Holster 0cm Gap	WCDMA850	HSUPA (Sub-1)	4132	826.4	QPSK	Out	E100N	1.01	0.043	1.6	Pass	-
Rear Face with Holster 0cm Gap	WCDMA850	HSUPA (Sub-1)	4233	846.6	QPSK	Out	E100N	1.04	0.026	1.6	Pass	-
Rear Face with Holster 0cm Gap	WCDMA850	HSUPA (Sub-5)	4182	836.4	QPSK	Out	E100N	1.22	0.046	1.6	Pass	12
Rear Face with Holster 0cm Gap	WCDMA850	HSUPA (Sub-5)	4132	826.4	QPSK	Out	E100N	1.11	0.145	1.6	Pass	11
Rear Face with Holster 0cm Gap	WCDMA850	HSUPA (Sub-5)	4233	846.6	QPSK	Out	E100N	1.03	0.121	1.6	Pass	13
Rear Face without Holster 0cm Gap	WCDMA850	12.2K	4182	836.4	QPSK	Out	E100N	1.22	0.159	1.6	Pass	15
Rear Face with Holster 0cm Gap	WCDMA850	12.2K	4182	836.4	QPSK	Out	E100	1.21	0.016	1.6	Pass	-
Rear Face with Holster 0cm Gap	WCDMA850	12.2K	4132	826.4	QPSK	Out	E100	1.24	-0.071	1.6	Pass	5
Rear Face with Holster 0cm Gap	WCDMA850	12.2K	4233	846.6	QPSK	Out	E100	1.22	0.034	1.6	Pass	-

Position	Band	Mode	Ch.	Freq. (MHz)	Modulation Type	Antenna	EUT	Measured 1g SAR	Power Drift	Limit (W/kg)	Result	App. Plot
Bottom Side with 0cm Gap	GSM1900	GPRS12	661	1880	GMSK	Out	E100N	0.048	-0.106	1.6	Pass	-
Bottom Side with 0cm Gap	GSM1900	GPRS12	661	1880	GMSK	In	E100N	0.049	0.12	1.6	Pass	6
Rear Face with Holster 0cm Gap	GSM1900	GPRS12	661	1880	GMSK	Out	E100N	0.684	-0.118	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM1900	GPRS12	661	1880	GMSK	In	E100N	0.00669	0.132	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM1900	EDGE12	661	1880	GMSK	Out	E100N	0.405	-0.135	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM1900	GPRS12	512	1850	GMSK	Out	E100N	1.09	0.113	1.6	Pass	7
Rear Face with Holster 0cm Gap	GSM1900	GPRS12	810	1910	GMSK	Out	E100N	0.568	-0.068	1.6	Pass	-
Rear Face without Holster 0cm Gap	GSM1900	GPRS12	512	1850	GMSK	Out	E100N	1.15	0.07	1.6	Pass	16
Rear Face with Holster 0cm Gap	GSM1900	GPRS12	512	1850	GMSK	Out	E100	0.868	0.143	1.6	Pass	8
Rear Face with Holster 0cm Gap	GSM1900	GPRS12	661	1880	GMSK	Out	E100	0.502	-0.192	1.6	Pass	-
Rear Face with Holster 0cm Gap	GSM1900	GPRS12	810	1910	GMSK	Out	E100	0.395	0.111	1.6	Pass	-
Rear Face with Holster 0cm Gap	WCDMA1900	12.2K	9400	1880	QPSK	Out	E100N	0.406	0.127	1.6	Pass	9
Rear Face with Holster 0cm Gap	WCDMA1900	12.2K	9262	1852	QPSK	Out	E100N	0.367	0.136	1.6	Pass	-
Rear Face with Holster 0cm Gap	WCDMA1900	12.2K	9538	1908	QPSK	Out	E100N	0.333	0.105	1.6	Pass	-
Rear Face with Holster 0cm Gap	WCDMA1900	HSUPA (Sub-1)	9400	1880	QPSK	Out	E100N	0.38	0.148	1.6	Pass	-
Rear Face without Holster 0cm Gap	WCDMA1900	12.2K	9400	1880	QPSK	Out	E100N	0.449	0.189	1.6	Pass	17
Rear Face with Holster 0cm Gap	WCDMA1900	12.2K	9400	1880	QPSK	Out	E100	0.425	0.124	1.6	Pass	10

11.3 Volume Scan

Position	Mode	Channel	Power Drift (dB)	Measured 1g SAR (W/kg)	Multi Band 1g SAR (W/kg)	Limit (W/kg)	Result
Rear Face with Holster 0cm Gap	WCDMA Band V (RMC 12.2K)	4182	0.00484	1.31	1.32	1.6	Pass
	802.11b	6	0.12	0.04			
Rear Face with Holster 0cm Gap	WCDMA Band V (RMC 12.2K)	4182	0.00484	1.31	1.31	1.6	Pass
	Bluetooth	39	0.001	0.00087			

Remark:

1. The worst configuration on each position is used for the volume scan.
2. Test Engineer : Gordon Lin, Jason Wang, Robert Liu and A-Rod Chen

12. References

- [1] FCC 47 CFR Part 2 “Frequency Allocations and Radio Treaty Matters; General Rules and Regulations”
- [2] IEEE Std. P1528-2003, “Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques”, April 21, 2003
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), “Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions”, June 2001
- [4] IEEE Std. C95.3-2002, “IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave”, 2002
- [5] IEEE Std. C95.1-1999, “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz”, 1999
- [6] Robert J. Renka, “Multivariate Interpolation Of Large Sets Of Scattered Data”, University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DASY5 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/30

System Check_Body_835MHz

DUT: Dipole 835 MHz

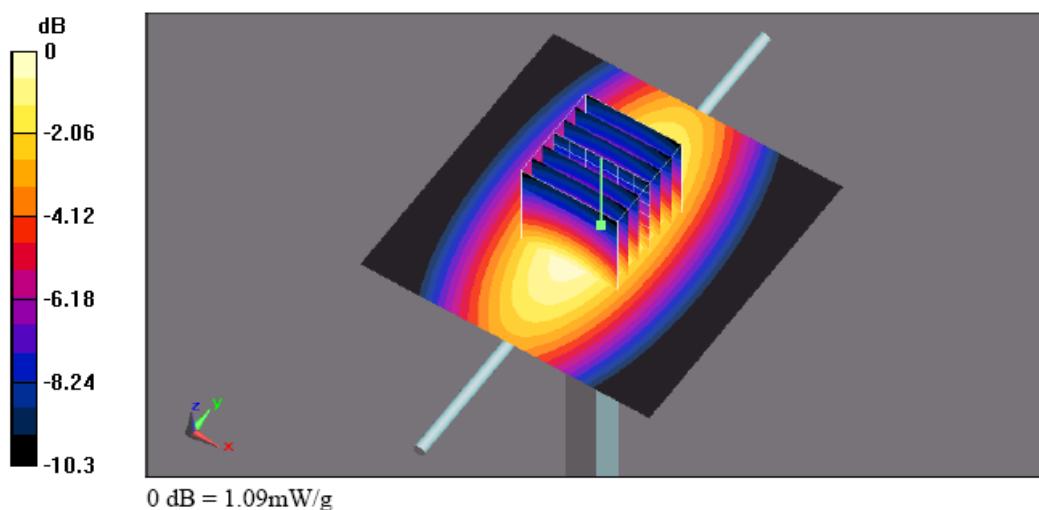
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 835$ MHz; $\sigma = 0.987$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 1.09 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 34.4 V/m; Power Drift = -0.00952 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.660 mW/g

Maximum value of SAR (measured) = 1.09 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/6/11

System Check_Body_835MHz**DUT: Dipole 835 MHz**

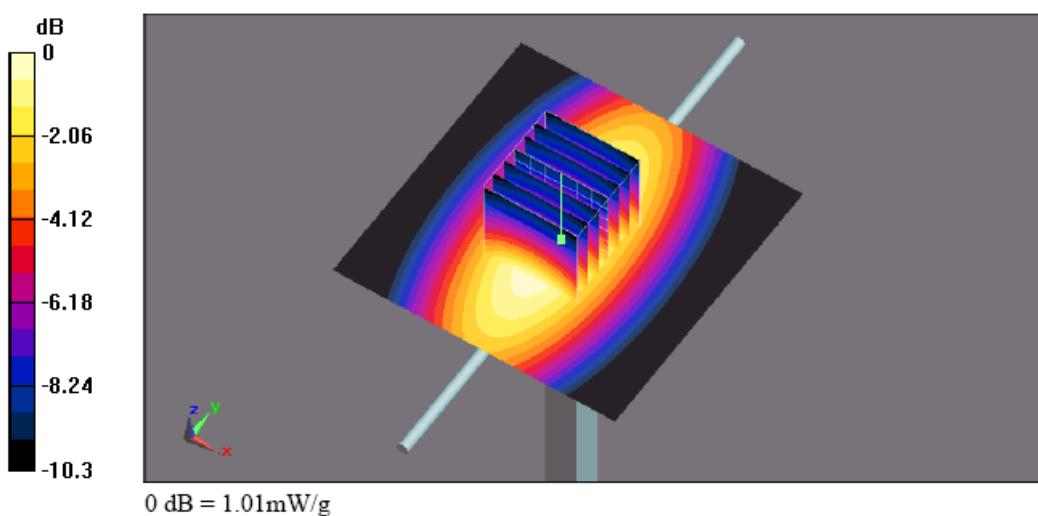
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 835$ MHz; $\sigma = 0.987$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.1 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 1.01 mW/g**Pin=100mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.4 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.935 mW/g; SAR(10 g) = 0.614 mW/g

Maximum value of SAR (measured) = 1.01 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/7/11

System Check_Body_835MHz**DUT: Dipole 835 MHz**

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 835$ MHz; $\sigma = 0.971$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

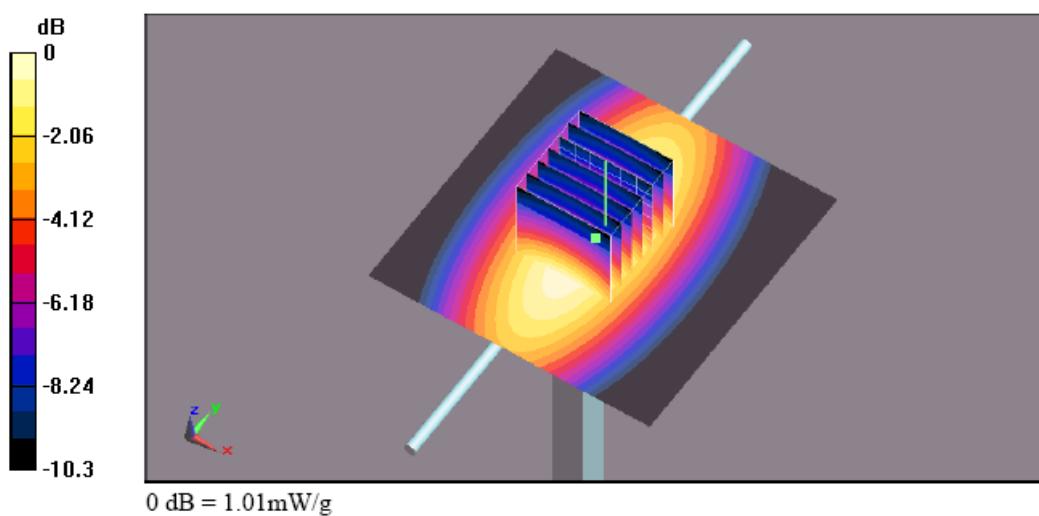
Ambient Temperature : 22.6 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.02 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.4 V/m; Power Drift = -0.00761 dB

Peak SAR (extrapolated) = 1.34 W/kg

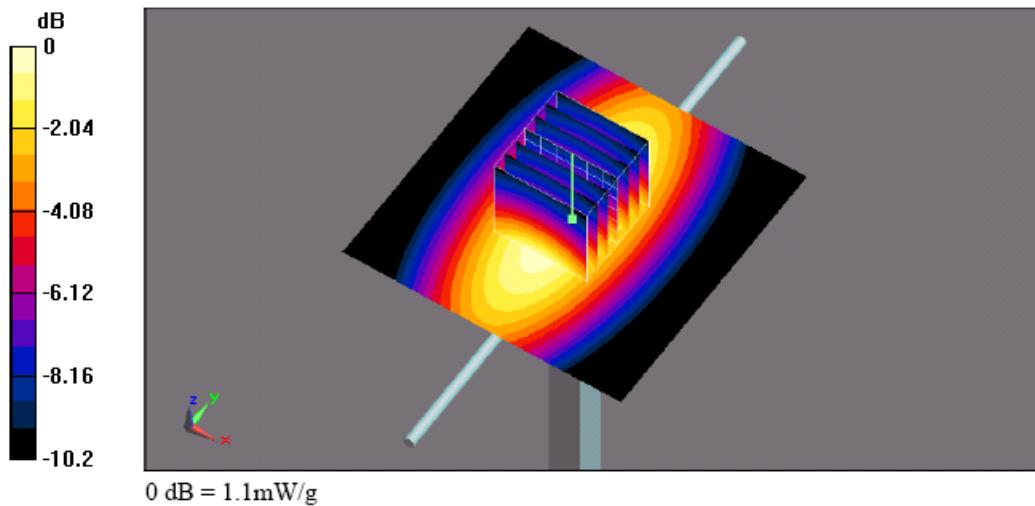
SAR(1 g) = 0.938 mW/g; SAR(10 g) = 0.617 mW/g

Maximum value of SAR (measured) = 1.01 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/8/6

System Check_Body_835MHz**DUT: Dipole 835 MHz**


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 835$ MHz; $\sigma = 0.977$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 1.1 mW/g**Pin=100mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 34.9 V/m; Power Drift = -0.019 dB
Peak SAR (extrapolated) = 1.47 W/kg
SAR(1 g) = 1.02 mW/g; SAR(10 g) = 0.671 mW/g
Maximum value of SAR (measured) = 1.1 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2009/1/8

System Check_Body_835MHz_090108**DUT: Dipole 835 MHz**

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 835$ MHz; $\sigma = 0.968$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³

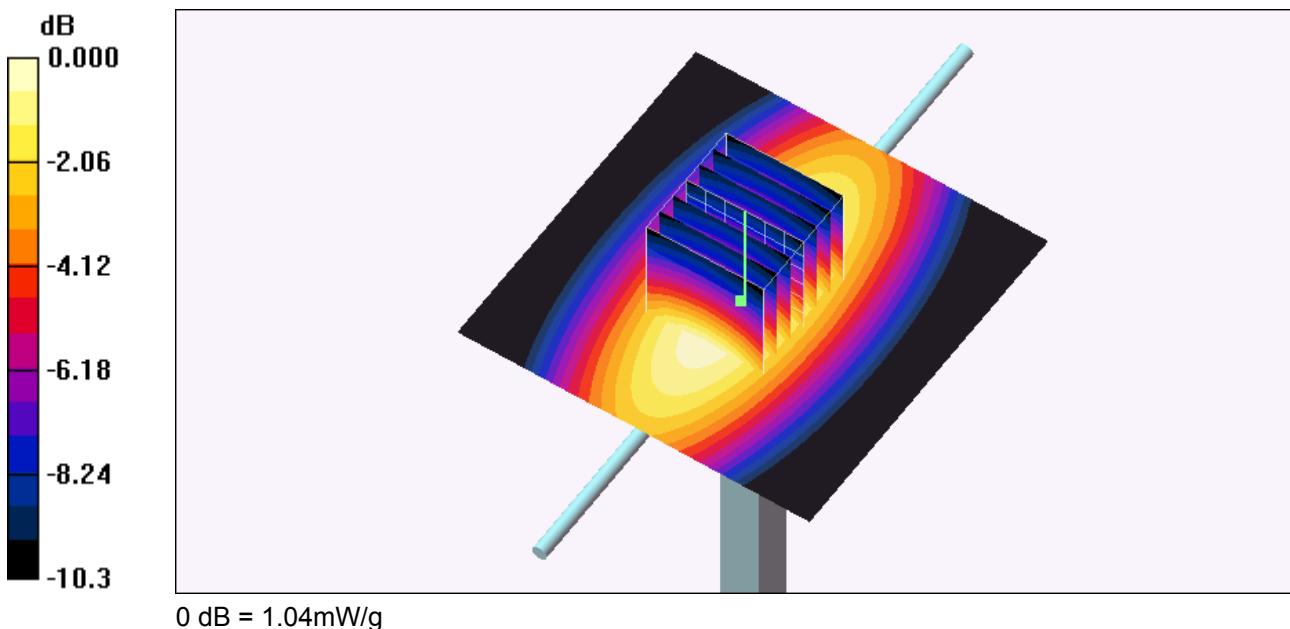
Ambient Temperature : 23.0 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.91, 5.91, 5.91); Calibrated: 2008/8/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2008/11/12
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.05 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.1 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.957 mW/g; SAR(10 g) = 0.631 mW/g

Maximum value of SAR (measured) = 1.04 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/29

System Check_Body_1900MHz**DUT: Dipole 1900 MHz**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³

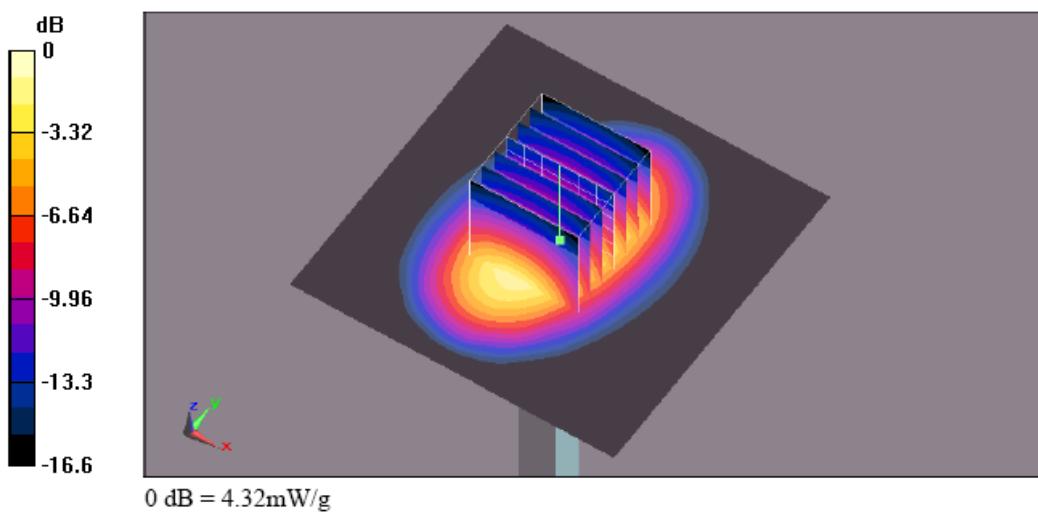
Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 4.36 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.7 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 6.54 W/kg

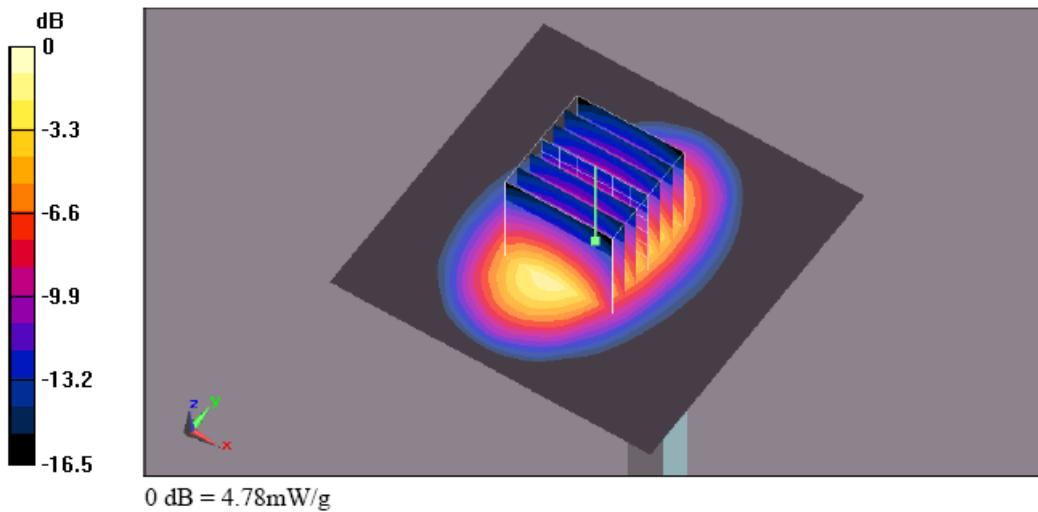
SAR(1 g) = 3.8 mW/g; SAR(10 g) = 2.02 mW/g

Maximum value of SAR (measured) = 4.32 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/6/11

System Check_Body_1900MHz**DUT: Dipole 1900 MHz**


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.7 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (interpolated) = 4.86 mW/g**Pin=100mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 59.6 V/m; Power Drift = 0.00448 dB
Peak SAR (extrapolated) = 7.21 W/kg
SAR(1 g) = 4.22 mW/g; SAR(10 g) = 2.25 mW/g
Maximum value of SAR (measured) = 4.78 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2009/1/8

System Check_Body_1900MHz_090108**DUT: Dipole 1900 MHz**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.3$; $\rho = 1000$ kg/m³

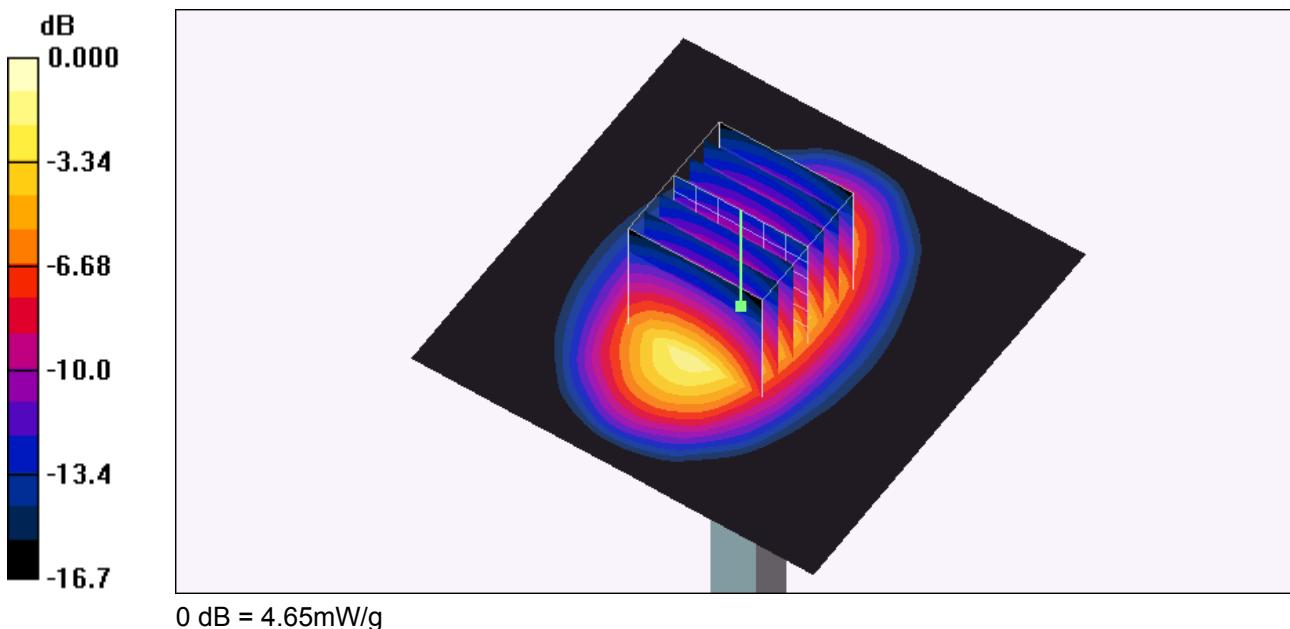
Ambient Temperature : 22.9 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.49, 4.49, 4.49); Calibrated: 2008/8/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2008/11/12
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 4.71 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.6 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 7.48 W/kg

SAR(1 g) = 4.15 mW/g; SAR(10 g) = 2.19 mW/g

Maximum value of SAR (measured) = 4.65 mW/g

Appendix B - SAR Measurement Data

<Plot 1>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/30

Body_GSM850 Ch189_Bottom Side with Holster 0cm Gap_GPRS12_Antenna Out_E100N

DUT: 841815

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

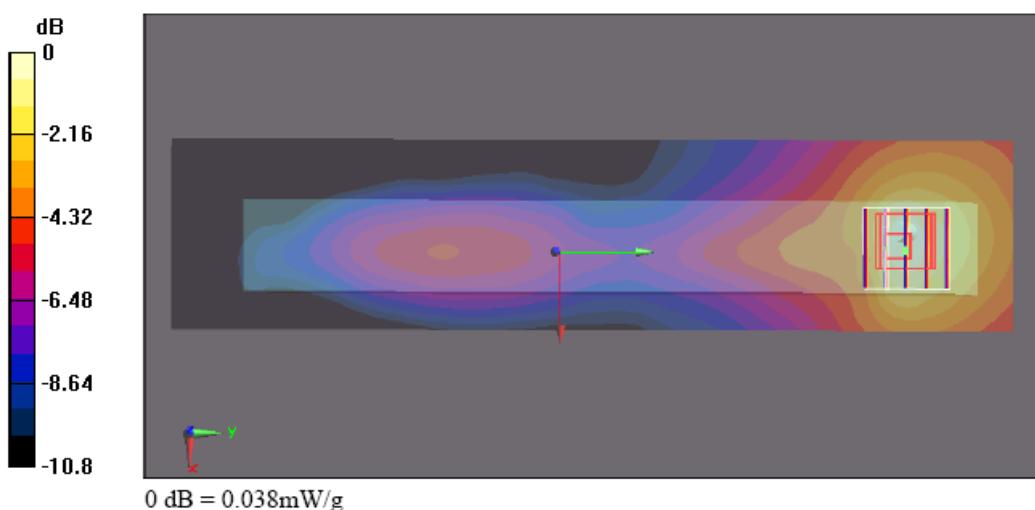
Ambient Temperature : 22.5 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (51x221x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.037 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.94 V/m; Power Drift = -0.194 dB

Peak SAR (extrapolated) = 0.061 W/kg

SAR(1 g) = 0.035 mW/g; SAR(10 g) = 0.022 mW/g

Maximum value of SAR (measured) = 0.038 mW/g

<Plot 2>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/30

Body_GSM850 Ch128_Rear Face with Holster 0cm Gap_EDGE12_Antenna Out_E100N

DUT: 841815

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:2

Medium: MSL_850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.976$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.5 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch128/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.01 mW/g

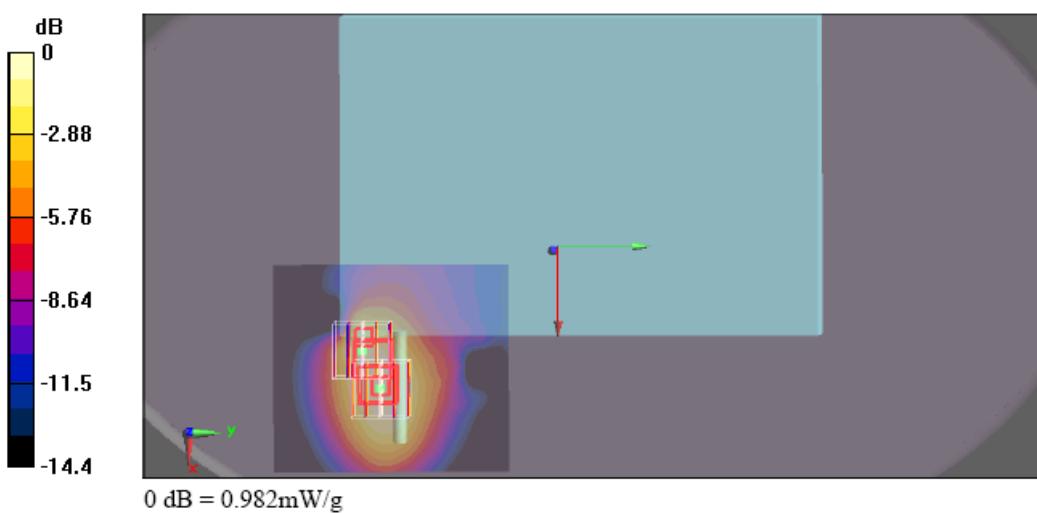
Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.55 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 2.59 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.560 mW/g

Maximum value of SAR (measured) = 1.55 mW/g


Ch128/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.55 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.903 mW/g; SAR(10 g) = 0.628 mW/g

Maximum value of SAR (measured) = 0.982 mW/g

<Plot 3>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/30

Body_GSM850 Ch251_Rear Face with Holster 0cm Gap_EDGE12_Antenna Out_E100**DUT: 841815**

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: MSL_850 Medium parameters used: $f = 849$ MHz; $\sigma = 0.997$ mho/m; $\epsilon_r = 56.1$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.3 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

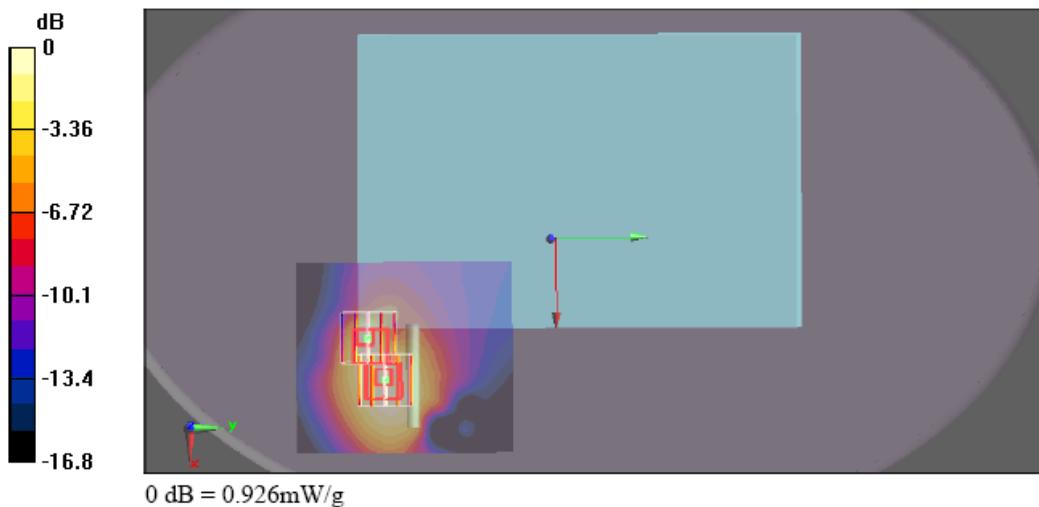
Ch251/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.48 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 5.49 V/m; Power Drift = 0.120 dB

Peak SAR (extrapolated) = 3 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.538 mW/g


Maximum value of SAR (measured) = 1.21 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 5.49 V/m; Power Drift = 0.120 dB

Peak SAR (extrapolated) = 2.16 W/kg

SAR(1 g) = 0.887 mW/g; SAR(10 g) = 0.591 mW/g

Maximum value of SAR (measured) = 0.926 mW/g

<Plot 4>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/31

Body_WCDMA850 Ch4182_Rear Face with Holster 0cm Gap_RMC12.2K_Antenna Out_E100N**DUT: 841815**

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.28 mW/g

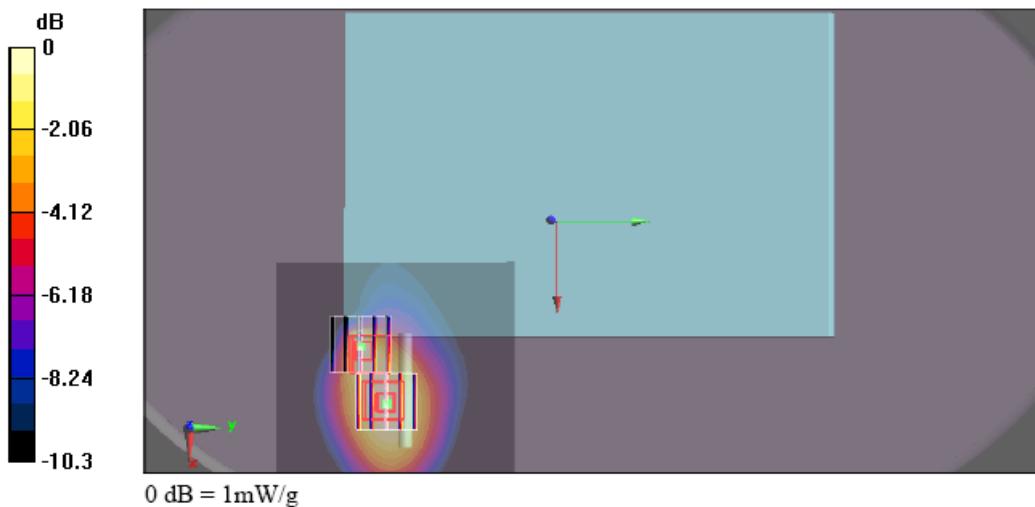
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.48 V/m; Power Drift = 0.113 dB

Peak SAR (extrapolated) = 3.99 W/kg

SAR(1 g) = 1.26 mW/g; SAR(10 g) = 0.570 mW/g

Maximum value of SAR (measured) = 1.76 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.48 V/m; Power Drift = 0.113 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.933 mW/g; SAR(10 g) = 0.641 mW/g

Maximum value of SAR (measured) = 1 mW/g

<Plot 5>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/31

Body_WCDMA850 Ch4132_Rear Face with Holster 0cm Gap_RMC12.2K_Antenna Out_E100**DUT: 841815**

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 826.4$ MHz; $\sigma = 0.978$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

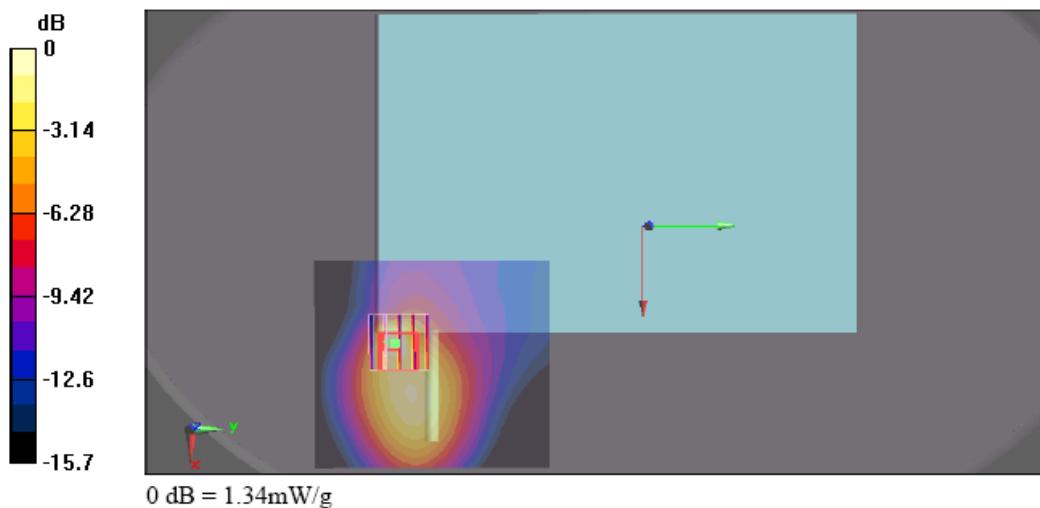
Ambient Temperature : 22.5 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4132/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.76 mW/g


Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.59 V/m; Power Drift = -0.071 dB

Peak SAR (extrapolated) = 4.24 W/kg

SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.604 mW/g

Maximum value of SAR (measured) = 1.34 mW/g

<Plot 6>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/29

Body_GSM1900 Ch661_Bottom Side with Holster 0cm Gap_GPRS12_Antenna In**DUT: 841815**

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: MSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³

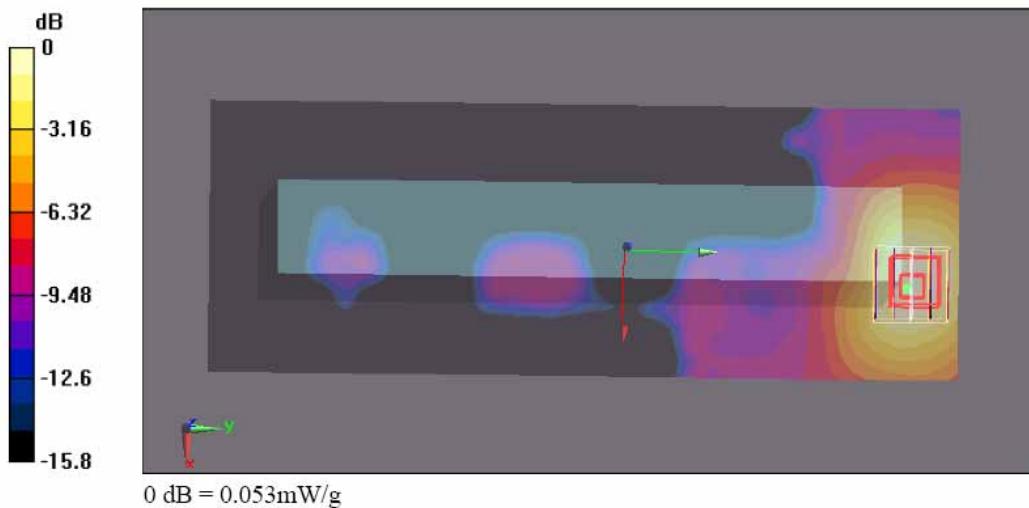
Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (81x221x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.052 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.994 V/m; Power Drift = 0.120 dB

Peak SAR (extrapolated) = 0.077 W/kg

SAR(1 g) = 0.049 mW/g; SAR(10 g) = 0.030 mW/g

Maximum value of SAR (measured) = 0.053 mW/g

<Plot 7>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/29

Body_GSM1900 Ch512_Rear Face with Holster 0cm Gap_GPRS12_Antenna Out

DUT: 841815

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:2

Medium: MSL_1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³

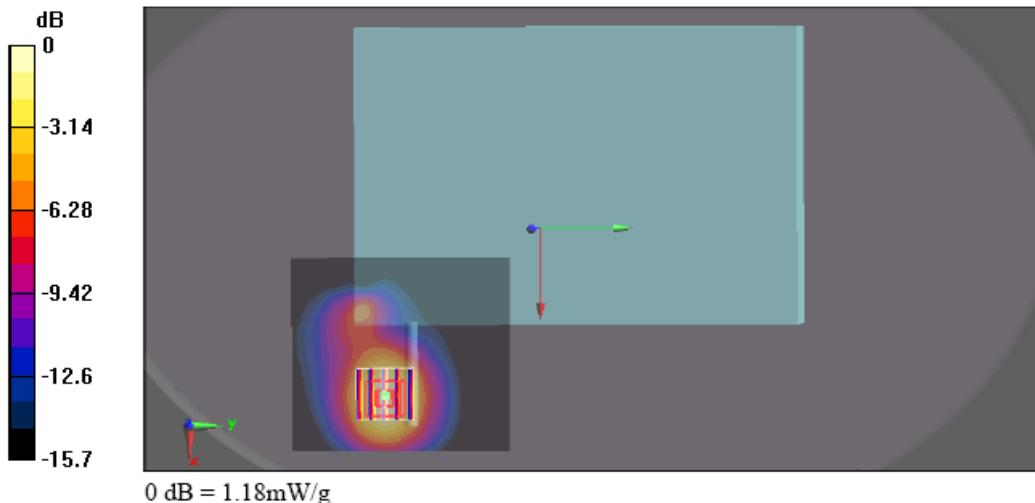
Ambient Temperature : 22.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch512/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.23 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.18 V/m; Power Drift = 0.113 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.648 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

<Plot 8>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/29

Body_GSM1900 Ch512_Rear Face with Holster 0cm Gap_GPRS12_Antenna Out_E100**DUT: 841815**

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:2

Medium: MSL_1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³

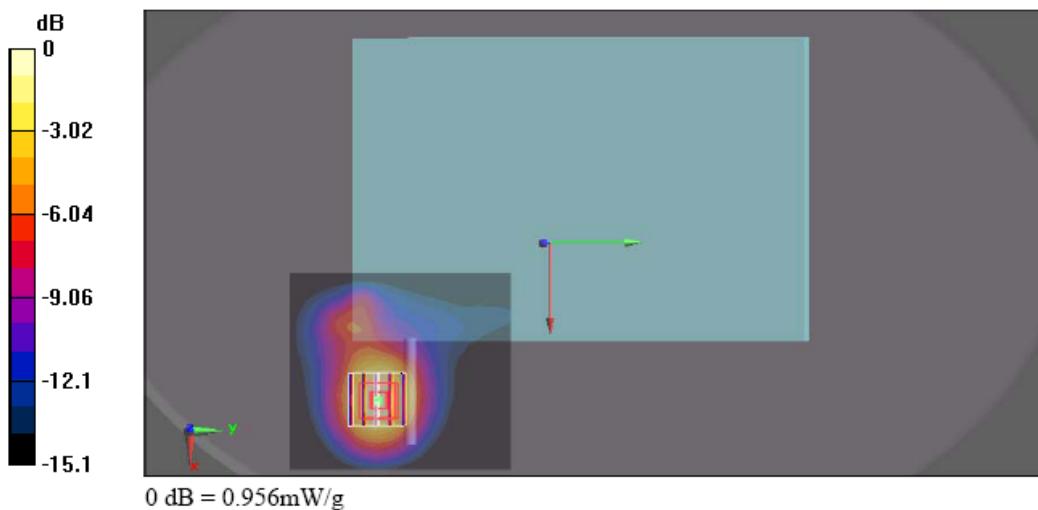
Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch512/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.994 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.22 V/m; Power Drift = 0.143 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.868 mW/g; SAR(10 g) = 0.513 mW/g

Maximum value of SAR (measured) = 0.956 mW/g

<Plot 9>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/30

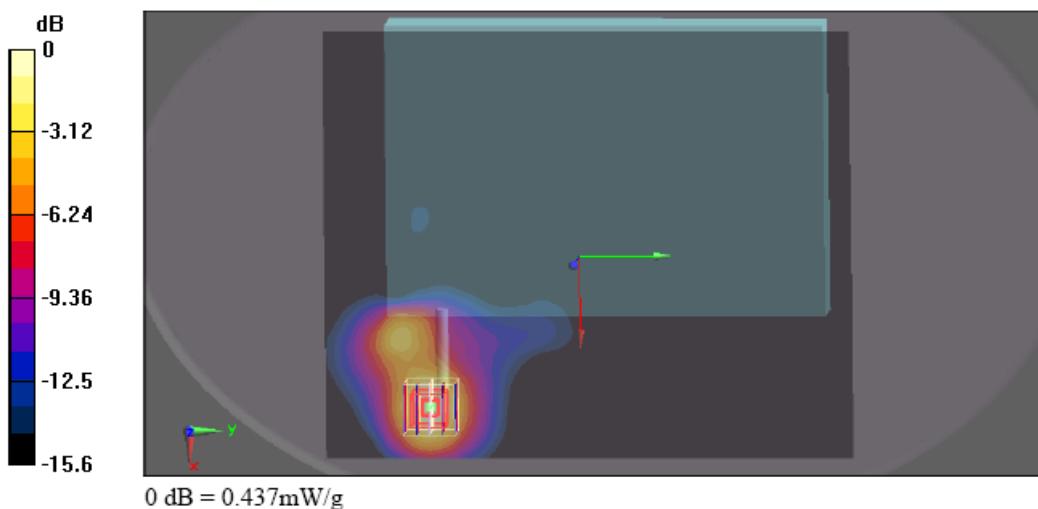
Body_WCDMA1900 Ch9400_Rear Face with Holster 0cm Gap_RMC12.2K_Antenna Out_E100N**DUT: 841815**

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:


- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch9400/Area Scan (181x221x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.450 mW/g**Ch9400/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 0.865 V/m; Power Drift = 0.127 dB

Peak SAR (extrapolated) = 0.652 W/kg

SAR(1 g) = 0.406 mW/g; SAR(10 g) = 0.237 mW/g

Maximum value of SAR (measured) = 0.437 mW/g

<Plot 10>

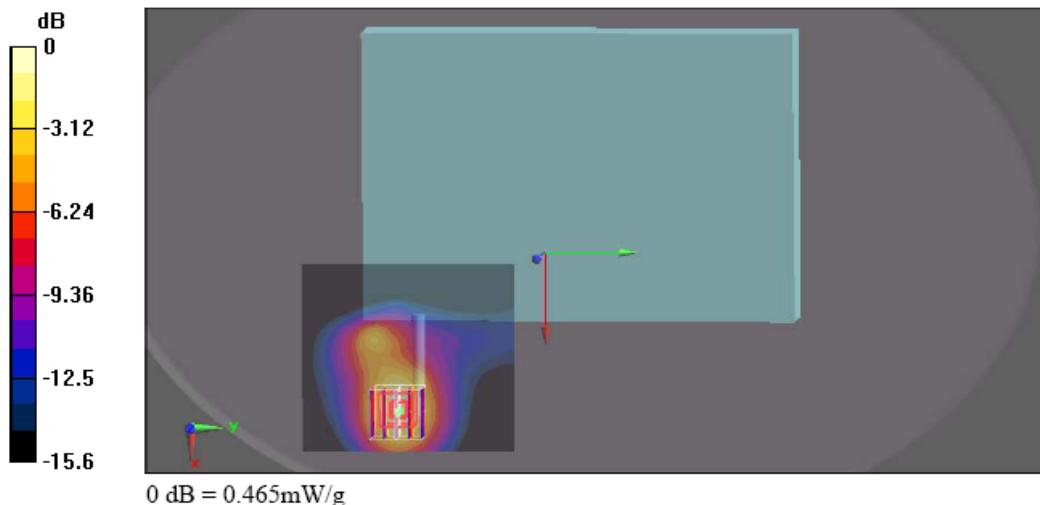
Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/30

Body_WCDMA1900 Ch9400_Rear Face with Holster 0cm Gap_RMC12.2K_Antenna Out_E100**DUT: 841815**

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³


Ambient Temperature : 22.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch9400/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.469 mW/g**Ch9400/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 1.35 V/m; Power Drift = 0.124 dB

Peak SAR (extrapolated) = 0.676 W/kg

SAR(1 g) = 0.425 mW/g; SAR(10 g) = 0.249 mW/g
Maximum value of SAR (measured) = 0.465 mW/g

<Plot 11>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/8/6

Body_WCDMA850 Ch4132_Rear Face with Holster 0cm Gap_RMC12.2K+HSUPA_Sub-5_Antenna Out_E100N**DUT: 841815**

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used : $f = 826.4$ MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4132/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.15 mW/g

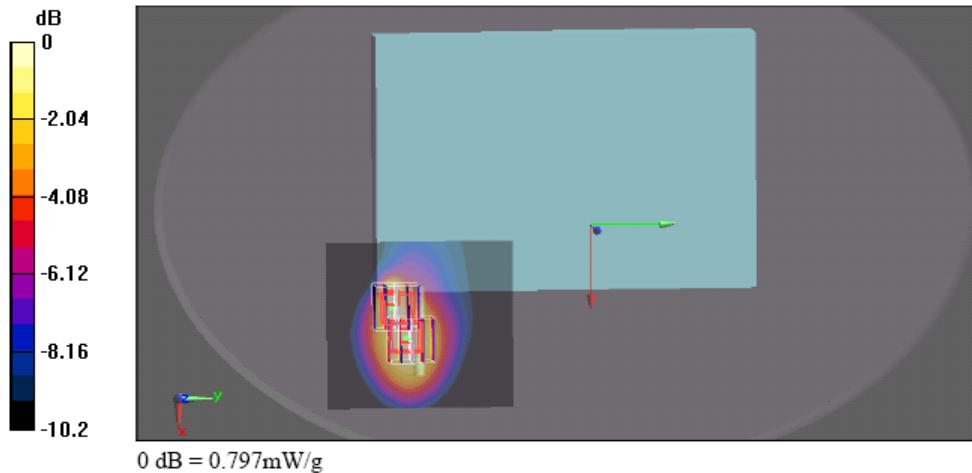
Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.53 V/m; Power Drift = 0.145 dB

Peak SAR (extrapolated) = 4 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.504 mW/g

Maximum value of SAR (measured) = 1.38 mW/g


Ch4132/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.53 V/m; Power Drift = 0.145 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.745 mW/g; SAR(10 g) = 0.510 mW/g

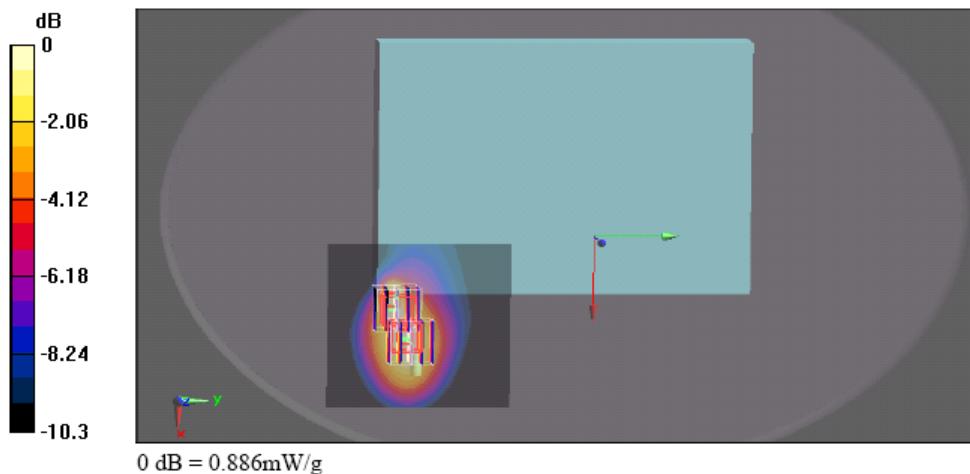
Maximum value of SAR (measured) = 0.797 mW/g

<Plot 12>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/8/6

Body_WCDMA850 Ch4182_Rear Face with Holster 0cm Gap_RMC12.2K+HSUPA_Sub-5_Antenna Out_E100N**DUT: 841815**


Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used : $f = 836.4$ MHz; $\sigma = 0.978$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 1.26 mW/g**Ch4182/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 5.64 V/m; Power Drift = 0.046 dB
Peak SAR (extrapolated) = 4.41 W/kg
SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.555 mW/g
Maximum value of SAR (measured) = 1.5 mW/g**Ch4182/Zoom Scan (5x5x7)/Cube 1:** Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 5.64 V/m; Power Drift = 0.046 dB
Peak SAR (extrapolated) = 1.14 W/kg
SAR(1 g) = 0.831 mW/g; SAR(10 g) = 0.570 mW/g
Maximum value of SAR (measured) = 0.886 mW/g

<Plot 13>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/8/6

Body_WCDMA850 Ch4233_Rear Face with Holster 0cm Gap_RMC12.2K+HSUPA_Sub-5_Antenna Out_E100N

DUT: 841815

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 847$ MHz; $\sigma = 0.987$ mho/m; $\epsilon_r = 56.1$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.5 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4233/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.12 mW/g

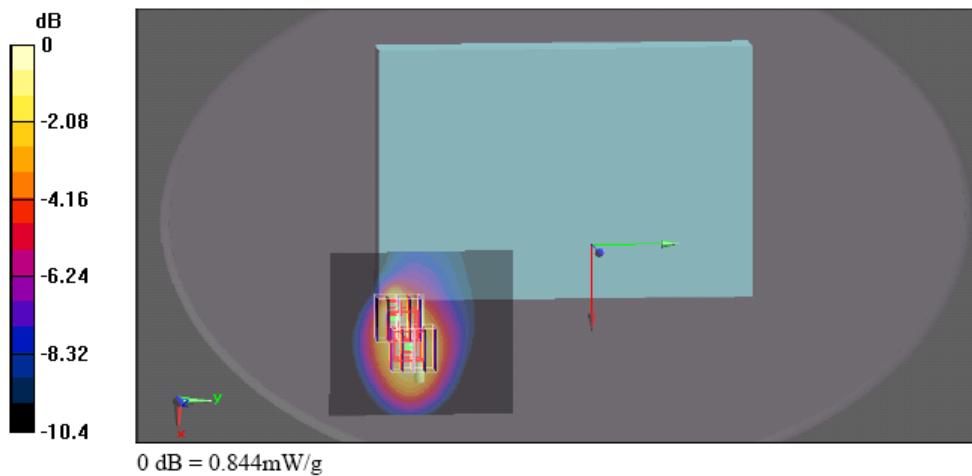
Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.47 V/m; Power Drift = 0.121 dB

Peak SAR (extrapolated) = 3.16 W/kg

SAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.511 mW/g

Maximum value of SAR (measured) = 1.3 mW/g


Ch4233/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.47 V/m; Power Drift = 0.121 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.786 mW/g; SAR(10 g) = 0.534 mW/g

Maximum value of SAR (measured) = 0.844 mW/g

<Plot 14>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2009/1/8

Body_GSM850 Ch128_Rear Face without Holster 0cm Gap_EDGE12_Antenna Out_E100N**DUT: 841815**

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:2

Medium: MSL_850 Medium parameters used : $f = 824.2$ MHz; $\sigma = 0.957$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

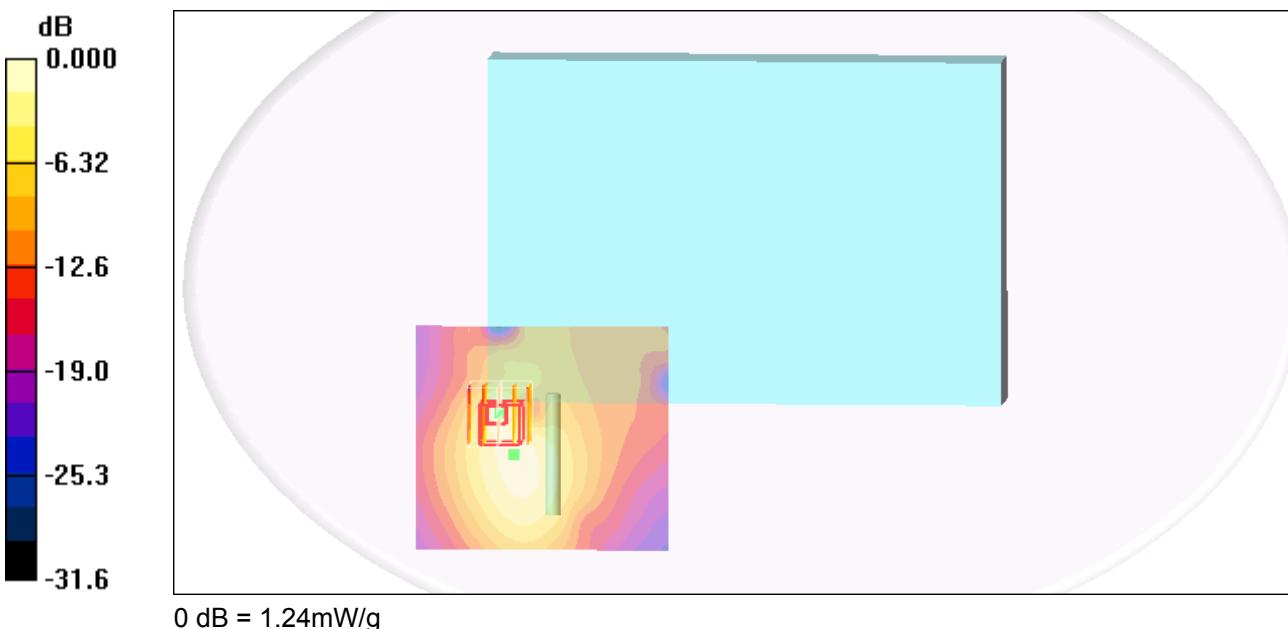
Ambient Temperature : 23.0 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.91, 5.91, 5.91); Calibrated: 2008/8/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2008/11/12
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ch128/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.43 mW/g


Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.82 V/m; Power Drift = -0.128 dB

Peak SAR (extrapolated) = 2.03 W/kg

SAR(1 g) = 1 mW/g; SAR(10 g) = 0.523 mW/g

Maximum value of SAR (measured) = 1.24 mW/g

<Plot 15>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2009/1/8

Body_WCDMA850 Ch4182_Rear Face without Holster 0cm Gap_RMC12.2K_Antenna Out_E100N**DUT: 841815**

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used : $f = 836.4$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³

Ambient Temperature : 23.0 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(5.91, 5.91, 5.91); Calibrated: 2008/8/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2008/11/12
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ch4182/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.64 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.64 V/m; Power Drift = 0.159 dB

Peak SAR (extrapolated) = 3.98 W/kg

SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.606 mW/g

Maximum value of SAR (measured) = 1.40 mW/g

0 dB = 1.40mW/g

<Plot 16>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2009/1/8

Body_GSM1900 Ch512_Rear Face without Holster 0cm Gap_GPRS12_Antenna Out_E100N**DUT: 841815**

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:2

Medium: MSL_1900 Medium parameters used : $f = 1850.2$ MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

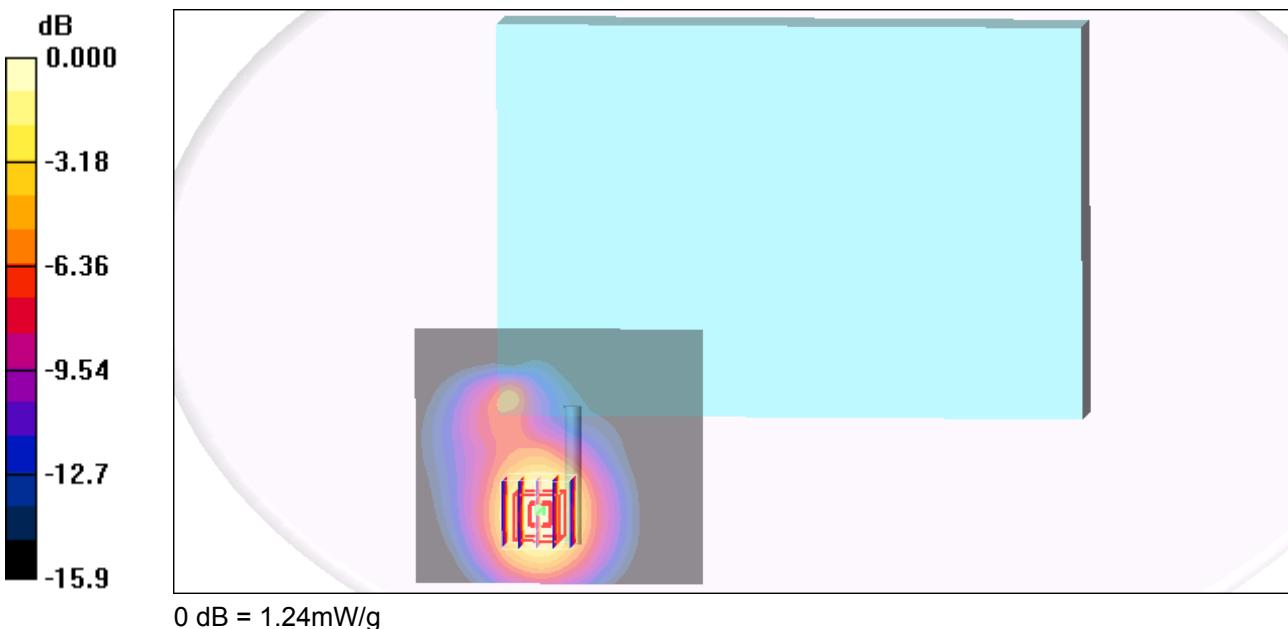
Ambient Temperature : 22.9 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.49, 4.49, 4.49); Calibrated: 2008/8/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2008/11/12
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ch512/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.30 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.20 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.675 mW/g

Maximum value of SAR (measured) = 1.24 mW/g

<Plot 17>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2009/1/8

Body_WCDMA1900_Ch9400_Rear Face without Holster 0cm Gap_RMC12.2K_Antenna Out_E100N**DUT: 841815**

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

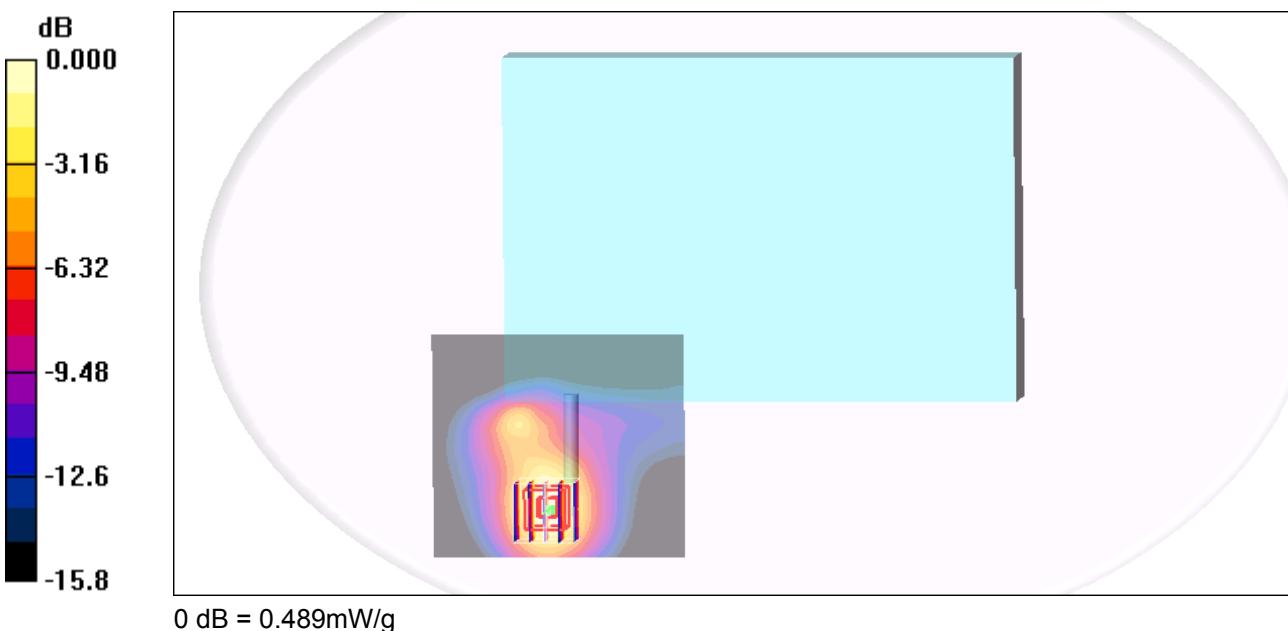
Ambient Temperature : 22.9 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 - SN1787; ConvF(4.49, 4.49, 4.49); Calibrated: 2008/8/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2008/11/12
- Phantom: ELI 4.0_Front; Type: QDOVA001BB; Serial: 1026
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ch9400/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.494 mW/g


Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.38 V/m; Power Drift = 0.189 dB

Peak SAR (extrapolated) = 0.767 W/kg

SAR(1 g) = 0.449 mW/g; SAR(10 g) = 0.260 mW/g

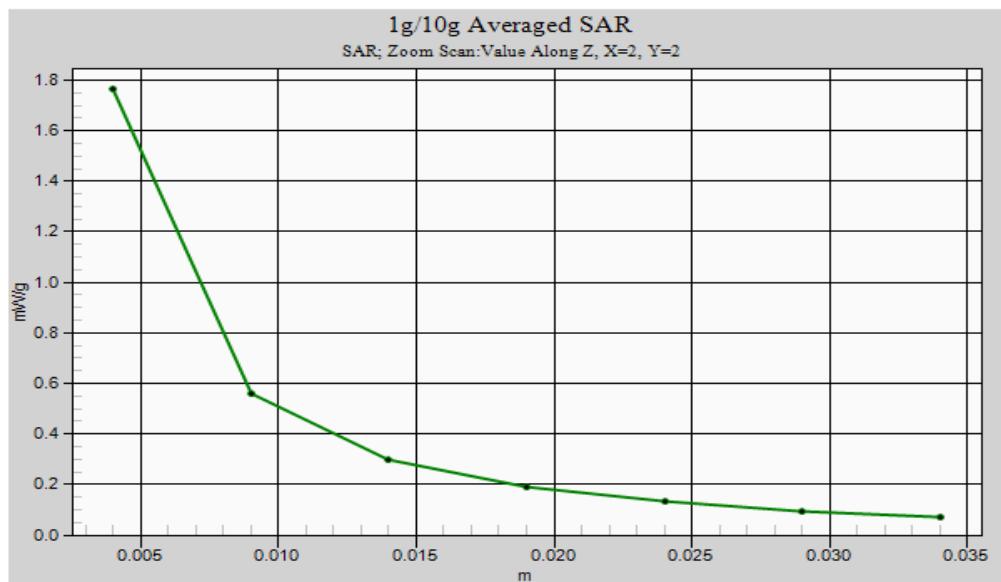
Maximum value of SAR (measured) = 0.489 mW/g

<2D Plots>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/31

Body_WCDMA850 Ch4182_Rear Face with Holster 0cm Gap_RMC12.2K_Antenna Out_E100N_2D**DUT: 841815**


Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.988$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4182/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 1.28 mW/g**Ch4182/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 6.48 V/m; Power Drift = 0.113 dB
Peak SAR (extrapolated) = 3.99 W/kg
SAR(1 g) = 1.26 mW/g; SAR(10 g) = 0.570 mW/g
Maximum value of SAR (measured) = 1.76 mW/g**Ch4182/Zoom Scan (5x5x7)/Cube 1:** Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 6.48 V/m; Power Drift = 0.113 dB
Peak SAR (extrapolated) = 1.28 W/kg
SAR(1 g) = 0.933 mW/g; SAR(10 g) = 0.641 mW/g
Maximum value of SAR (measured) = 1 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/31

Body_WCDMA850 Ch4132_Rear Face with Holster 0cm Gap_RMC12.2K_Antenna Out_E100_2D**DUT: 841815**

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 826.4$ MHz; $\sigma = 0.978$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

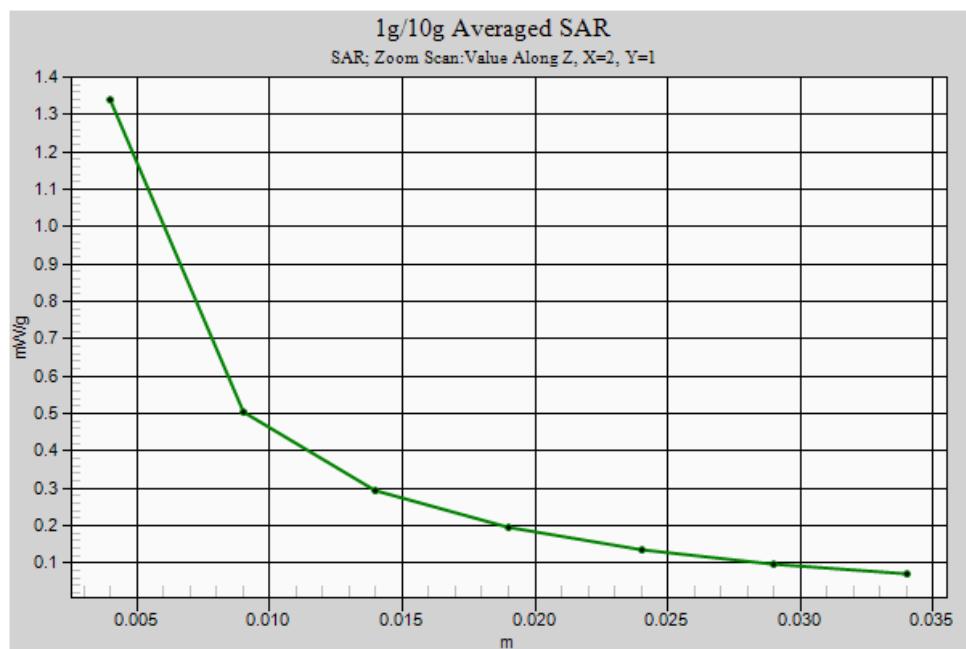
Ambient Temperature : 22.5 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4132/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.76 mW/g


Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.59 V/m; Power Drift = -0.071 dB

Peak SAR (extrapolated) = 4.24 W/kg

SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.604 mW/g

Maximum value of SAR (measured) = 1.34 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/8/6

Body_WCDMA850 Ch4182_Rear Face with Holster 0cm Gap_RMC12.2K+HSUPA_Sub-5_Antenna Out_E100N_2D**DUT: 841815**

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used : $f = 836.4$ MHz; $\sigma = 0.978$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

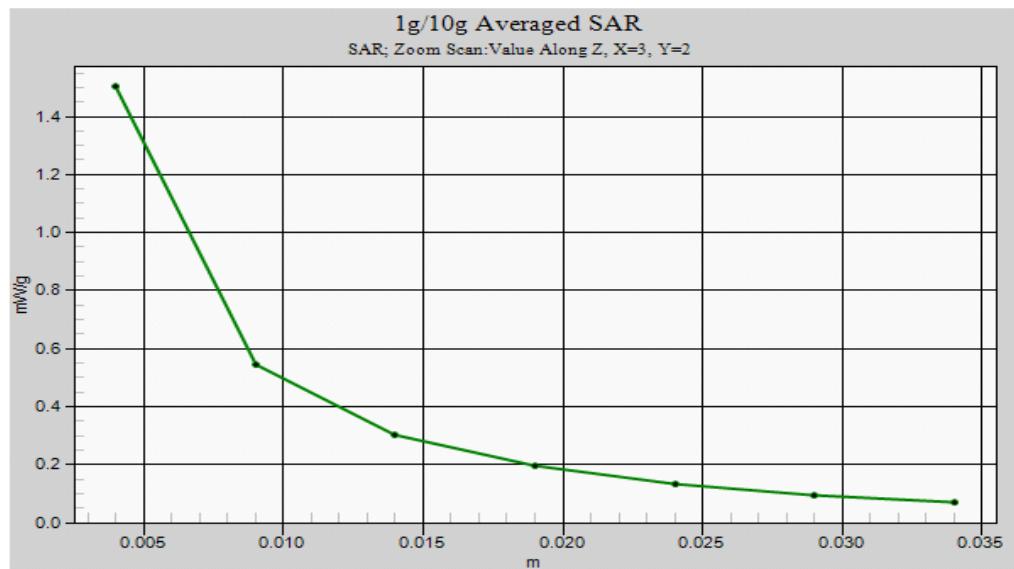
Ch4182/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 1.26 mW/g**Ch4182/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.64 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 4.41 W/kg

SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.555 mW/g

Maximum value of SAR (measured) = 1.5 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.64 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.831 mW/g; SAR(10 g) = 0.570 mW/g

Maximum value of SAR (measured) = 0.886 mW/g

<Volume Scan SAR>

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/7/11

Body_WCDMA850 Ch4182_Rear Face with Holster 0cm Gap_RMC12.2K_Antenna Out_E100N_Volume Scan**DUT: 841815**

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

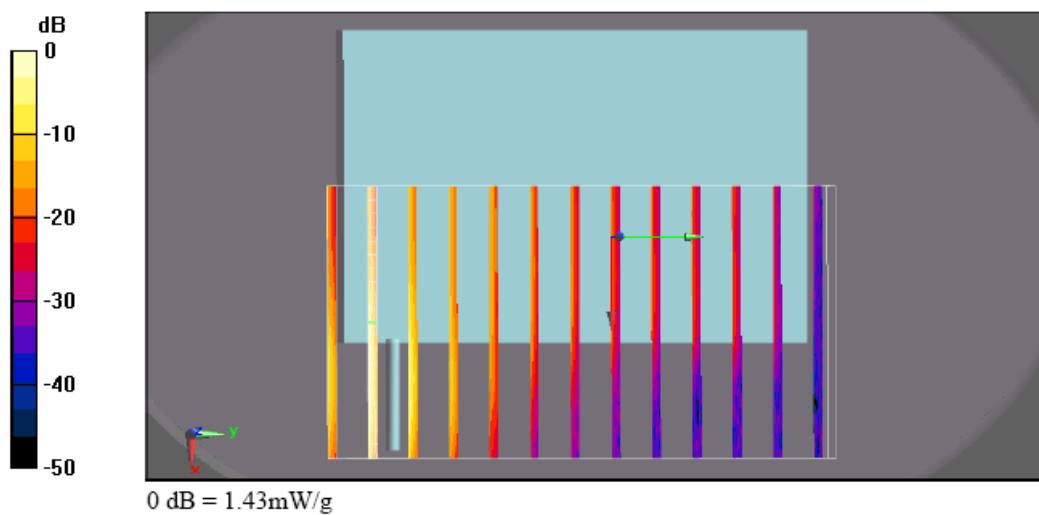
Medium: MSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.972$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4182/Volume Scan (21x38x10): Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 6.06 V/m; Power Drift = 0.00484 dB

Peak SAR (extrapolated) = 4.01 W/kg

SAR(1 g) = 1.31 mW/g; SAR(10 g) = 0.676 mW/g

Total Absorbed Power = 0.0938079 W

Maximum value of SAR (measured) = 1.43 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/7/11

Body_802.11b Ch6_Rear Face with Holster 0cm Gap_Antenna Out_E100N_Volume Scan**DUT: 841815**

Communication System: 802.11b ; Frequency: 2437 MHz; Duty Cycle: 1:1

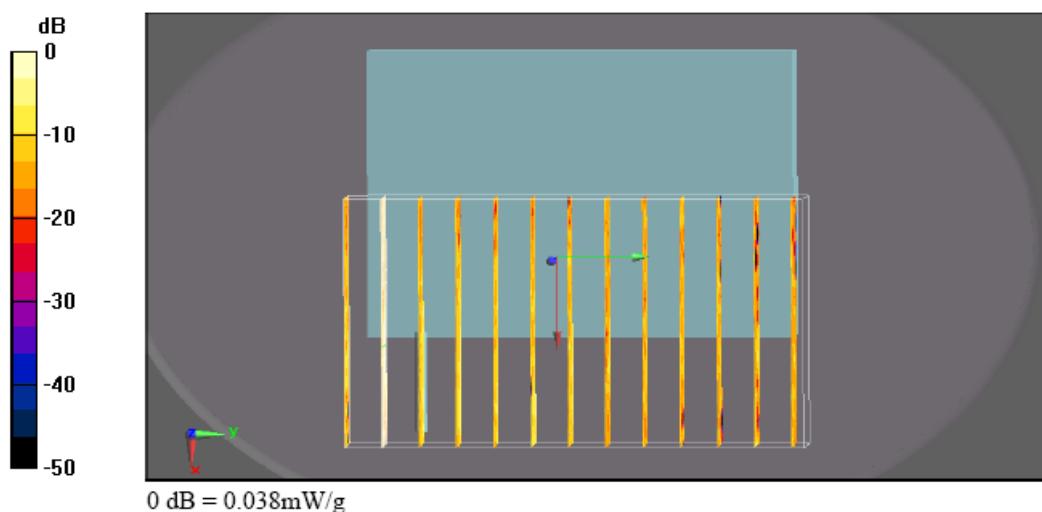
Medium: MSL_2450 Medium parameters used: $f = 2437$ MHz; $\sigma = 1.92$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.17, 4.17, 4.17); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch6/Volume Scan (21x38x10): Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 1.28 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.177 W/kg

SAR(1 g) = 0.040 mW/g; SAR(10 g) = 0.016 mW/g

Total Absorbed Power = 0.00161294 W

Maximum value of SAR (measured) = 0.038 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/7/11

Body_BT Ch39_Rear Face with Holster 0cm Gap_Antenna Out_E100N_Volume Scan:

DUT: 841815

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used : $f = 836.4$ MHz; $\sigma = 0.972$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/7/11

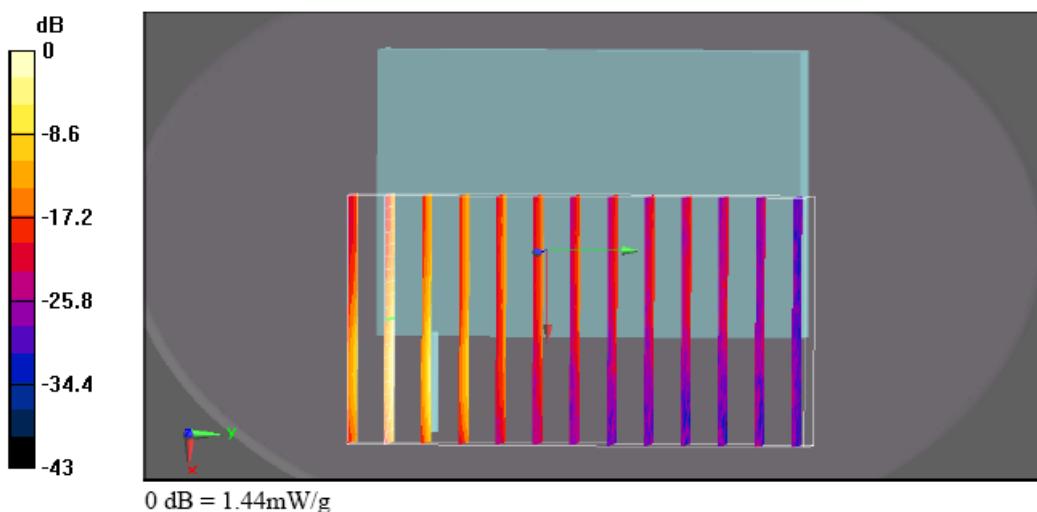
Body_802.11b Ch6_Rear Face with Holster 0cm Gap_Antenna Out_E100N_Volume Scan:

DUT: 841815

Communication System: 802.11b ; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: $f = 2437$ MHz; $\sigma = 1.92$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 - SN1788; ConvF(4.17, 4.17, 4.17); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91

Multi Band Result:

SAR(1 g) = 1.32 mW/g; SAR(10 g) = 0.687 mW/g

Maximum value of SAR (measured) = 1.44 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/7/11

Body_WCDMA850 Ch4182_Rear Face with Holster 0cm Gap_RMC12.2K_Antenna Out_E100N_Volume Scan**DUT: 841815**

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

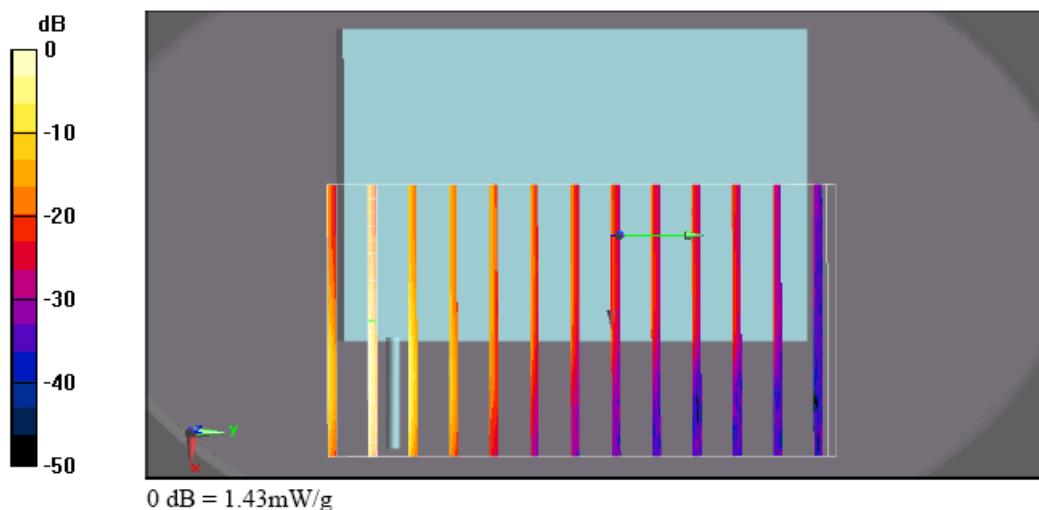
Medium: MSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.972$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch4182/Volume Scan (21x38x10): Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 6.06 V/m; Power Drift = 0.00484 dB

Peak SAR (extrapolated) = 4.01 W/kg

SAR(1 g) = 1.31 mW/g; SAR(10 g) = 0.676 mW/g

Total Absorbed Power = 0.0938079 W

Maximum value of SAR (measured) = 1.43 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/7/11

Body_BT Ch39_Rear Face with Holster 0cm Gap_Antenna Out_E100N_Volume Scan**DUT: 841815**

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

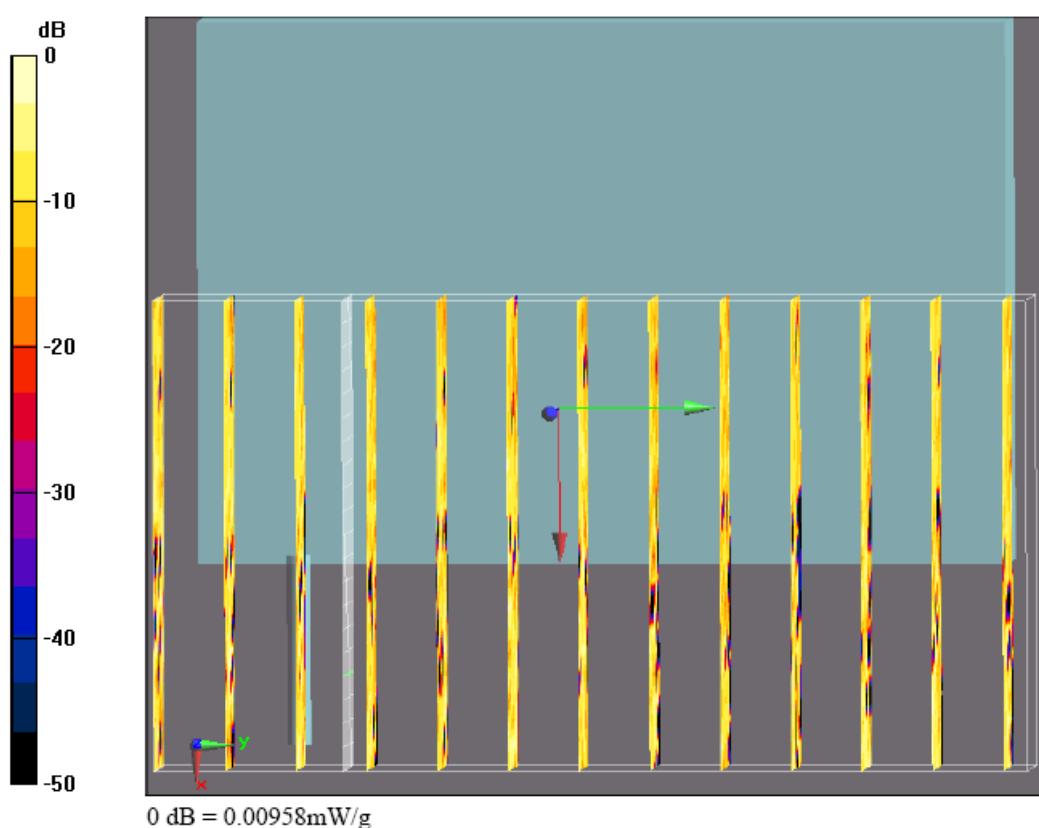
Medium: MSL_2450 Medium parameters used: $f = 2441$ MHz; $\sigma = 1.92$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.5 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.17, 4.17, 4.17); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch39/Volume Scan (21x38x10): Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 0 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 0.00958 W/kg

SAR(1 g) = 0.000867 mW/g; SAR(10 g) = 0.000123 mW/g

Total Absorbed Power = 5.50869e-006 W

Maximum value of SAR (measured) = 0.00958 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/7/11

Body_WCDMA850 Ch4182_Rear Face with Holster 0cm Gap_RMC12.2K_Antenna Out_E100N_Volume Scan

DUT: 841815

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.972$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/7/11

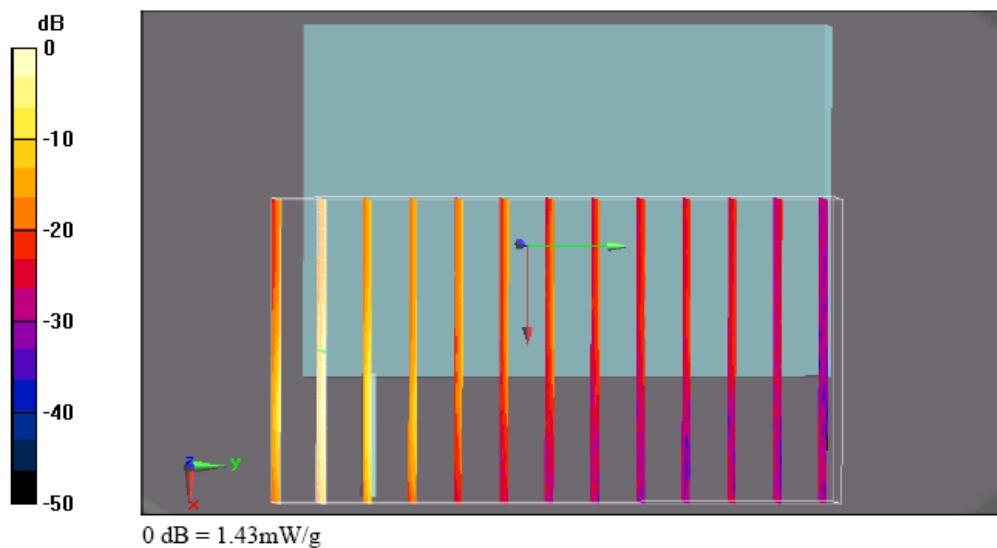
Body_BT Ch39_Rear Face with Holster 0cm Gap_Antenna Out_E100N_Volume Scan

DUT: 841815

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: $f = 2441$ MHz; $\sigma = 1.92$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC)

- Probe: ET3DV6 - SN1788; ConvF(4.17, 4.17, 4.17); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1029
- Measurement SW: DASY5, V5.0 Build 91

Multi Band Result:

SAR(1 g) = 1.31 mW/g; SAR(10 g) = 0.677 mW/g

Maximum value of SAR (measured) = 1.43 mW/g

