FCC 47 CFR PART 15 SUBPART E

TEST REPORT

For

WLAN Module

Trade Name: Getac

Model: WiFi Link 5300

Issued to

Getac Technology Corp.
No.1,R&D Road 2 , Hsinchu Science Based Industrial Park ,
Hsinchu , Taiwan

Issued by

Compliance Certification Services Inc.
No. 11, Wu-Gong 6th Rd., Wugu Industrial Park,
Taipei Hsien 248, Taiwan (R.O.C.)
http://www.ccsemc.com.tw
service@ccsrf.com

Date of Issue: November 17, 2009

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

1.	TES'	T RESULT CERTIFICATION	3
2.	EUT	DESCRIPTION	4
3.	TES'	Г METHODOLOGY	6
	3.1	EUT CONFIGURATION	6
	3.2	EUT EXERCISE	6
	3.3	GENERAL TEST PROCEDURES	6
	3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
	3.5	DESCRIPTION OF TEST MODES	8
4.	INST	TRUMENT CALIBRATION	9
	4.1	MEASURING INSTRUMENT CALIBRATION	9
	4.2	MEASUREMENT EQUIPMENT USED	9
5.	FAC	ILITIES AND ACCREDITATIONS	11
	5.1	FACILITIES	11
	5.2	EQUIPMENT	11
	5.3	TABLE OF ACCREDITATIONS AND LISTINGS	12
6.	SET	UP OF EQUIPMENT UNDER TEST	13
	6.1	SETUP CONFIGURATION OF EUT	13
	6.2	SUPPORT EQUIPMENT	13
7.	FCC	PART 15 REQUIREMENTS	14
	7.1	DYNAMIC FREQUENCY SELECTION	14

APPENDIX I PHOTOGRAPHS OF TEST SETUP......45

1. TEST RESULT CERTIFICATION

Applicant: Getac Technology Corp.

No.1, R&D Road 2, Hsinchu Science Based Industrial Park,

Date of Issue: November 17, 2009

Hsinchu, Taiwan

Equipment Under Test: WLAN Module

Trade Name: Getac

Model: WiFi Link 5300

Date of Test: November 13 ~ 16, 2009

APPLICABLE STANDARDS					
STANDARD TEST RESULT					
FCC 47 CFR Part 15 Subpart E	No non-compliance noted				
Deviation from Applicable Standard					
According to client's request, TPC, Power Density and	DFS are required to perform for this EUT only.				

We hereby certify that:

Compliance Certification Services Inc. tested the above equipment. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.407.

The test results of this report relate only to the tested sample identified in this report.

Approved by: Reviewed by:

Rex Lai Gina Lo Section Manager Section Manager

Compliance Certification Services Inc.

Compliance Certification Services Inc.

Page 3 Rev. 00

Gina Lo

2. EUT DESCRIPTION

Г				1	
Product	WLAN Module				
Trade Name	Getac				
Model Number	WiFi Link 53	300			
Power Supply		//-6019M 120-240V~1.5A, 50-60I T: 12V, 3.16A	Hz		
		Mode	Frequency Range	Number of Channels	
		IEEE 802.11a	(MHz) 5180 – 5240	4 Channels	
	UNII Band I	draft 802.11n Standard-20 MHz	5180 - 5240	4 Channels	
Operating Frequency		draft 802.11n Wide-40 MHz	5190 ~ 5230	2 Channels	
Range & Number of		IEEE 802.11a	5260 - 5320	4 Channels	
C	UNII Band II	draft 802.11n Standard-20 MHz	5260 - 5320	4 Channels	
Channels		draft 802.11n Wide-40 MHz	5270 - 5310	2 Channels	
	_	IEEE 802.11a	5500 - 5700	11 Channels	
	UNII Band III	draft 802.11n Standard-20 MHz	5500 - 5700	11 Channels	
		draft 802.11n Wide-40 MHz	5510 - 5670	7 Channels	
Transmit Power	IEEE 802.11a mode / 5180 ~ 5240MHz: 16.45 dBm Draft 802.11n Standard-20 MHz Channel mode / 5180 ~ 5240MHz: 16.80 dBm Draft 802.11n Wide-40 MHz Channel mode / 5190 ~ 5230MHz: 16.93 dBm IEEE 802.11a mode / 5260 ~ 5320MHz: 16.79 dBm draft 802.11n Standard-20 MHz Channel mode / 5260 ~ 5320MHz: 22.10 dBm draft 802.11n Wide-40 MHz Channel mode / 5270 ~ 5310MHz: 19.51 dBm IEEE 802.11a mode / 5500 ~ 5700MHz: 17.51 dBm draft 802.11n Standard-20 MHz Channel mode / 5500 ~ 5700MHz: 22.30 dBm draft 802.11n Wide-40 MHz Channel mode / 5510 ~ 5670MHz: 19.41 dBm				
Modulation Technique	OFDM (QPS	SK, BPSK, 16-QAM, 64	-QAM)		
Transmit Data Rate	IEEE 802.11a mode: 54, 48, 36, 24, 18, 12, 9, 6 Mbps draft 802.11n Standard-20 MHz Channel mode: OFDM (6.5, 7.2, 13, 14.4, 14.44, 19.5, 21.7, 26, 28.89, 28.9, 39, 43.3, 43.33 52, 57.78, 57.8, 58.5, 65.0, 72.2, 78, 86.67, 104, 115.56, 117, 130, 144.44 Mbps) draft 802.11n Wide-40 MHz Channel mode: OFDM (13.5, 15, 27, 30, 40.5, 45, 54, 60, 81, 90, 108, 120, 121.5, 135, 150, 162, 180, 216, 240, 243, 270, 300 Mbps)				
Antenna Specification	Gain: 2.79 dBi				
Antenna Designation	PIFA Antenn	a			

Page 4 Rev. 00

Date of Issue: November 17, 2009

Operation Frequency:

UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII)					
CHANNEL	MHz				
36	5180				
38	5190				
40	5200				
46	5230				
48	5240				
52	5260				
54	5270				
62	5310				
64	5350				
100	5500				
102	5510				
118	5590				
134	5670				
120	5600				
140	5700				

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: MAU035 filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

Page 5 Rev. 00

Date of Issue: November 17, 2009

3. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4 Radiated testing was performed at an antenna to EUT distance 3 meters.

Date of Issue: November 17, 2009

EUT CONFIGURATION

The EUT configuration for testing is installed for RF field strength measurement to meet the Commissions requirement, and is operated in a manner intended to generate the maximum emission in a continuous normal application.

EUT EXERCISE

The EUT is operated in the engineering mode to fix the Tx frequency for the purposes of measurement.

According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is positioned at 0.8 m above the ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4, the conducted emission from the EUT is measured in the frequency range between 0.15 MHz and 30MHz, using the CISPR Quasi-Peak detector mode.

Radiated Emissions

The EUT is placed on the turntable, which is 0.8 m above the ground plane. The turntable is then rotated for 360 degrees to determine the proper orientation for the maximum emission level. The EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission level. And, each emission is to be maximized by changing the horizontal and vertical polarization of the receiving antenna. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

Page 6 Rev. 00

FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Date of Issue: November 17, 2009

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Page 7 Rev. 00

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

DESCRIPTION OF TEST MODES

The EUT (model: WiFi Link 5300) had been tested under operating condition.

The EUT is a 3x3 configuration spatial MIMO (3Tx & 3Rx) without beam forming function that operate in three TX chains and three RX chains. The 3x3 configuration is implemented with three outside TX & RX chains (Chain 0, 1 and 2).

Date of Issue: November 17, 2009

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

IEEE 802.11a mode / 5180 ~ 5240MHz:

Channel Low (5180MHz), Channel Mid (5220MHz) and Channel High (5240MHz) with 6Mbps data rate were chosen for full testing.

draft 802.11n Standard-20 MHz Channel mode / 5180 ~ 5240MHz:

Channel Low (5180MHz), Channel Mid (5220MHz) and Channel High (5240MHz) with 6Mbps data rate were chosen for full testing.

draft 802.11n Wide-40 MHz Channel mode / 5190 ~ 5230MHz:

Channel Low (5190MHz) and Channel High (5230MHz) with 13.5Mbps data rate were chosen for full testing.

IEEE 802.11a mode / 5260 ~ 5320MHz:

Channel Low (5260MHz), Channel Mid (5280MHz) and Channel High (5320MHz) with 6Mbps data rate were chosen for full testing.

draft 802.11n Standard-20 MHz Channel mode / 5260 ~ 5320MHz:

Channel Low (5260MHz), Channel Mid (5280MHz) and Channel High (5320MHz) with 6Mbps data rate were chosen for full testing.

draft 802.11n Wide-40 MHz Channel mode / 5270 ~ 5310MHz:

Channel Low (5270MHz) and Channel High (5310MHz) with 13.5Mbps data rate were chosen for full testing.

IEEE 802.11a mode / 5500 ~ 5700MHz:

Channel Low (5500MHz), Channel Mid (5600MHz) and Channel High (5700MHz) with 6Mbps data rate were chosen for full testing.

draft 802.11n Standard-20 MHz Channel mode / 5500 ~ 5700MHz:

Channel Low (5500MHz), Channel Mid (5600MHz) and Channel High (5700MHz) with 6Mbps data rate were chosen for full testing.

draft 802.11n Wide-40 MHz Channel mode / 5510 ~ 5670MHz:

Channel Low (5510MHz), Channel Mid (5590MHz) and Channel High (5670MHz) with 13.5Mbps data rate were chosen for full testing.

Page 8 Rev. 00

4. INSTRUMENT CALIBRATION

MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: November 17, 2009

MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

	Conduct	ed Emissions Test Site	e	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360131	02/23/2010
Power Meter	Agilent	E4416A	GB41291611	04/05/2010
Power Sensor	Agilent	E9327A	US40441097	06/05/2010

3M Semi Anechoic Chamber							
Name of Equipment	Manufacturer	Model Serial Number		Calibration Due			
Spectrum Analyzer	Agilent	E4446A	US42510252	09/09/2010			
Test Receiver	Rohde&Schwarz	ESCI	100064	11/28/2010			
Switch Controller	TRC	Switch Controller	SC94050010	05/02/2010			
4 Port Switch	TRC	4 Port Switch	SC94050020	05/02/2010			
Loop Antenna	EMCO	6502	8905/2356	05/28/2010			
Horn-Antenna	TRC	HA-0502	06	06/03/2010			
Horn-Antenna	TRC	HA-0801	04	06/18/2010			
Horn-Antenna	TRC	HA-1201A	01	08/10/2010			
Horn-Antenna	TRC	HA-1301A	01	08/10/2010			
Bilog- Antenna	Sunol Sciences	JB3	A030205	03/27/2010			
Loop Antenna	EMCO	6502	8905/2356	05/28/2010			
Turn Table	Max-Full	MFT-120S	T120S940302	N.C.R.			
Antenna Tower	Max-Full	MFA-430	A440940302	N.C.R.			
Controller	Max-Full	MF-CM886	CC-C-1F-13	N.C.R.			
Site NSA	CCS	N/A	FCC MRA: TW1039 IC: 2324G-1 / -2	10/16/2010 11/04/2010			
Test S/W	LABVIEW (V 6.1)						

Remark: The measurement uncertainty is less than +/-2.0065dB (30MHz ~ 1GHz), +/-3.0958dB (Above 1GHz) which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Page 9 Rev. 00

Powerline Conducted Emissions Test Site							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver 9kHz-30MHz	Rohde & Schwarz	ESHS30	828144/003	11/25/2009			
Two-Line V-Network 9kHz-30MHz	Schaffner	NNB41	03/10013	06/10/2010			
LISN 10kHz-100MHz	EMCO	3825/2	9106-1809	04/08/2010			
Test S/W		LABVIEW	V (V 6.1)				

Remark: The measurement uncertainty is less than +/- 2.81dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

C101 1011/2/1/CDV.							
DYNAMIC FREQUENCY SELECTION							
Name of Equipment Manufacturer Model Serial Number Calibration Due							
Spectrum Analyzer	Agilent	E4446A	MY43360131	02/23/2010			
Signal Generator	Agilent	E8267C	US42340162	04/13/2010			

Page 10 Rev. 00

5. FACILITIES AND ACCREDITATIONS

FACILITIES

All measurement facilities used to collect the measurement data are located at
□ No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
☑ No. 11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan
Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
☑ No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan
Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 11 Rev. 00

Date of Issue: November 17, 2009

TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method -47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

Date of Issue: November 17, 2009

No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

Page 12 Rev. 00

6. SETUP OF EQUIPMENT UNDER TEST SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	Notebook PC (Remote)	IBM	2672 (X31)	9985H9M	ANO20030400LEG Bluetooth:	LAN Cable: Unshielded, 10m Line Cable: Unshielded, 10m	AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core
2.	Cisco Aironet 802.11a/b/g Access Point	Cisco Systems, Inc.	AIR-AP1242A G-A-K9	FTX1042B5E3	LDK102056	Cisco Aironet 802.11a/b/g Access Point	N/A

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 13 Rev. 00

Date of Issue: November 17, 2009

7. FCC PART 15 REQUIREMENTS DYNAMIC FREQUENCY SELECTION

LIMIT

According to §15.407 (h) and FCC 06-96 appendix "compliance measurement procedures for unlicensed-national information infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection".

Table 1: Applicability of DFS requirements prior to use of a channel

Dogwinomont	Operational Mode				
Requirement	Master	Client (without radar detection)	Client(with radar detection)		
Non-Occupancy Period	Yes	Yes	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode				
Kequii ement	Master	Client (without radar detection)	Client(with radar detection)		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		

Table 3: Interference Threshold values, Master or Client incorporating In-Service

Maximum Transmit Power	Value (see note)
>=200 Milliwatt	-64 dBm
< 200 Milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Page 14 Rev. 00

Date of Issue: November 17, 2009

Table 4: DFS Response requirement values

Date of Issue: November 17, 2009

Parameter	Value	
Non-occupancy period	30 minutes	
Channel Availability Check Time	60 seconds	
Channel Move Time	10 seconds	
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period	

The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short pulse radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.
- For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 – Short Pulse Radar Test Waveforms

Tuble 5 Short I tabe Radar Test Waveforms							
Radar Type	Pulse Width (Microseconds)	PRI (Microseconds)	Pulses	Minimum Percentage of Successful Detection	Minimum Trials		
1	1	1428	18	60%	30		
2	1-5	150-230	23-29	60%	30		
3	6-10	200-500	16-18	60%	30		
4	11-20	200-500	12-16	60%	30		
Aggregate (R	adar Types 1-4)		80%	120			

Table 6 - Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (µsec)		Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000-2000	80%	30

Table 7 – Frequency Hopping Radar Test Signal

Radar Waveform	Pulse Width (µsec)	PRI (µsec)	Burst Length (ms)	Pulses Per Hop	Hopping Rate (kHz)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	300	9	0.33	70%	30

Page 15 Rev. 00

DESCRIPTION OF EUT

Overview Of EUT With Respect To §15.407 (H) Requirements

The firmware installed in the EUT during testing was:

Firmware Rev: 13.0.0.107

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges as a Client Device that does not have radar detection capability.

Date of Issue: November 17, 2009

The highest power level is 16.79 dBm in the 5250-5350 MHz band and 17.51 dBm in the 5470-5725 MHz band.

The EUT uses three transmitter connected to three 50-ohm coaxial antenna ports via a diversity switch. Three antenna port is connected to the test system since the EUT has three antenna.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a architecture, with a nominal channel bandwidth of 20 MHz.

The Master Device is a Cisco Aironet 802.11a/b/g Access Point, FCC ID: LDK102056.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -62 + 5 = -57dBm.

The calibrated conducted DFS Detection Threshold level is set to -62 dBm. The tested level is lower than the required level hence it provides margin to the limit.

Manufacturer's Statement Regarding Uniform Channel Spreading

The end product implements an automatic channel selection feature at startup such that operation commences on channels distributed across the entire set of allowed 5GHz channels. This feature will ensure uniform spreading is achieved while avoiding non-allowed channels due to prior radar events.

Page 16 Rev. 00

TEST AND MEASUREMENT SYSTEM

System Overview

The measurement system is based on a conducted test method.

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold. The time-domain resolution is 3 msec / bin with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), 50 ohm termination would be removed from the splitter so that connection can be established between splitter and the Master and/or Slave devices.

Conducted Method System Block Diagram

Page 17 Rev. 00

System Calibration

Connect the spectrum analyzer to the test system in place of the master device. Set the signal generator to CW mode. Adjust the amplitude of the signal generator to yield a measured level of –64 dBm on the spectrum analyzer.

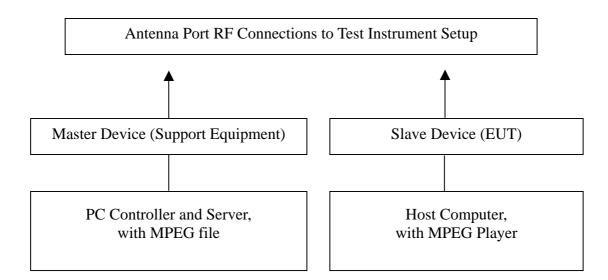
Date of Issue: November 17, 2009

Without changing any of the instrument settings, reconnect the spectrum analyzer to the Common port of the Spectrum Analyzer Combiner/Divider and connect a 50 ohm load to the Master Device port of the test system.

Measure the amplitude and calculate the difference from –64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference. Confirm that the signal is displayed at –64 dBm. Readjust the RBW and VBW to 3 MHz, set the span to 10 MHz, and confirm that the signal is still displayed at –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.


Adjustment Of Displayed Traffic Level

Establish a link between the Master and Slave, adjusting the Link Step Attenuator as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. Confirm that the displayed traffic is from the Master Device. For Master Device testing confirm that the displayed traffic does not include Slave Device traffic. For Slave Device testing confirm that the displayed traffic does not include Master Device traffic.

If a different setting of the Master Step Attenuator is required to meet the above conditions, perform a new System Calibration for the new Master Step Attenuator setting.

Page 18 Rev. 00

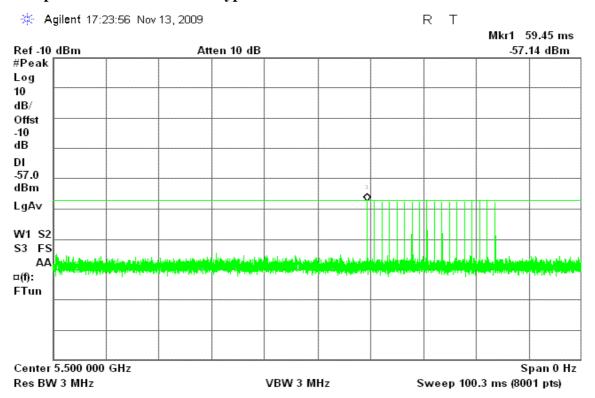
Test Setup

TEST RESULTS

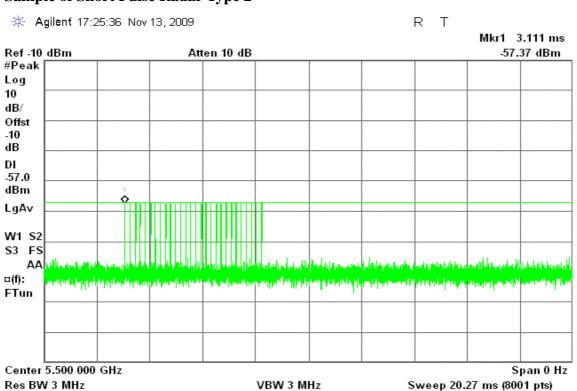
No non-compliance noted

Page 19 Rev. 00

Date of Issue: November 17, 2009

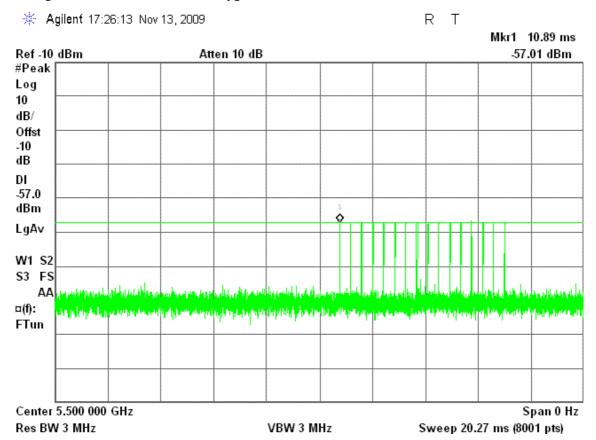

Test Plot

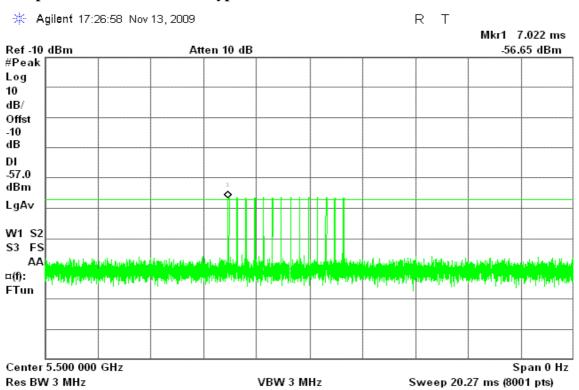
Test Plot


PLOTS OF RADAR WAVEFORMS

draft 802.11n Standard-20 MHz mode

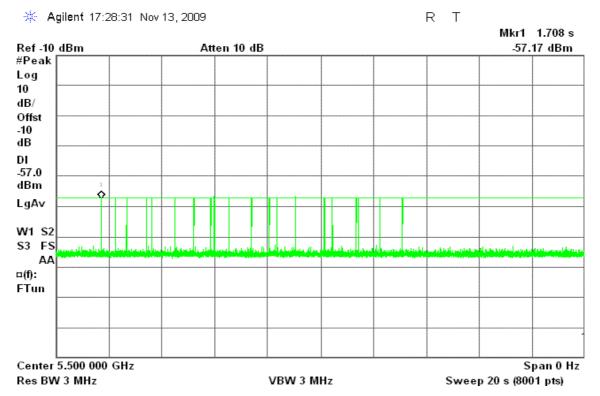
Sample of Short Pulse Radar Type 1


Sample of Short Pulse Radar Type 2

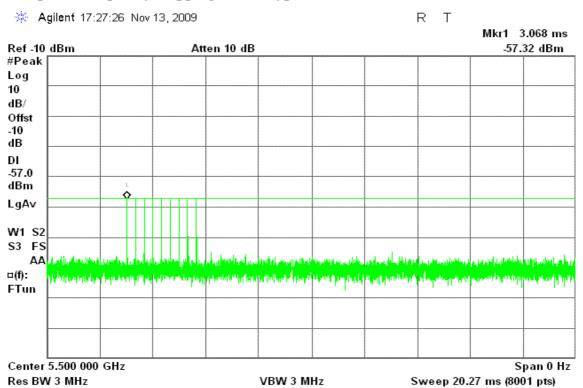

Page 20 Rev. 00

RP1 FCC ID: MAU035 Date of Issue: November 17, 2009

Sample of Short Pulse Radar Type 3

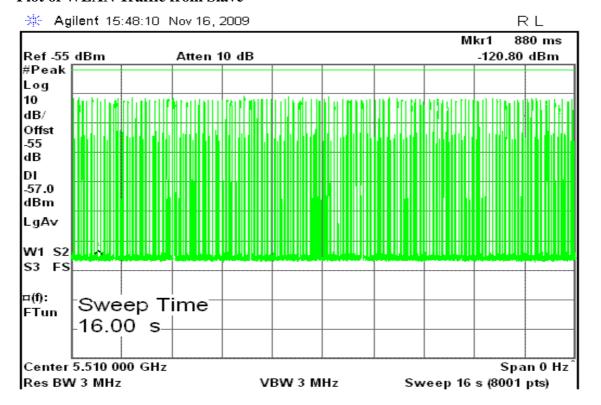


Sample of Short Pulse Radar Type 4

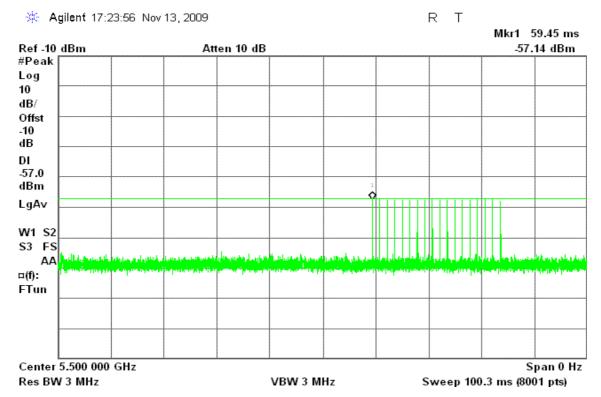


Page 21 Rev. 00

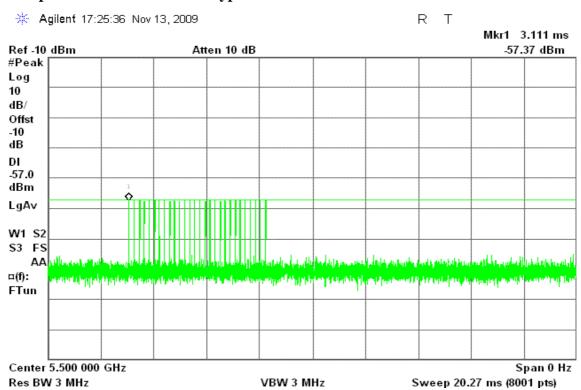
Sample of Long Pulse Radar Type 5



Sample of Frequency Hopping Radar Type 6

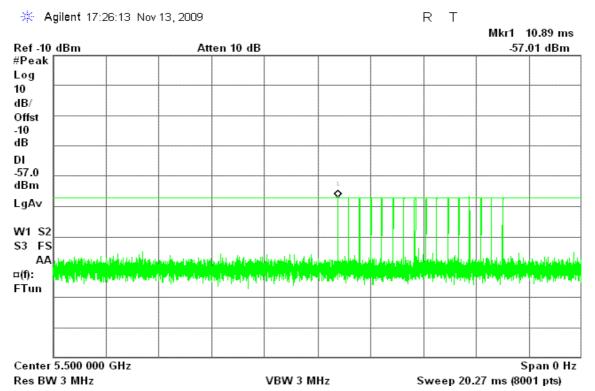

Page 22 Rev. 00

Plot of WLAN Traffic from Slave

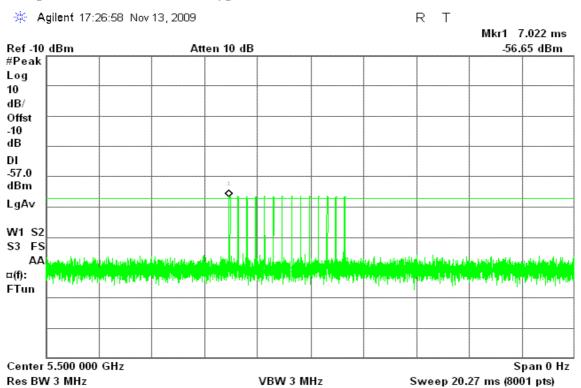


draft 802.11n Wide-40 MHz mode

Sample of Short Pulse Radar Type 1

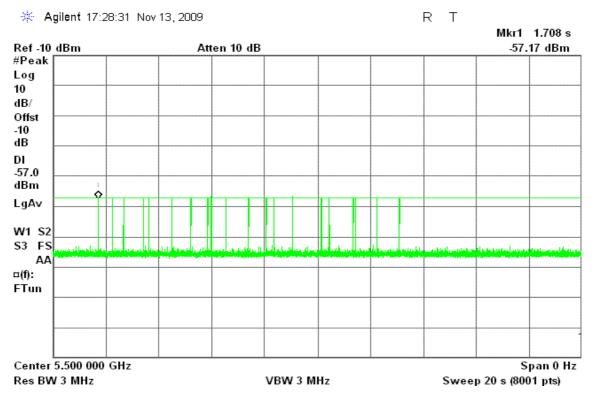


Sample of Short Pulse Radar Type 2

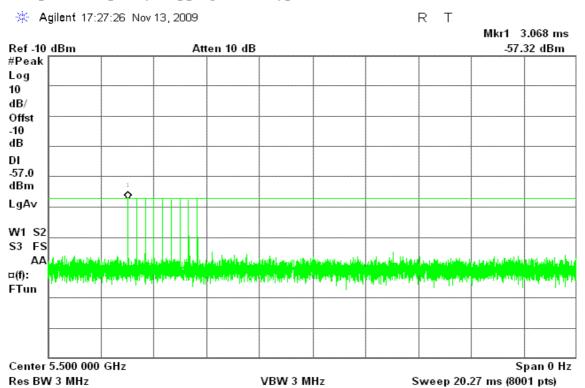


Page 24 Rev. 00

Sample of Short Pulse Radar Type 3



Sample of Short Pulse Radar Type 4



Page 25 Rev. 00

Sample of Long Pulse Radar Type 5

Sample of Frequency Hopping Radar Type 6

Page 26 Rev. 00

Plot of WLAN Traffic from Slave

Page 27 Rev. 00

TEST CHANNEL AND METHOD

All tests were performed at channel center frequency of 5500 and 5510 MHz utilizing a conducted test method.

CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME GENERAL REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

Date of Issue: November 17, 2009

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time =

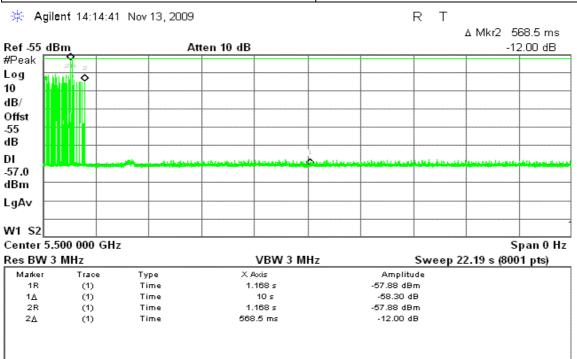
(Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated

Begins at (Reference Marker + 200 msec) and

Ends no earlier than (Reference Marker + 10 sec).

Page 28 Rev. 00


AU035 Date of Issue: November 17, 2009

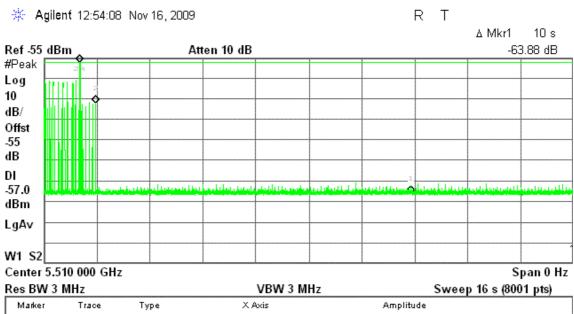
draft 802.11n Standard-20 MHz Channel mode

Type 1 Channel Move Time Results

No non-compliance noted.

Channel Move Time (s)	Limit (s)
0.568	10

Page 29 Rev. 00


O301-RP1 FCC ID: MAU035 Date of Issue: November 17, 2009

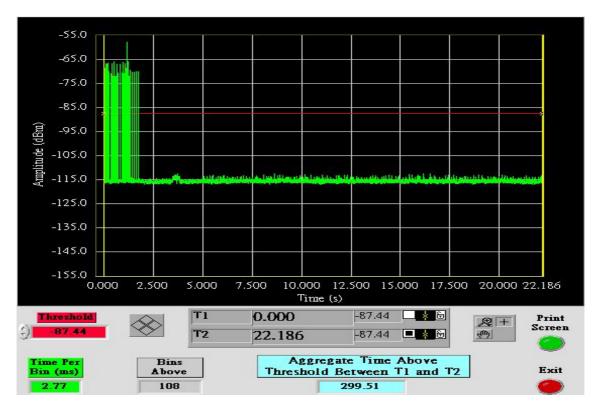
draft 802.11n Wide-40 MHz Channel mode

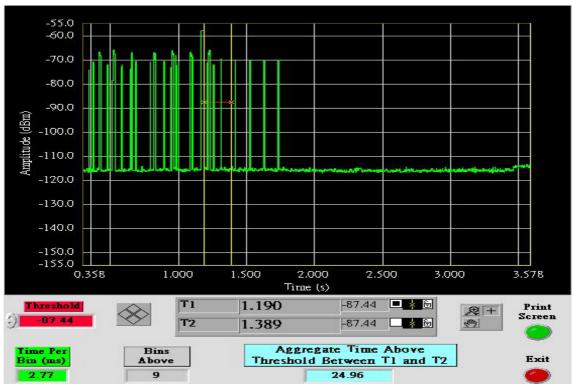
Type 1 Channel Move Time Results

No non-compliance noted.

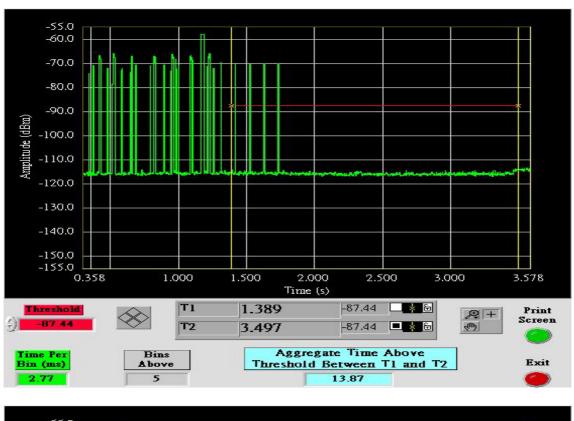
Channel Move Time (s)	Limit (s)
0.563	10

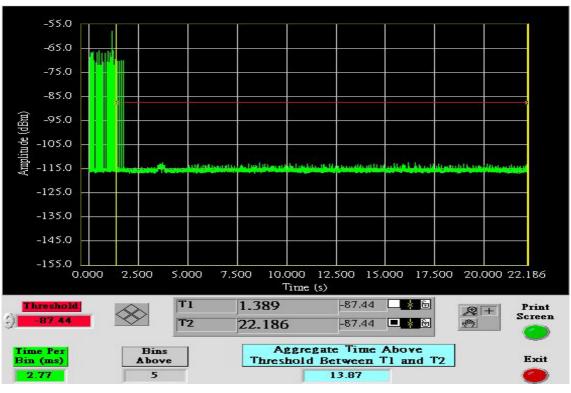
1R (1) Time 1.072 s-57.24 dBm 1∆ Time -63.88 dB (1) 10 s 2R (1) Time 1.072 s-57.88 dBm -12.00 dB 563.5 ms 2∆ (1) Time


Page 30 Rev. 00

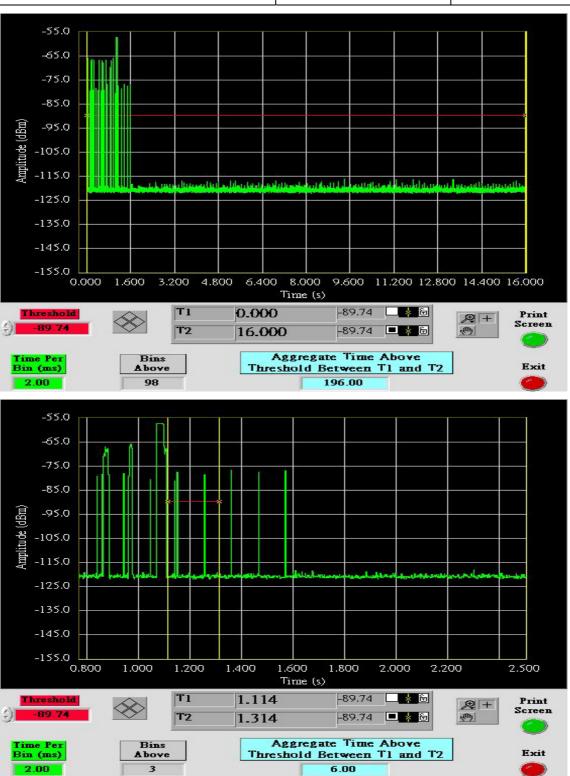

draft 802.11n Standard-20 MHz Channel mode

Type 1 Channel Closing Transmission Time Results

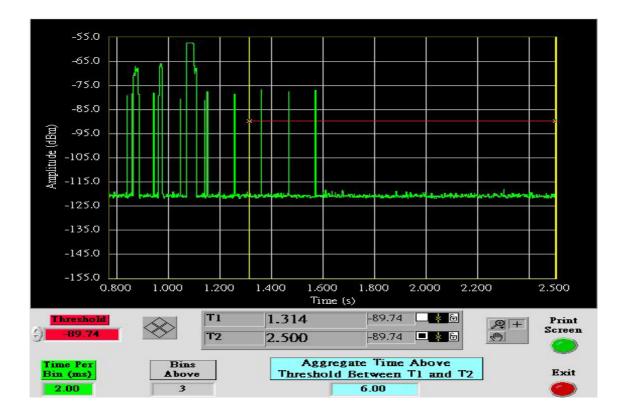

No non-compliance noted.

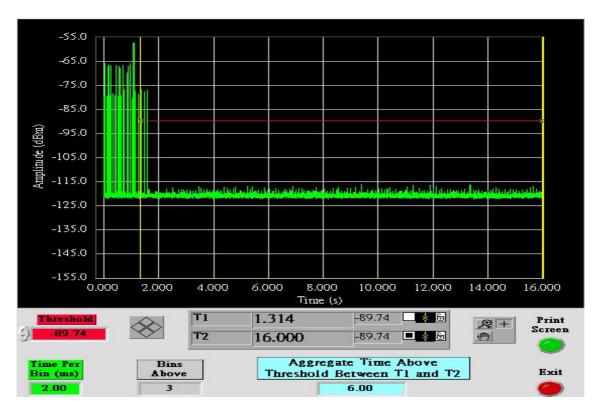

Aggregate Transmission Time (ms)	Limit (ms)	Margin (ms)
13.87	60	-49.13

Page 31 Rev. 00


Page 32 Rev. 00 FCC ID: MAU035 Date of Issue: November 17, 2009

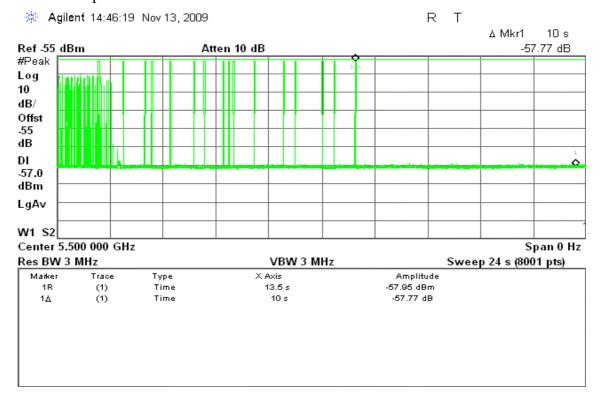
draft 802.11n Wide-40 MHz Channel mode


Type 1 Channel Closing Transmission Time Results


No non-compliance noted.

Aggregate Transmission Time (ms)	Limit (ms)	Margin (ms)
6	60	-54

Page 33 Rev. 00

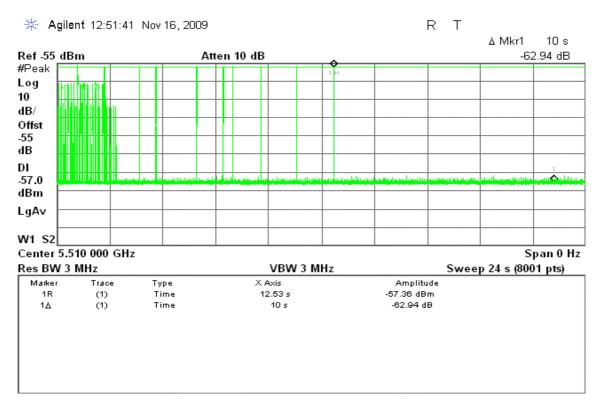

Page 34 Rev. 00

Type 5 Channel Move Time Results

draft 802.11n Standard-20 MHz Channel mode

No non-compliance noted: The traffic ceases prior to the end of the radar waveform, therefore it also ceases prior to 10 seconds after the end of the radar waveform.

Date of Issue: November 17, 2009



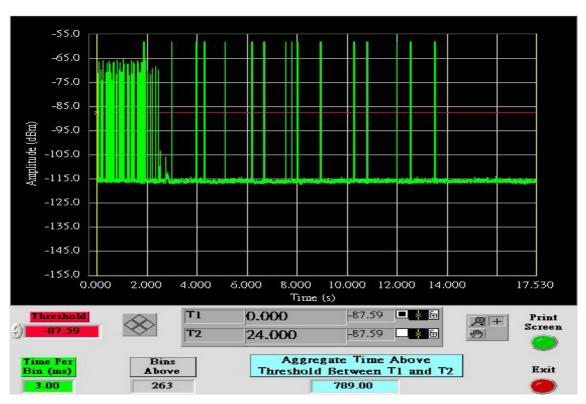
Page 35 Rev. 00

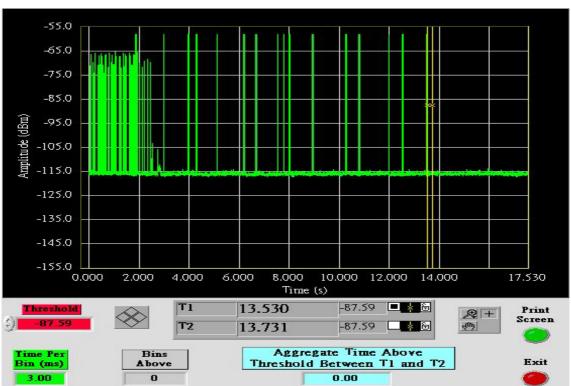
draft 802.11n Wide-40 MHz Channel mode

Type 5 Channel Move Time Results

No non-compliance noted: The traffic ceases prior to the end of the radar waveform, therefore it also ceases prior to 10 seconds after the end of the radar waveform.

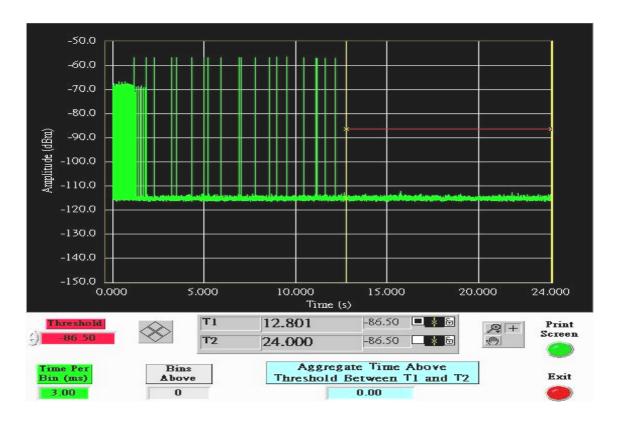
Page 36 Rev. 00

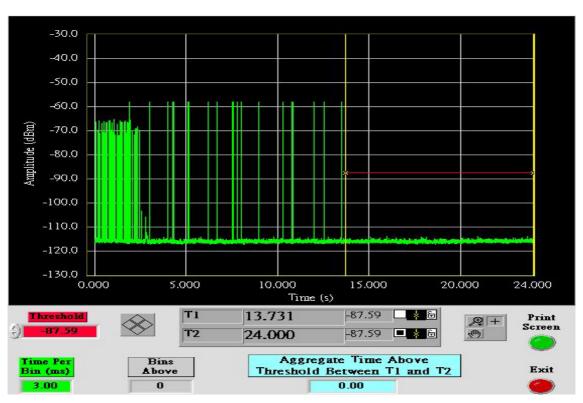

CC ID: MAU035 Date of Issue: November 17, 2009


draft 802.11n Standard-20 MHz mode

Type 5 Channel Closing Transmission Time Results

No non-compliance noted.

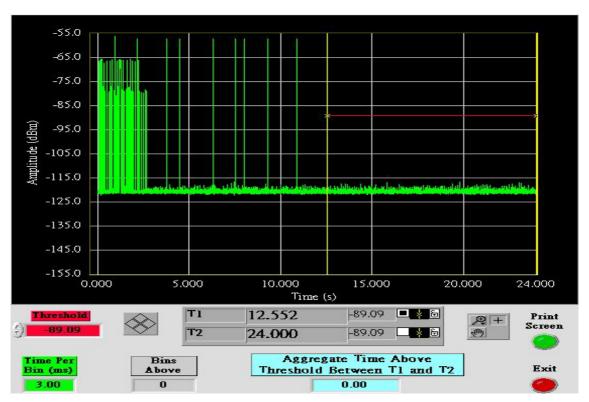

Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
0	60	-60

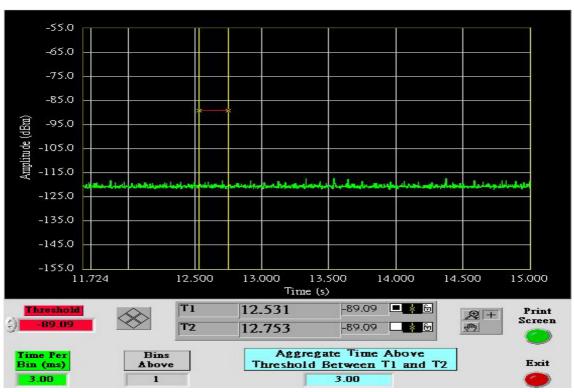


Page 37 Rev. 00

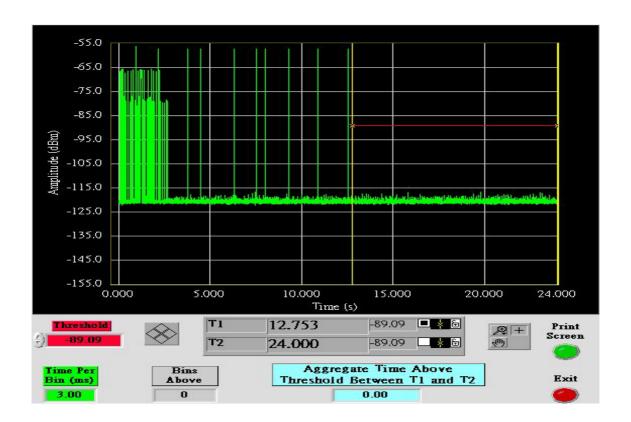
Compliance Certification Services Inc. Report No.: 91020301-RP1

Page 38 Rev. 00 FCC ID: MAU035


Date of Issue: November 17, 2009


draft 802.11n Wide-40 MHz mode

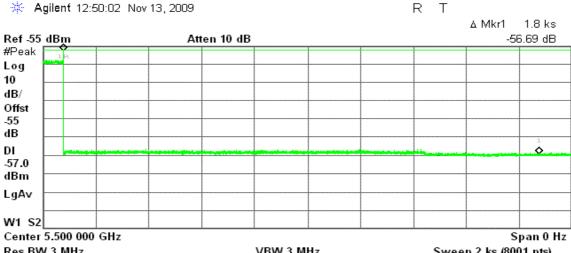
Type 1 Channel Closing Transmission Time Results


No non-compliance noted.

Aggregate Transmission Time	Limit	Margin
(ms)	(ms)	(ms)
0	60	-60

Page 39 Rev. 00

NON-OCCUPANCY PERIOD


draft 802.11n Wide-20 MHz mode

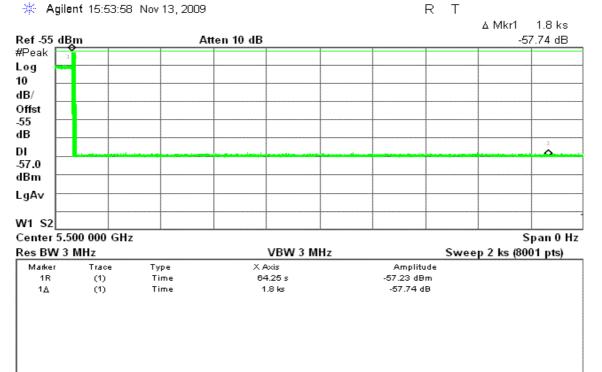
Type 1 Non-Occupancy Period Test Results

No non-compliance noted.

No EUT transmissions were observed on the test channel during the 30 minute observation time.

Date of Issue: November 17, 2009

Res BW 3 MHZ			VBW 3 MHZ		Sweep Z ks (8001 pts)
Marker	Trace	Туре	X Axis	Amplitude	
1R	(1)	Time	76.25 s	-57.70 dBm	
1∆	(1)	Time	1.8 ks	-56.69 dB	


Page 41 Rev. 00

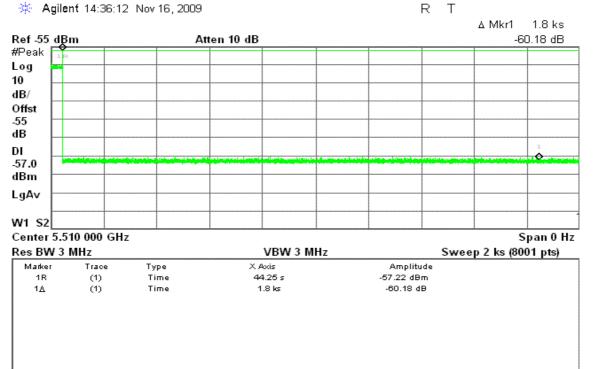
Type 5 Non-Occupancy Period Test Results

No non-compliance noted.

No EUT transmissions were observed on the test channel during the 30 minute observation time.

Date of Issue: November 17, 2009

Page 42 Rev. 00

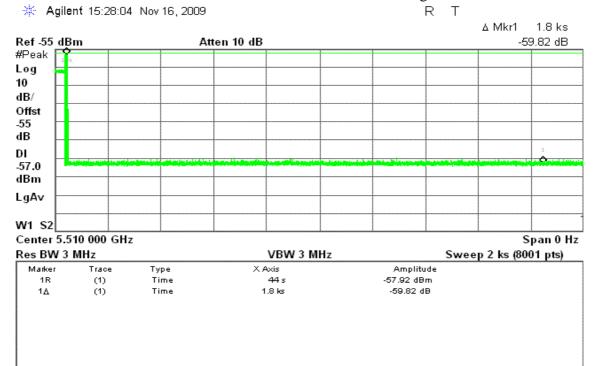

draft 802.11n Wide-40 MHz mode

Type 1 Non-Occupancy Period Test Results

No non-compliance noted.

No EUT transmissions were observed on the test channel during the 30 minute observation time.

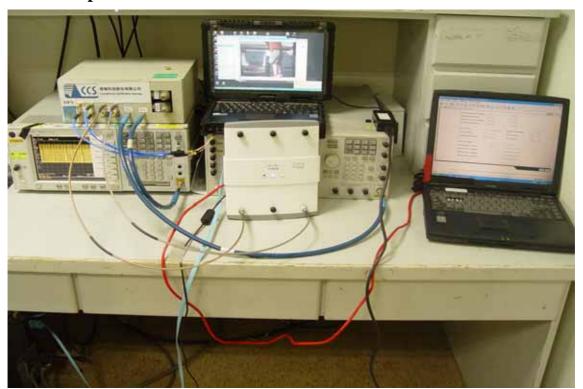
Date of Issue: November 17, 2009


Page 43 Rev. 00

Type 5 Non-Occupancy Period Test Results

No non-compliance noted.

No EUT transmissions were observed on the test channel during the 30 minute observation time.


Date of Issue: November 17, 2009

Page 44 Rev. 00

APPENDIX I PHOTOGRAPHS OF TEST SETUP

DFS Set up Photos

Page 45 Rev. 00

Date of Issue: November 17, 2009