

**TEST REPORT**  
of  
**FCC PART 15 SUBPART E**

New Application;  Class I PC;  Class II PC

Limited Modular Approval for Notebook Model V100-G4/V200-G2

**Product :** **Wireless LAN Module**

**Brand:** **N/A**

**Model:** **Advanced-N 6235**

**Model Difference:** **N/A**

**FCC ID:** **MAU046**

**FCC Rule Part:** **§15.407, Cat: NII**

**Applicant:** **Getac Technology Corporation**

**Address:** **5F., Building A, No. 209, Sec. 1, Nangang Rd.,  
Nangang Dist., Taipei City 11568, Taiwan,  
R.O.C.**

**Test Performed by:**

**International Standards Laboratory**

<Lung-Tan LAB>

\*Site Registration No.

BSMI: SL2-IN-E-0013; MRA TW1036; TAF: 0997; IC: IC4067B-3;

\*Address:

No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd.  
Lung-Tan Hsiang, Tao Yuan County 325, Taiwan

\*Tel : 886-3-407-1718; Fax: 886-3-407-1738

**Report No.: ISL-12LR098FCE**

**Issue Date : 2012/07/16**

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.



## VERIFICATION OF COMPLIANCE

**Applicant:** Getac Technology Corporation  
**Product Description:** Wireless LAN Module  
**Brand Name:** N/A  
**Model No.:** Advanced-N 6235  
**Model Difference:** N/A  
**FCC ID:** MAU046  
**FCC Rule Part:** §15.407  
**Date of test:** 2012/05/16 ~ 2012/06/28  
**Date of EUT Received:** 2012/05/16

### We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

**Test By:**



**Date:**

2012/07/16

---

*Dion Chang / Engineer*

**Prepared By:**



**Date:**

2012/07/16

---

*Eva Kao / Technical Supervisor*

**Approved By:**



**Date:**

2012/07/16

---

*Vincent Su / Technical Manager*

## Version

| Version No. | Date       | Description                  |
|-------------|------------|------------------------------|
| 00          | 2012/07/16 | Initial creation of document |
|             |            |                              |
|             |            |                              |

## Table of Contents

|                                                             |           |
|-------------------------------------------------------------|-----------|
| <b>1. GENERAL INFORMATION .....</b>                         | <b>5</b>  |
| 1.1    Product Description .....                            | 5         |
| 1.2    Related Submittal(s) / Grant (s) .....               | 7         |
| 1.3    Test Methodology .....                               | 7         |
| 1.4    Test Facility .....                                  | 7         |
| 1.5    Special Accessories .....                            | 7         |
| 1.6    Equipment Modifications .....                        | 7         |
| <b>1.1. SYSTEM TEST CONFIGURATION .....</b>                 | <b>8</b>  |
| 1.2.    EUT Configuration .....                             | 8         |
| 1.3.    EUT Exercise .....                                  | 8         |
| 1.4.    Test Procedure .....                                | 8         |
| 1.5.    Configuration of Tested System .....                | 9         |
| <b>2. SUMMARY OF TEST RESULT .....</b>                      | <b>10</b> |
| <b>3. DESCRIPTION OF TEST MODES .....</b>                   | <b>10</b> |
| <b>4. AC POWER LINE CONDUCTED EMISSION TEST .....</b>       | <b>11</b> |
| 4.1.    Standard Applicable .....                           | 11        |
| 4.2.    Measurement Equipment Used: .....                   | 11        |
| 4.3.    EUT Setup: .....                                    | 11        |
| 4.4.    Measurement Procedure: .....                        | 12        |
| 4.5.    Measurement Result: .....                           | 12        |
| <b>5. PEAK OUTPUT POWER MEASUREMENT .....</b>               | <b>15</b> |
| 5.1.    Standard Applicable .....                           | 15        |
| 5.2.    Measurement Procedure .....                         | 15        |
| 5.3.    Measurement Equipment Used: .....                   | 15        |
| 5.4.    Measurement Result .....                            | 16        |
| <b>6. UNDESIRABLE EMISSION - RADICTED MEASUREMENT .....</b> | <b>18</b> |
| 6.1.    Standard Applicable .....                           | 18        |
| 6.2.    EUT Setup .....                                     | 20        |
| 6.3.    Measurement Procedure .....                         | 21        |
| 6.4.    Test SET-UP (Block Diagram of Configuration) .....  | 22        |
| 6.5.    Measurement Equipment Used: .....                   | 23        |
| 6.6.    Field Strength Calculation .....                    | 24        |
| 6.7.    Measurement Result .....                            | 24        |
| <b>7. ANTENNA REQUIREMENT .....</b>                         | <b>32</b> |
| 7.1.    Standard Applicable .....                           | 32        |
| 7.2.    Antenna Connected Construction .....                | 32        |

## 1. GENERAL INFORMATION

### 1.1 Product Description

General:

|                  |                     |
|------------------|---------------------|
| Product Name     | Wireless LAN Module |
| Brand Name       | Getac               |
| Model Name       | Advanced-N 6235     |
| Model Difference | N/A                 |

Notebook Platform Information:

|                  |                                                                  |                                   |
|------------------|------------------------------------------------------------------|-----------------------------------|
| Model Name       | V100-G4/ V200-G2                                                 |                                   |
| Model Difference | V100-G4: panel size 10", V200-G2: panel size 12"                 |                                   |
| Power Supply     | 10.8Vdc from Li-ion Battery or 19Vdc AC/DC Adapter or Car Charge |                                   |
|                  | Adapter:                                                         | Model: ADM-6019M, Supplier: Getac |

Bluetooth:

|                      |                                           |                                                      |
|----------------------|-------------------------------------------|------------------------------------------------------|
| Bluetooth Version    | V2.1 + EDR (GFSK + $\pi/4$ DQPSK + 8DPSK) | V4.0(GFSK)                                           |
| Frequency Range:     | 2402 – 2480MHz                            | 2402 – 2480MHz                                       |
| Channel number:      | 79 channels                               | 40 channels                                          |
| Modulation type:     | Frequency Hopping Spread Spectrum         | Digital Modulation (Direct Sequence Spread Spectrum) |
| Transmit Power:      | 5.36 dBm                                  | 5.50dBm                                              |
| Dwell Time:          | <= 0.4s                                   | N/A                                                  |
| Operating Mode:      | Point-to-Point                            |                                                      |
| Antenna Designation: | PIFA Antenna, 2.6dBi<br>P/N: 422125500011 |                                                      |

The EUT is compliance with Bluetooth EDR V2.1 +V4.0 Standard.

## WLAN: 2X2 MIMO

| Wi-Fi                | Frequency Range (MHz)                                                                                                                                            | Channels | Rated Power | Modulation Technology |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-----------------------|--|
| 802.11b              | 2412 – 2462(DTS)                                                                                                                                                 | 11       | 15.33dBm    | DSSS                  |  |
| 802.11g              | 2412 – 2462(DTS)                                                                                                                                                 | 11       | 15.34dBm    | DSSS, OFDM            |  |
| 802.11n              | HT20<br>2412 – 2462(DTS)                                                                                                                                         | 11       | 17.58dBm    | OFDM                  |  |
|                      | HT20<br>5180 – 5240(NII)                                                                                                                                         | 4        | 11.44dBm    |                       |  |
|                      | HT20<br>5260 – 5320(NII)                                                                                                                                         | 4        | 12.69dBm    |                       |  |
|                      | HT20<br>5500 – 5700(NII)                                                                                                                                         | 8        | 12.99dBm    |                       |  |
|                      | HT20<br>5S)                                                                                                                                                      | 5        | 15.85dBm    |                       |  |
|                      | HT40<br>2422 – 2452(DTS)                                                                                                                                         | 7        | 17.84dBm    |                       |  |
|                      | HT40<br>5190 – 5230(NII)                                                                                                                                         | 2        | 11.75dBm    |                       |  |
|                      | HT40<br>5270 – 5310(NII)                                                                                                                                         | 2        | 12.90dBm    |                       |  |
|                      | HT40<br>5510 – 5670(NII)                                                                                                                                         | 4        | 13.39dBm    |                       |  |
|                      | HT40<br>5755 – 5795(DTS)                                                                                                                                         | 2        | 15.98dBm    |                       |  |
| 802.11a              | 5180 – 5240(NII)                                                                                                                                                 | 4        | 11.83dBm    | OFDM                  |  |
|                      | 5260 – 5320(NII)                                                                                                                                                 | 4        | 12.87dBm    |                       |  |
|                      | 5500 – 5700(NII)                                                                                                                                                 | 8        | 12.87dBm    |                       |  |
|                      | 5745 – 5825(DTS)                                                                                                                                                 | 5        | 15.65dBm    |                       |  |
| Modulation type      | CCK, DQPSK, DBPSK for DSSS<br>64QAM, 16QAM, QPSK, BPSK for OFDM                                                                                                  |          |             |                       |  |
| Transition Rate:     | Upto 300Mbps                                                                                                                                                     |          |             |                       |  |
| Antenna Designation: | PIFA Antenna<br>R Site P/N: 422125500010; L Site P/N: 422125500011<br>R Site: 1.61dBi / L Site: 2.60dBi for 2.4GHz<br>R Site: 2.45dBi / L Site: 3.97dBi for 5GHz |          |             |                       |  |

The EUT is compliance with IEEE 802.11 a/b/g/n Standard.

**Remark:** The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

This report applies for frequency bands 5150 MHz– 5250 MHz, 5250MHz-5350MHz and 5470 MHz– 5725 MHz.

## 1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: **MAU046** filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules. The composite system (digital device) is compliance with Subpart B is authorized under a DoC procedure.

## 1.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (2003). Radiated testing was performed at an antenna to EUT distance 3 meters.

Tested in accordance with KDB789033

## 1.4 Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of **International Standards Laboratory** <Lung-Tan LAB> No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd., Lung-Tan Hsiang, Tao Yuan County 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003. FCC Registration Number is: TW1036, Canada Registration Number: 4067B-3.

## 1.5 Special Accessories

Not available for this EUT intended for grant.

## 1.6 Equipment Modifications

Not available for this EUT intended for grant.

## 1.1. SYSTEM TEST CONFIGURATION

### 1.2. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

### 1.3. EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

### 1.4. Test Procedure

#### 2.3.1 Conducted Emissions

The EUT is placed on a turn table which is 0.8 m above ground plane. According to the requirements in Section 7 and 13 of ANSI C63.4-2003. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and Average detector mode.

#### 2.3.2 Radiated Emissions

The EUT is placed on a turn table which is 0.8 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made “while keeping the antenna in the ‘cone of radiation’ from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response.” Is still within the 3Db illumination BW of the measurement antenna. According to the requirements in Section 8 and 13 and Subclause 8.3.1.2 of ANSI C63.4-2003.

## 1.5. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

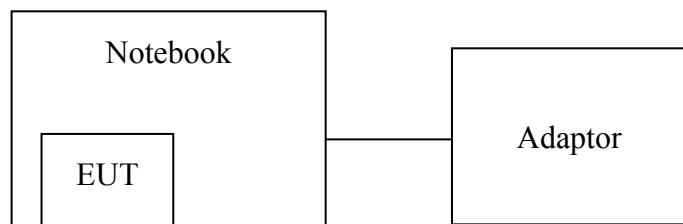



Table 2-1 Equipment Used in Tested System

| Item | Equipment | Mfr/Brand | Model/<br>Type No. | Series No. | Data Cable   | Power Cord |
|------|-----------|-----------|--------------------|------------|--------------|------------|
| 1    | Notebook  | Getac     | V100-G4            | N/A        | Un-Shielding | Shielding  |
| 2    | Adapter   | Getac     | ADM-6019M          | N/A        | N/A          | Shielding  |

## 2. SUMMARY OF TEST RESULT

| FCC Rules  | Description Of Test                         | Result    |
|------------|---------------------------------------------|-----------|
| §15.207    | AC Power Line Conducted Emission            | Compliant |
| §15.407(a) | Peak Output Power Measurement               | Compliant |
| §15.407(b) | Undesirable Emission – Radiated Measurement | Compliant |
| §15.407(a) | Antenna Requirement                         | Compliant |

## 3. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting mode is programmed.

a mode:

5150MHz-5250MHz: Channel lowest(5180MHz) 、 Mid(5220MHz) and Highest(5240MHz).

5250MHz-5350MHz: Channel lowest(5260MHz) 、 Mid(5300MHz) and Highest(5320MHz).

5470MHz-5725MHz: Channel lowest (5500MHz) 、 Mid(5580MHz) and Highest(5700MHz) with 6Mbps data rate are chosen for pre-test testing of radiated emissions.

n HT 20 mode:

5150MHz-5250MHz: Channel lowest(5180MHz) 、 Mid(5220MHz) and Highest(5240MHz).

5250MHz-5350MHz: Channel lowest(5260MHz) 、 Mid(5300MHz) and Highest(5320MHz).

5470MHz-5725MHz: Channel lowest (5500MHz) 、 Mid(5580MHz) and Highest(5700MHz) with 6.5Mbps data rate are chosen for pre-test testing of radiated emissions.

n HT 40 mode:

5150MHz-5250MHz: Channel lowest(5190MHz) and Highest(5230MHz).

5250MHz-5350MHz: Channel lowest(5270MHz) and Highest(5310MHz).

5470MHz-5725MHz: Channel lowest (5510MHz), Mid(5590MHz) and Highest(5670MHz) with 13.5Mbps data rate are chosen for pre-test testing of radiated emissions.

The spurious radiation emission were measured for both host model V100-G4/V200-G2 as EUT notebook position (H) and tablet position (E1) for testing with power adaptors.

The Worst case of n HT 40 mode: 5470MHz-5725MHz of host V100-G4 was reported for Radiated Emission.

## 4. AC POWER LINE CONDUCTED EMISSION TEST

### 4.1. Standard Applicable

According to §15.207, frequency range within 150 KHz to 30 MHz shall not exceed the Limit table as below.

| Frequency range<br>MHz | Limits<br>dB(uV) |          |
|------------------------|------------------|----------|
|                        | Quasi-peak       | Average  |
| 0.15 to 0.50           | 66 to 56         | 56 to 46 |
| 0.50 to 5              | 56               | 46       |
| 5 to 30                | 60               | 50       |

Note

- 1.The lower limit shall apply at the transition frequencies
- 2.The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

### 4.2. Measurement Equipment Used:

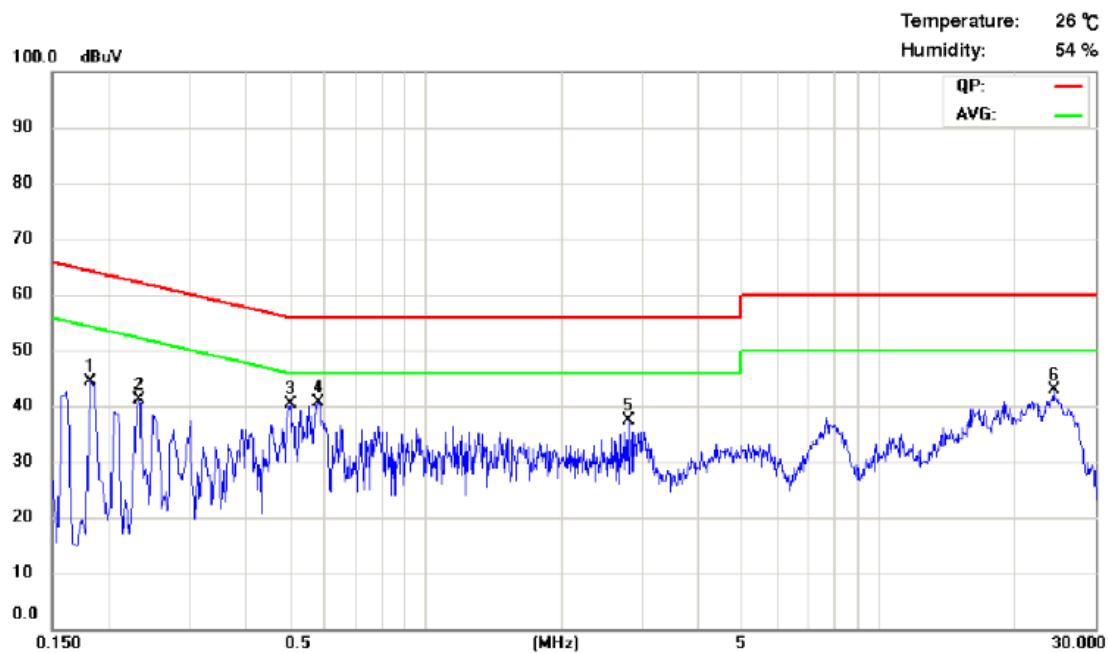
| Conducted Emission Test Site |                    |                          |                  |              |            |
|------------------------------|--------------------|--------------------------|------------------|--------------|------------|
| EQUIPMENT<br>TYPE            | MFR                | MODEL<br>NUMBER          | SERIAL<br>NUMBER | LAST<br>CAL. | CAL DUE.   |
| Conduction 03 -1<br>Cable    | WOKEN              | CFD 300-NL               | Conduction 0-1   | 06/27/2011   | 06/27/2012 |
| EMI Receiver 12              | ROHDE &<br>SCHWARZ | ESCI                     | 100804           | 07/12/2011   | 07/12/2012 |
| LISN 07                      | FCC Inc.           | FCC-LISN-50-100-4<br>-02 | 07040            | 07/13/2011   | 07/13/2012 |
| LISN 08                      | FCC                | FCC-LISN50-25-2-0<br>1   | 07039            | 07/13/2011   | 07/13/2012 |

### 4.3. EUT Setup:

1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2003.
2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
3. The LISN was connected with 120Vac/60Hz power source.

#### 4.4. Measurement Procedure:

1. The EUT was placed on a table which is 0.8m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured were complete.


#### 4.5. Measurement Result:

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Note: Refer to next page for measurement data and plots.

## AC POWER LINE CONDUCTED EMISSION TEST DATA

|                 |                |            |           |
|-----------------|----------------|------------|-----------|
| Operation Mode: | Operation Mode | Test Date: | 2012/6/22 |
| Test By:        | Lake           |            |           |



Site: Conduction 02

 Phase: L1

Limit: CISPR22 Class B Conduction

| No. | Frequency<br>MHz | LISN<br>Loss<br>dB | Cable<br>Loss<br>dB | QP<br>Correct.<br>dBuV | QP<br>Limit<br>dBuV | QP<br>Margin<br>dB | AVG<br>Correct.<br>dBuV | AVG<br>Limit<br>dBuV | AVG<br>Margin<br>dB | Note |
|-----|------------------|--------------------|---------------------|------------------------|---------------------|--------------------|-------------------------|----------------------|---------------------|------|
| 1   | 0.1820           | 9.64               | 0.01                | 43.27                  | 64.39               | -21.12             | 27.44                   | 54.39                | -26.95              |      |
| 2   | 0.2340           | 9.64               | 0.02                | 37.05                  | 62.31               | -25.26             | 24.15                   | 52.31                | -28.16              |      |
| 3   | 0.5020           | 9.62               | 0.03                | 37.37                  | 56.00               | -18.63             | 29.55                   | 46.00                | -16.45              |      |
| 4   | 0.5820           | 9.62               | 0.03                | 38.19                  | 56.00               | -17.81             | 27.21                   | 46.00                | -18.79              |      |
| 5   | 2.8060           | 9.63               | 0.1                 | 30.14                  | 56.00               | -25.86             | 20.89                   | 46.00                | -25.11              |      |
| 6   | 24.3060          | 9.65               | 0.27                | 37.57                  | 60.00               | -22.43             | 31.64                   | 50.00                | -18.36              |      |



Site: Conduction 02

 Phase: **N**

Limit: CISPR22 Class B Conduction

| No. | Frequency<br>MHz | LISN<br>Loss<br>dB | Cable<br>Loss<br>dB | QP<br>Correct.<br>dBuV | QP<br>Limit<br>dBuV | QP<br>Margin<br>dB | Avg<br>Correct.<br>dBuV | Avg<br>Limit<br>dBuV | Avg<br>Margin<br>dB | Note |
|-----|------------------|--------------------|---------------------|------------------------|---------------------|--------------------|-------------------------|----------------------|---------------------|------|
| 1   | 0.1540           | 9.5                | 0.01                | 47.36                  | 65.78               | -18.42             | 27.02                   | 55.78                | -28.76              |      |
| 2   | 0.1820           | 9.55               | 0.01                | 42.84                  | 64.39               | -21.55             | 25.65                   | 54.39                | -28.74              |      |
| 3   | 0.5740           | 9.61               | 0.03                | 38.67                  | 56.00               | -17.33             | 27.40                   | 46.00                | -18.60              |      |
| 4   | 1.4780           | 9.61               | 0.06                | 31.97                  | 56.00               | -24.03             | 22.16                   | 46.00                | -23.84              |      |
| 5   | 2.6340           | 9.61               | 0.09                | 27.86                  | 56.00               | -28.14             | 19.84                   | 46.00                | -26.16              |      |
| 6   | 23.9940          | 9.7                | 0.27                | 38.77                  | 60.00               | -21.23             | 32.93                   | 50.00                | -17.07              |      |

## 5. PEAK OUTPUT POWER MEASUREMENT

### 5.1. Standard Applicable

According to §15.407(a)

1. For the band 5.15-5.25 GHz, the maximum conducted power over the frequency of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B.
2. For the band 5.25-5.35 GHz and 5.47-5.725GHz, the maximum conducted power over the frequency of operation shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10log B.
3. For the band 5.725-5.825 GHz, the maximum conducted power over the frequency of operation shall not exceed the lesser of 1W (30dBm) or 17 dBm + 10log B.

### 5.2. Measurement Procedure

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter.
3. Record the max. reading.
4. Repeat above procedures until all frequency measured were complete.

### 5.3. Measurement Equipment Used:

| Conducted Emission Test Site |         |              |               |            |            |
|------------------------------|---------|--------------|---------------|------------|------------|
| EQUIPMENT TYPE               | MFR     | MODEL NUMBER | SERIAL NUMBER | LAST CAL.  | CAL DUE.   |
| Power Meter 05               | Anritsu | ML2495A      | 1116010       | 04/17/2012 | 04/16/2013 |
| Power Sensor 05              | Anritsu | MA2411B      | 34NKF50       | 04/16/2012 | 04/15/2013 |
| Temperature Chamber          | KSON    | THS-B4H100   | 2287          | 03/03/2012 | 03/02/2013 |
| DC Power supply              | ABM     | 51850        | N/A           | 06/17/2012 | 06/16/2013 |
| AC Power supply              | EXTECH  | CFC105W      | NA            | 12/19/2011 | 12/18/2012 |
| Splitter                     | MCLI    | PS4-199      | 12465         | 07/18/2012 | 07/17/2013 |
| Spectrum analyzer            | Agilent | N9030A       | MY51360021    | 03/11/2012 | 03/10/2013 |

## 5.4. Measurement Result

UNII 802.11a

| Mode    | Freq(MHz) | channel | power (dBm) | limit(dBm) | result |
|---------|-----------|---------|-------------|------------|--------|
| 802.11a | 5180      | 36      | 8.32        | 16.98      | pass   |
|         | 5200      | 40      | 10.91       | 16.98      | pass   |
|         | 5220      | 44      | 11.46       | 16.98      | pass   |
|         | 5240      | 48      | 11.83       | 16.98      | pass   |
|         | 5260      | 52      | 12.54       | 23.97      | pass   |
|         | 5280      | 56      | 12.86       | 23.97      | pass   |
|         | 5300      | 60      | 12.87       | 23.97      | pass   |
|         | 5320      | 64      | 12.21       | 23.97      | pass   |
|         | 5500      | 100     | 12.35       | 23.97      | pass   |
|         | 5520      | 104     | 12.21       | 23.97      | pass   |
|         | 5540      | 108     | 12.21       | 23.97      | pass   |
|         | 5560      | 112     | 12.54       | 23.97      | pass   |
|         | 5580      | 116     | 12.87       | 23.97      | pass   |
|         | 5660      | 132     | 11.12       | 23.97      | pass   |
|         | 5680      | 136     | 11.41       | 23.97      | pass   |
|         | 5700      | 140     | 11.50       | 23.97      | pass   |

UNII 802.11n  
 2\*2 MIMO

| Mode | Freq(MHz) | channel | Output Chain (dBm) |         | Combined Output Power (dBm) | Limit(dBm) | Result |
|------|-----------|---------|--------------------|---------|-----------------------------|------------|--------|
|      |           |         | Chain A            | chain B |                             |            |        |
| HT20 | 5180      | 36      | 7.22               | 6.13    | 9.72                        | 16.98      | Pass   |
|      | 5200      | 40      | 7.55               | 7.07    | 10.33                       | 16.98      | Pass   |
|      | 5220      | 44      | 7.98               | 7.48    | 10.75                       | 16.98      | Pass   |
|      | 5240      | 48      | 8.97               | 7.82    | 11.44                       | 16.98      | Pass   |
|      | 5260      | 52      | 9.25               | 7.78    | 11.59                       | 23.97      | Pass   |
|      | 5280      | 56      | 9.28               | 8.47    | 11.90                       | 23.97      | Pass   |
|      | 5300      | 60      | 9.72               | 8.73    | 12.26                       | 23.97      | Pass   |
|      | 5320      | 64      | 10.17              | 9.12    | 12.69                       | 23.97      | Pass   |
|      | 5500      | 100     | 9.91               | 9.97    | 12.95                       | 23.97      | Pass   |
|      | 5520      | 104     | 9.84               | 10.12   | 12.99                       | 23.97      | Pass   |
|      | 5540      | 108     | 9.45               | 9.92    | 12.70                       | 23.97      | Pass   |
|      | 5560      | 112     | 9.57               | 9.89    | 12.74                       | 23.97      | Pass   |
|      | 5580      | 116     | 8.58               | 9.88    | 12.29                       | 23.97      | Pass   |
|      | 5660      | 132     | 7.91               | 8.20    | 11.07                       | 23.97      | Pass   |
|      | 5680      | 136     | 8.03               | 8.31    | 11.18                       | 23.97      | Pass   |
|      | 5700      | 140     | 8.12               | 8.39    | 11.27                       | 23.97      | Pass   |

| Mode | Freq(MHz) | channel | Output Chain (dBm) |         | Combined Output Power (dBm) | Limit(dBm) | Result |
|------|-----------|---------|--------------------|---------|-----------------------------|------------|--------|
|      |           |         | Chain A            | chain B |                             |            |        |
| HT40 | 5190      | 38      | 7.58               | 8.52    | 11.09                       | 16.98      | Pass   |
|      | 5230      | 46      | 8.94               | 8.53    | 11.75                       | 16.98      | Pass   |
|      | 5270      | 54      | 9.14               | 8.70    | 11.94                       | 23.97      | Pass   |
|      | 5310      | 62      | 10.03              | 9.74    | 12.90                       | 23.97      | Pass   |
|      | 5510      | 102     | 9.66               | 10.62   | 13.18                       | 23.97      | Pass   |
|      | 5550      | 110     | 10.21              | 10.54   | 13.39                       | 23.97      | Pass   |
|      | 5590      | 118     | 9.23               | 10.71   | 13.04                       | 23.97      | Pass   |
|      | 5670      | 134     | 8.68               | 9.31    | 12.02                       | 23.97      | Pass   |

## 6. UNDESIRABLE EMISSION - RADICTED MEASUREMENT

### 6.1. Standard Applicable

According to §15.407(b),

(b) Undesirable Emission Limits: Except as shown in Paragraph (b)(6) of this section, the peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.
- (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz.
- (5) The above emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.
- (7) The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

## §15.205- RESTRICTED BANDS OF OPERATIONS

- (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                        | MHz                 | MHz             | GHz              |
|----------------------------|---------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423      | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475 | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67        | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25        | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6           | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2         | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | 108 - 121.94        | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138           | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05      | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 -         | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.52525           | 2655 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 156.7 - 156.9       | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 162.0125 - 167.17   | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 167.72 - 173.2      | 3345.8 - 3358   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 240 - 285           | 3600 - 4400     | ( <sup>2</sup> ) |
| 13.36 - 13.41              | 322 - 335.4         |                 |                  |

<sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

<sup>2</sup> Above 38.6

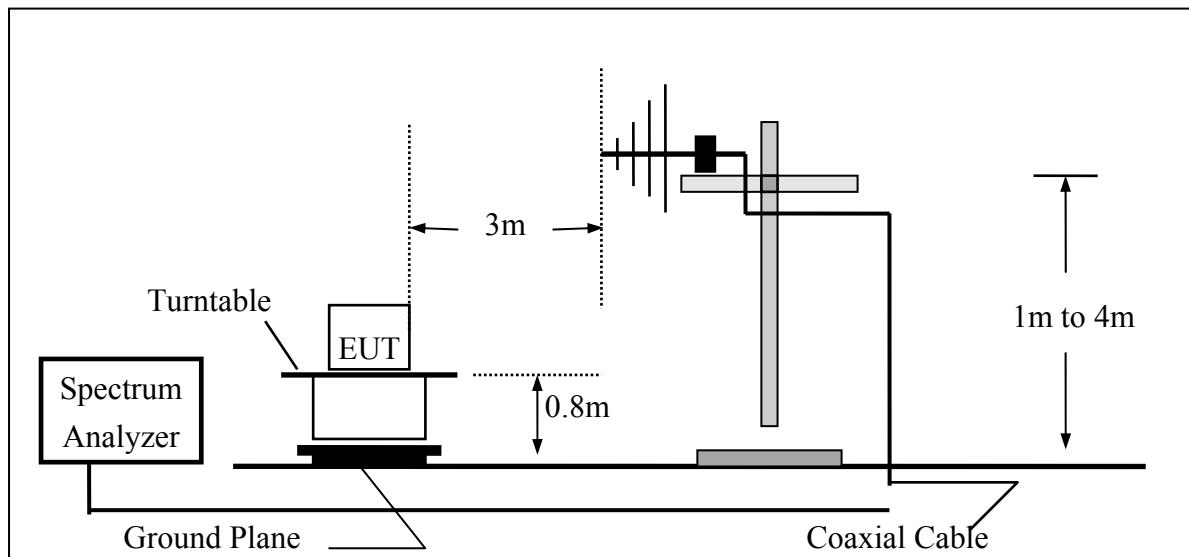
- (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

## §15.209- RADIATED EMISSION LIMITS: GENERAL REQUIREMENTS

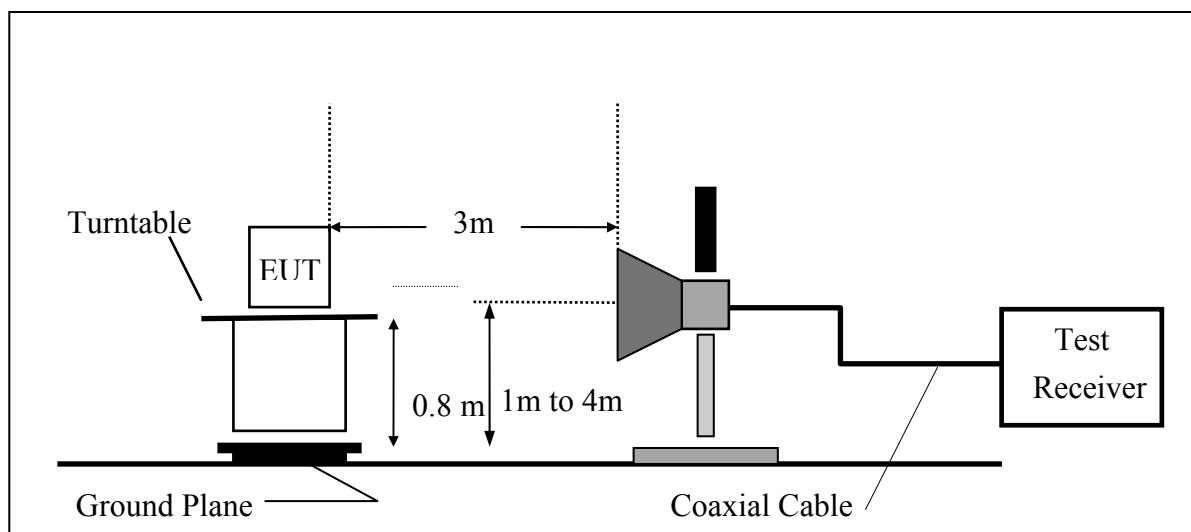
## FCC PART 15.209

| MEASURING DISTANCE OF 3 METER |                                  |                            |
|-------------------------------|----------------------------------|----------------------------|
| FREQUENCY RANGE<br>(MHz)      | FIELD STRENGTH<br>(Microvolts/m) | FIELD STRENGTH<br>(dBuV/m) |
| 30-88                         | 100                              | 40                         |
| 88-216                        | 150                              | 43.5                       |
| 216-960                       | 200                              | 46                         |
| Above 960                     | 500                              | 54                         |

## 6.2. EUT Setup


1. The radiated emission tests were performed in the 3 meter open-test site, using the setup in accordance with the ANSI C63.4-1992.
2. The EUT was put in the front of the test table. The host PC system was placed on the center of the back edge on the test table. The peripherals like modem, monitor printer, K/B, and mouse were placed on the side of the host PC system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
3. The keyboard was placed directly in the front of the monitor, flushed with the front tabletop. The mouse was placed next to the Keyboard, flushed with the back of keyboard.
4. The spacing between the peripherals was 10 centimeters.
5. External I/O cables were draped along the edge of the test table and bundle when necessary.
6. The host PC system was connected with 120Vac/60Hz power source.

### 6.3. Measurement Procedure


1. The EUT was placed on a turn table which is 0.8m above ground plane.
2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until all frequency measured were complete.

#### 6.4. Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz



(B) Radiated Emission Test Set-UP Frequency Over 1 GHz



## 6.5. Measurement Equipment Used:

| Chamber 14(966)               |               |                              |                     |            |            |
|-------------------------------|---------------|------------------------------|---------------------|------------|------------|
| EQUIPMENT TYPE                | MFR           | MODEL NUMBER                 | SERIAL NUMBER       | LAST CAL.  | CAL DUE.   |
| Spectrum Analyzer 21(26.5GHz) | Agilent       | N9010A                       | MY49060537          | 07/18/2011 | 07/17/2012 |
| Spectrum Analyzer 20(6.5GHz)  | Agilent       | E4443A                       | MY48250315          | 05/24/2012 | 05/23/2013 |
| Spectrum Analyzer 22(43GHz)   | R&S           | FSU43                        | 100143              | 04/25/2012 | 04/24/2013 |
| Loop Antenna9K-30M            | A.H.SYSTEM    | SAS-564                      | 294                 | 02/28/2011 | 02/27/2013 |
| Bilog Antenna30-1G            | Schaffner     | CBL 6111B                    | 2756                | 12/27/2011 | 12/26/2012 |
| Horn antenna1-18G             | COM-POWER     | AH118                        | 2011071401          | 03/01/2012 | 02/29/2013 |
| Horn antenna1-18G(06)         | EMCO          | 3117                         | 0006665             | 09/21/2011 | 09/20/2012 |
| Horn antenna26-40G(05)        | Com-power     | AH-640                       | 100A                | 01/11/2011 | 01/10/2013 |
| Horn antenna18-26G(04)        | Com-power     | AH-826                       | 081001              | 05/04/2011 | 05/03/2013 |
| Preamplifier9-1000M           | HP            | 8447D                        | NA                  | 02/10/2012 | 02/09/2013 |
| Preamplifier1-18G             | MITEQ         | AFS44-001018<br>00-25-10P-44 | 1329256             | 07/19/2011 | 07/18/2012 |
| Preamplifier1-26G             | EM            | EM01M26G                     | NA                  | 02/21/2012 | 02/20/2013 |
| Preamplifier26-40G            | MITEQ         | JS-26004000-2<br>7-5A        | 818471              | 05/21/2011 | 05/20/2013 |
| Cable1-18G                    | HUBER SUHNER  | Sucoflex 106                 | NA                  | 02/10/2012 | 02/09/2013 |
| Cable UP to 1G                | HUBER SUHNER  | RG 214/U                     | NA                  | 12/14/2011 | 12/13/2012 |
| SUCOFLEX 1GHz~40GHz cable     | HUBER SUHNER  | Sucoflex 102                 | 27963/2&3742<br>1/2 | 09/21/2011 | 09/20/2012 |
| 2.4G Filter                   | Micro-Tronics | Brm50702                     | 76                  | 10/22/2011 | 10/21/2012 |
| 5G Filter                     | Micro-Tronics | Brm50716                     | 005                 | 10/22/2011 | 10/21/2012 |

## 6.6. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\mathbf{FS = RA + AF - CL - AG}$$

|       |                        |                                            |
|-------|------------------------|--------------------------------------------|
| Where | FS = Field Strength    | CL = Cable Attenuation Factor (Cable Loss) |
|       | RA = Reading Amplitude | AG = Amplifier Gain                        |
|       | AF = Antenna Factor    |                                            |

## 6.7. Measurement Result

Refer to attach tabular data sheets.

### NOTE:

The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 100kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.

## Radiated Spurious Emission Measurement Result (below 1GHz) HT40, 5470~5725 MHz

|                       |           |           |            |
|-----------------------|-----------|-----------|------------|
| Operation Mode        | TX CH Low | Test Date | 2012/06/15 |
| Fundamental Frequency | 5510MHz   | Test By   | Dino       |
| Temperature           | 25 °C     | Pol       | Ver./Hor   |
| Humidity              | 60 %      |           |            |

| No | Freq<br>MHz | Reading<br>dBuV | Factor<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>Limit<br>dB | Remark | Pol<br>V/H |
|----|-------------|-----------------|--------------|-----------------|-----------------|---------------------|--------|------------|
| 1  | 271.53      | 40.38           | -12.15       | 28.23           | 46.00           | -17.77              | Peak   | VERTICAL   |
| 2  | 324.88      | 39.10           | -11.15       | 27.95           | 46.00           | -18.05              | Peak   | VERTICAL   |
| 3  | 387.93      | 42.96           | -9.82        | 33.14           | 46.00           | -12.86              | Peak   | VERTICAL   |
| 4  | 409.27      | 39.88           | -9.52        | 30.36           | 46.00           | -15.64              | Peak   | VERTICAL   |
| 5  | 519.85      | 39.72           | -8.35        | 31.37           | 46.00           | -14.63              | Peak   | VERTICAL   |
| 6  | 649.83      | 35.73           | -6.80        | 28.93           | 46.00           | -17.07              | Peak   | VERTICAL   |
|    |             |                 |              |                 |                 |                     |        |            |
| 1  | 258.92      | 40.28           | -12.10       | 28.18           | 46.00           | -17.82              | Peak   | HORIZONTAL |
| 2  | 387.93      | 41.39           | -9.82        | 31.57           | 46.00           | -14.43              | Peak   | HORIZONTAL |
| 3  | 409.27      | 42.21           | -9.52        | 32.69           | 46.00           | -13.31              | Peak   | HORIZONTAL |
| 4  | 456.80      | 40.81           | -9.16        | 31.65           | 46.00           | -14.35              | Peak   | HORIZONTAL |
| 5  | 505.30      | 41.28           | -8.64        | 32.64           | 46.00           | -13.36              | Peak   | HORIZONTAL |
| 6  | 649.83      | 31.72           | -6.80        | 24.92           | 46.00           | -21.08              | Peak   | HORIZONTAL |

## Remark:

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

## Radiated Spurious Emission Measurement Result (below 1GHz)

|                       |           |           |            |
|-----------------------|-----------|-----------|------------|
| Operation Mode        | TX CH Mid | Test Date | 2012/06/15 |
| Fundamental Frequency | 5590MHz   | Test By   | Dino       |
| Temperature           | 25 °C     | Pol       | Ver./Hor   |
| Humidity              | 60 %      |           |            |

| No | Freq<br>MHz | Reading<br>dBuV | Factor<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>Limit<br>dB | Remark | Pol<br>V/H |
|----|-------------|-----------------|--------------|-----------------|-----------------|---------------------|--------|------------|
| 1  | 255.04      | 44.08           | -12.47       | 31.61           | 46.00           | -14.39              | Peak   | VERTICAL   |
| 2  | 387.93      | 39.67           | -9.82        | 29.85           | 46.00           | -16.15              | Peak   | VERTICAL   |
| 3  | 409.27      | 39.79           | -9.52        | 30.27           | 46.00           | -15.73              | Peak   | VERTICAL   |
| 4  | 456.80      | 39.79           | -9.16        | 30.63           | 46.00           | -15.37              | Peak   | VERTICAL   |
| 5  | 505.30      | 40.30           | -8.64        | 31.66           | 46.00           | -14.34              | Peak   | VERTICAL   |
| 6  | 649.83      | 29.60           | -6.80        | 22.80           | 46.00           | -23.20              | Peak   | VERTICAL   |
|    |             |                 |              |                 |                 |                     |        |            |
| 1  | 264.74      | 40.09           | -12.07       | 28.02           | 46.00           | -17.98              | Peak   | HORIZONTAL |
| 2  | 324.88      | 38.65           | -11.15       | 27.50           | 46.00           | -18.50              | Peak   | HORIZONTAL |
| 3  | 387.93      | 42.43           | -9.82        | 32.61           | 46.00           | -13.39              | Peak   | HORIZONTAL |
| 4  | 409.27      | 40.41           | -9.52        | 30.89           | 46.00           | -15.11              | Peak   | HORIZONTAL |
| 5  | 519.85      | 40.86           | -8.35        | 32.51           | 46.00           | -13.49              | Peak   | HORIZONTAL |
| 6  | 649.83      | 34.22           | -6.80        | 27.42           | 46.00           | -18.58              | Peak   | HORIZONTAL |

## Remark:

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

## Radiated Spurious Emission Measurement Result (below 1GHz)

|                       |            |           |            |
|-----------------------|------------|-----------|------------|
| Operation Mode        | TX CH High | Test Date | 2012/06/15 |
| Fundamental Frequency | 5670MHz    | Test By   | Dino       |
| Temperature           | 25 °C      | Pol       | Ver./Hor   |
| Humidity              | 60 %       |           |            |

| No | Freq<br>MHz | Reading<br>dBuV | Factor<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>Limit<br>dB | Remark | Pol<br>V/H |
|----|-------------|-----------------|--------------|-----------------|-----------------|---------------------|--------|------------|
| 1  | 270.56      | 39.43           | -12.16       | 27.27           | 46.00           | -18.73              | Peak   | VERTICAL   |
| 2  | 324.88      | 38.44           | -11.15       | 27.29           | 46.00           | -18.71              | Peak   | VERTICAL   |
| 3  | 387.93      | 42.27           | -9.82        | 32.45           | 46.00           | -13.55              | Peak   | VERTICAL   |
| 4  | 409.27      | 39.96           | -9.52        | 30.44           | 46.00           | -15.56              | Peak   | VERTICAL   |
| 5  | 519.85      | 40.33           | -8.35        | 31.98           | 46.00           | -14.02              | Peak   | VERTICAL   |
| 6  | 649.83      | 34.83           | -6.80        | 28.03           | 46.00           | -17.97              | Peak   | VERTICAL   |
|    |             |                 |              |                 |                 |                     |        |            |
| 1  | 258.92      | 43.77           | -12.10       | 31.67           | 46.00           | -14.33              | Peak   | HORIZONTAL |
| 2  | 360.77      | 39.74           | -10.34       | 29.40           | 46.00           | -16.60              | Peak   | HORIZONTAL |
| 3  | 387.93      | 41.19           | -9.82        | 31.37           | 46.00           | -14.63              | Peak   | HORIZONTAL |
| 4  | 409.27      | 42.23           | -9.52        | 32.71           | 46.00           | -13.29              | Peak   | HORIZONTAL |
| 5  | 456.80      | 41.09           | -9.16        | 31.93           | 46.00           | -14.07              | Peak   | HORIZONTAL |
| 6  | 505.30      | 41.77           | -8.64        | 33.13           | 46.00           | -12.87              | Peak   | HORIZONTAL |

## Remark:

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

## Radiated Spurious Emission Measurement Result (above 1GHz) HT40, 5470~5725 MHz

|                       |           |           |            |
|-----------------------|-----------|-----------|------------|
| Operation Mode        | TX CH Low | Test Date | 2012/06/15 |
| Fundamental Frequency | 5510MHz   | Test By   | Dino       |
| Temperature           | 25 °C     | Humidity  | 60 %       |

| No | Freq MHz | Reading dBuV | Factor dB | Level dBuV/m | Limit dBuV/m | Over Limit dB | Remark | Pol V/H    |
|----|----------|--------------|-----------|--------------|--------------|---------------|--------|------------|
| 1  | 2260.00  | 42.50        | -11.82    | 30.68        | 74.00        | -43.32        | Peak   | VERTICAL   |
| 2  | 3282.00  | 40.79        | -8.70     | 32.09        | 74.00        | -41.91        | Peak   | VERTICAL   |
| 3  | 11020.00 | 34.33        | 7.08      | 41.41        | 74.00        | -32.59        | Peak   | VERTICAL   |
|    |          |              |           |              |              |               |        |            |
| 1  | 1966.00  | 42.36        | -12.71    | 29.65        | 74.00        | -44.35        | Peak   | HORIZONTAL |
| 2  | 3345.00  | 40.73        | -8.52     | 32.21        | 74.00        | -41.79        | Peak   | HORIZONTAL |
| 3  | 11020.00 | 33.93        | 7.08      | 41.01        | 74.00        | -32.99        | Peak   | HORIZONTAL |

## Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

## Radiated Spurious Emission Measurement Result (above 1GHz)

|                       |           |           |            |
|-----------------------|-----------|-----------|------------|
| Operation Mode        | TX CH Mid | Test Date | 2012/06/15 |
| Fundamental Frequency | 5590MHz   | Test By   | Dino       |
| Temperature           | 25 °C     | Humidity  | 60 %       |

| No | Freq MHz | Reading dBuV | Factor dB | Level dBuV/m | Limit dBuV/m | Over Limit dB | Remark | Pol V/H    |
|----|----------|--------------|-----------|--------------|--------------|---------------|--------|------------|
| 1  | 2253.00  | 41.66        | -11.84    | 29.82        | 74.00        | -44.18        | Peak   | VERTICAL   |
| 2  | 4388.00  | 37.56        | -4.13     | 33.43        | 74.00        | -40.57        | Peak   | VERTICAL   |
| 3  | 11180.00 | 33.70        | 7.10      | 40.80        | 74.00        | -33.20        | Peak   | VERTICAL   |
|    |          |              |           |              |              |               |        |            |
| 1  | 2148.00  | 41.42        | -12.11    | 29.31        | 74.00        | -44.69        | Peak   | HORIZONTAL |
| 2  | 4353.00  | 37.74        | -4.26     | 33.48        | 74.00        | -40.52        | Peak   | HORIZONTAL |
| 3  | 11180.00 | 31.73        | 7.10      | 38.83        | 74.00        | -35.17        | Peak   | HORIZONTAL |

## Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

## Radiated Spurious Emission Measurement Result (above 1GHz)

|                       |            |           |            |
|-----------------------|------------|-----------|------------|
| Operation Mode        | TX CH High | Test Date | 2012/06/15 |
| Fundamental Frequency | 5670MHz    | Test By   | Dino       |
| Temperature           | 25 °C      | Humidity  | 60 %       |

| No | Freq<br>MHz | Reading<br>dBuV | Factor<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>Limit<br>dB | Remark | Pol<br>V/H |
|----|-------------|-----------------|--------------|-----------------|-----------------|---------------------|--------|------------|
| 1  | 3765.00     | 40.32           | -6.80        | 33.52           | 74.00           | -40.48              | Peak   | VERTICAL   |
| 2  | 7160.00     | 37.81           | 3.92         | 41.73           | 74.00           | -32.27              | Peak   | VERTICAL   |
| 3  | 11340.00    | 33.29           | 7.10         | 40.39           | 74.00           | -33.61              | Peak   | VERTICAL   |
|    |             |                 |              |                 |                 |                     |        |            |
| 1  | 2869.00     | 40.05           | -9.98        | 30.07           | 74.00           | -43.93              | Peak   | HORIZONTAL |
| 2  | 3646.00     | 39.91           | -7.36        | 32.55           | 74.00           | -41.45              | Peak   | HORIZONTAL |
| 3  | 11340.00    | 33.14           | 7.10         | 40.24           | 74.00           | -33.76              | Peak   | HORIZONTAL |

## Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

**Radiated Emission: (worst case: HT40 5470MHz-5725MHz)**

|                       |           |           |            |
|-----------------------|-----------|-----------|------------|
| Operation Mode        | TX CH Low | Test Date | 2012/06/15 |
| Fundamental Frequency | 5510 MHz  | Test By   | Dino       |
| Temperature           | 25 °C     | Humidity  | 60 %       |

| No | Freq<br>MHz | Reading<br>dBuV | Factor<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>Limit<br>dB | Remark  | Pol<br>V/H |
|----|-------------|-----------------|--------------|-----------------|-----------------|---------------------|---------|------------|
| 1  | 5460.00     | 56.11           | -0.78        | 55.33           | 54.00           | -7.28               | Average | VERTICAL   |
| 2  | 5460.00     | 66.07           | -0.78        | 65.29           | 74.00           | -8.71               | Peak    | VERTICAL   |
|    |             |                 |              |                 |                 |                     |         |            |
| 1  | 5460.00     | 45.04           | -0.78        | 44.26           | 54.00           | -9.74               | Average | HORIZONTAL |
| 2  | 5460.00     | 65.23           | -0.78        | 64.45           | 74.00           | -9.55               | Peak    | HORIZONTAL |

|                       |            |           |            |
|-----------------------|------------|-----------|------------|
| Operation Mode        | TX CH High | Test Date | 2012/06/15 |
| Fundamental Frequency | 5670MHz    | Test By   | Dino       |
| Temperature           | 25 °C      | Humidity  | 60 %       |

| No | Freq<br>MHz | Reading<br>dBuV | Factor<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>Limit<br>dB | Remark  | Pol<br>V/H |
|----|-------------|-----------------|--------------|-----------------|-----------------|---------------------|---------|------------|
| 1  | 5725.00     | 43.57           | -0.12        | 43.45           | 54.00           | -10.55              | Average | VERTICAL   |
| 2  | 5725.00     | 55.72           | -0.12        | 55.60           | 74.00           | -18.40              | Peak    | VERTICAL   |
|    |             |                 |              |                 |                 |                     |         |            |
| 1  | 5725.00     | 45.31           | -0.12        | 45.19           | 54.00           | -8.81               | Average | HORIZONTAL |
| 2  | 5725.00     | 57.22           | -0.12        | 57.10           | 74.00           | -16.90              | Peak    | HORIZONTAL |

**Remark:**

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown “ - ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

## 7. ANTENNA REQUIREMENT

### 7.1. Standard Applicable

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

### 7.2. Antenna Connected Construction

The directional gins of antenna used for transmitting is R Site: 2.45dBi / L Site: 3.97dBi and the antenna connector is designed with unique type RF connector and no consideration of replacement. Please see EUT photo and antenna spec. for details.