



# Electromagnetic Compatibility Test Report

Tests Performed on an RF IDEas, Inc.  
WAVE ID Plus, RFID Reader

Model OEM-805N14KU-ADV1

Radiometrics Document RP-9397



| Product Detail:                                                           |                                                                                 |            |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|
| FCC ID: M9MFPA0100                                                        |                                                                                 |            |
| IC: 6571A-FPA0100                                                         |                                                                                 |            |
| Equipment type: Dual Frequency Card Reader                                |                                                                                 |            |
| Test Standards:                                                           |                                                                                 |            |
| US CFR Title 47, Chapter I, FCC Part 15 Subpart C                         |                                                                                 |            |
| FCC Part 15 CFR Title 47: 2021                                            |                                                                                 |            |
| Canada ISED; RSS-210, Issue 10: 2019 as required for Category I Equipment |                                                                                 |            |
| FCC Part 15.209 & 15.225                                                  |                                                                                 |            |
| Tests Performed For:                                                      | Test Facility:                                                                  |            |
| RF IDEas, Inc.<br>4020 Winnetka Av.<br>Rolling Meadows, IL 60008          | Radiometrics Midwest Corporation<br>12 Devonwood Avenue<br>Romeoville, IL 60446 |            |
| Test completion Date(s):                                                  |                                                                                 |            |
| January 22, 2021                                                          |                                                                                 |            |
| Document RP-9397 Revisions:                                               |                                                                                 |            |
| Rev.                                                                      | Issue Date                                                                      | Revised By |
| 0                                                                         | February 4, 2021                                                                |            |
|                                                                           |                                                                                 |            |
|                                                                           |                                                                                 |            |
|                                                                           |                                                                                 |            |



## Table of Contents

|                                                                         |    |
|-------------------------------------------------------------------------|----|
| 1.0 ADMINISTRATIVE DATA.....                                            | 3  |
| 2.0 TEST SUMMARY AND RESULTS.....                                       | 3  |
| 2.1 RF Exposure Compliance Requirements .....                           | 3  |
| 3.0 EQUIPMENT UNDER TEST (EUT) DETAILS.....                             | 4  |
| 3.1 EUT Description .....                                               | 4  |
| 3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements .....           | 4  |
| 3.1.2 Product Family .....                                              | 4  |
| 3.2 Related Submittals .....                                            | 4  |
| 4.0 TESTED SYSTEM DETAILS .....                                         | 5  |
| 4.1 Tested System Configuration.....                                    | 5  |
| 4.2 Special Accessories .....                                           | 5  |
| 4.3 Equipment Modifications.....                                        | 5  |
| 5.0 TEST SPECIFICATIONS .....                                           | 5  |
| 6.0 TEST PROCEDURE DOCUMENTS .....                                      | 5  |
| 7.0 RADIOMETRICS' TEST FACILITIES.....                                  | 6  |
| 8.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS .....        | 6  |
| 9.0 CERTIFICATION .....                                                 | 6  |
| 10.0 TEST EQUIPMENT TABLE .....                                         | 6  |
| 11.0 TEST SECTIONS.....                                                 | 7  |
| 11.1 AC Conducted Emissions .....                                       | 7  |
| 11.2 Radiated RF Emissions .....                                        | 10 |
| 11.2.1 Field Strength Calculation .....                                 | 11 |
| 11.2.2 Radiated Emissions Test Results .....                            | 11 |
| 11.3 Magnetic Field Measurements and Decay Factor Calculations.....     | 16 |
| 11.3.1 Magnetic Field Radiated Emissions Results (0.009 to 30 MHz)..... | 17 |
| 11.4 Occupied Bandwidth Data .....                                      | 18 |
| 12.0 MEASUREMENT INSTRUMENTATION UNCERTAINTY .....                      | 20 |

Notice: This report must not be reproduced (except in full) without the written approval of  
Radiometrics Midwest Corporation.



## 1.0 ADMINISTRATIVE DATA

|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Equipment Under Test:</i><br>An RF IDEas, Inc., Wave ID Mobile SP, RFID Reader<br>Model: OEM-805N14KU-ADV1<br>Serial Number: FCPA000011<br>These will be referred to as the EUT in this Report                   |                                                                                                                                                                                                                                  |
| <i>Date EUT Received at Radiometrics:</i><br>January 12, 2021                                                                                                                                                       | <i>Test Date(s):</i><br>January 12 thru 19, 2021                                                                                                                                                                                 |
| <i>Test Report Written and Authorized by:</i><br><br>02/04/2021<br>Joseph Strzelecki<br>Senior EMC Engineer<br>NARTE EMC-000877-NE | <i>Radiometrics' Personnel Responsible for Test:</i><br>Joseph Strzelecki<br>Senior EMC Engineer<br><br>Richard L. Tichgelaar<br>EMC Technician<br><br>Chris E. D'Alessio<br>EMC Technician<br><br>Dave Jarvis<br>EMC Technician |
| <i>Test Witnessed By:</i><br>The tests were partially witnessed by Shiung Lo of RF IDEas, Inc.                                                                                                                      |                                                                                                                                                                                                                                  |

## 2.0 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a Wave ID Plus RFID Reader, manufactured by RF IDEas, Inc. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results per RSS-210 & FCC Part 15

| Environmental Phenomena               | Frequency Range     | Test Result |
|---------------------------------------|---------------------|-------------|
| RF Radiated Emissions                 | 30-1000 MHz         | Pass        |
| Conducted Emissions, AC Mains         | 0.15 - 30 MHz       | Pass        |
| RF Radiated Emissions H-Field         | 0.009 – 30 MHz      | Pass        |
| Occupied Bandwidth                    | 125 kHz & 13.56 MHz | Pass        |
| Frequency Stability vs Temp & Voltage | None                | Pass        |

### 2.1 RF Exposure Compliance Requirements

Since the effective power output is less than 1 mW, the EUT meets the FCC requirement for RF exposure and is exempt from RSS-102. There are no power level adjustments and the antenna is permanently attached. The detailed calculations for RF Exposure are presented in a separate document.



## 3.0 EQUIPMENT UNDER TEST (EUT) DETAILS

### 3.1 EUT Description

The EUT is a WAVE ID Plus, Mobile SP, Dual Frequency, RFID Reader, Model OEM-805N14KU-ADV1, manufactured by RF IDeas, Inc. The EUT was in good working condition during the tests, with no known defects.

#### 3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements

The products will not be sold to the general public. RF IDeas or the OEM will be responsible to ensure the proper installation in accordance with RF IDeas requirements.

These two antennas have a unique interface connector to ensure no other OEM antennas can be used. The antenna is internal to the EUT and it is not readily available to be modified by the end user.

#### 3.1.2 Product Family

The following table is the product family list of the readers that use the same exact electronics and PCB as the ones tested in this report. The only changes are in firmware that would not affect the EMC characteristics of the readers.

The first item on the table below shows the unit that was fully tested and the results of which are featured in herein. The other untested model numbers listed below are electrically identical with the same electromagnetic emissions and electromagnetic compatibility characteristics as those tested, therefore the tests on the model numbers below are representative for the tested models.

| Model Number      | Description                                                               |
|-------------------|---------------------------------------------------------------------------|
| OEM-805N14KU-ADV1 | Tested unit<br>WAVE ID Plus OEM V2 Keystroke Pico Coplaner USB Reader     |
| OEM-805N24KU-ADV1 | WAVE ID Plus OEM V2 SDK Pico Coplaner USB Reader                          |
| OEM-800N14KU-ADV1 | WAVE ID Plus OEM V2 Keystroke w/iCLASS SE & Seos Pico Coplaner USB Reader |
| OEM-800N24KU-ADV1 | WAVE ID Plus OEM V2 SDK w/iCLASS SE & Seos Pico Coplaner USB Reader       |
| OEM-80MN14KU-ADV1 | WAVE ID Plus OEM V2 Keystroke w/MIFARE Secure Coplaner USB Reader         |
| OEM-80MN24KU-ADV1 | WAVE ID Plus OEM V2 SDK w/MIFARE Secure Coplaner USB Reader               |

All these mentioned model numbers use the same frequency determining circuitry and use a USB interface. The 125 kHz and 13.56 MHz transmitter circuits are identical on all models.

### 3.2 Related Submittals

RF IDeas, Inc. is not submitting any other products simultaneously for equipment authorization related to the EUT.



## 4.0 TESTED SYSTEM DETAILS

### 4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations. Power was supplied at 115 VAC, 60 Hz single-phase to the host computer. The EUT was powered from the USB. The identification for all equipment, plus descriptions of all cables used in the tested system, are:

**Tested System Configuration List**

| Item | Description               | Type* | Manufacturer | Model Number      | Serial Number |
|------|---------------------------|-------|--------------|-------------------|---------------|
| 1    | RFID Reader               | E     | RF IDEas     | OEM-805N14KU-ADV1 | FCPA000011    |
| 2    | Latitude Laptop PC        | H     | HP           | Elite x2          | 5CG545482P    |
| 3    | Laptop AC-DC power supply | P     | HP           | 854055-002        | None          |

\* Type: E = EUT, P = Peripheral, S = Support Equipment; H = Host Computer

**List of Cables**

| QTY | Length (m) | Cable Description                              | Shielded? |
|-----|------------|------------------------------------------------|-----------|
| 1   | 1.8        | USB Cable from Reader to Host computer         | Yes       |
| 1   | 1.2        | AC Cord to AC-DC power supply to host computer | No        |
| 1   | 1.5        | DC Cord to Computer                            | No        |

### 4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

### 4.3 Equipment Modifications

No modifications were made at Radiometrics in order to meet the requirements listed in this report.

## 5.0 TEST SPECIFICATIONS

| Document               | Date | Title                                                                                                                 |
|------------------------|------|-----------------------------------------------------------------------------------------------------------------------|
| FCC<br>CFR Title 47    | 2021 | Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices |
| IC RSS-210<br>Issue 10 | 2019 | Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands) Category I Equipment                        |
| IC RSS-Gen<br>Issue 5  | 2019 | General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)                  |

## 6.0 TEST PROCEDURE DOCUMENTS

The tests were performed using the procedures from the following specifications:

| Document            | Date | Title                                                                                                                                |
|---------------------|------|--------------------------------------------------------------------------------------------------------------------------------------|
| ANSI<br>C63.4-2014  | 2014 | Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |
| ANSI<br>C63.10-2013 | 2013 | American National Standard for Testing Unlicensed Wireless Devices                                                                   |



## 7.0 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2017 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site ([www.radiomet.com](http://www.radiomet.com)). Radiometrics accreditation status can be verified at A2LA's web site ([www.a2la2.org](http://www.a2la2.org)).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

Chamber E: Is a custom-made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber.

Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

A separate ten-foot long, brass plated, steel ground rod attached via a 6-inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number 3124A with a CAB ID US0224.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance with ANSI/NCSL Z540-1, with traceability to the National Institute of Standards and Technology (NIST).

## 8.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

## 9.0 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

## 10.0 TEST EQUIPMENT TABLE

| RMC ID   | Manufacturer   | Description       | Model No.    | Serial No. | Frequency Range | Cal Period | Cal Date |
|----------|----------------|-------------------|--------------|------------|-----------------|------------|----------|
| ANT-53   | EMCO           | Loop Antenna      | 6507         | 1453       | 1 kHz-30 MHz    | 24 Mo      | 02/04/20 |
| ANT-66   | ETS-Lindgren   | Horn Antenna      | 3115         | 62580      | 1.0-18GHz       | 24 Mo.     | 03/05/19 |
| ANT-68   | EMCO           | Log-Periodic Ant. | 93146        | 9604-4456  | 200-1000MHz     | 24 Mo.     | 01/02/20 |
| ANT-80   | AH Systems     | Bicon Antenna     | SAS-540      | 294        | 20-330MHz       | 24 Mo.     | 01/05/21 |
| CAB-106A | Teledyne       | Coaxial Cable     | N/A          | 1090       | DC-2 GHz        | 24 Mo.     | 01/29/20 |
| CAB-1090 | Teledyne       | Coaxial Cable     | N/A          | 1090       | DC-18 GHz       | 24 Mo.     | 02/06/20 |
| CAB-160B | Teledyne       | Coaxial Cable     | N/A          | 1090       | DC-18 GHz       | 24 Mo.     | 02/05/20 |
| HPF-01   | Solar          | High Pass Filter  | 7930-100     | HPF-1      | 0.15-30MHz      | 24 Mo.     | 03/02/20 |
| LSN-01   | Electrometrics | 50 uH LISN        | FCC/VDE 50/2 | 1001       | 0.01-30MHz      | 24 Mo.     | 08/12/19 |



| RMC ID | Manufacturer          | Description            | Model No.     | Serial No.                | Frequency Range | Cal Period | Cal Date |
|--------|-----------------------|------------------------|---------------|---------------------------|-----------------|------------|----------|
| REC-20 | HP / Agilent          | Spectrum Analyzer      | 85460A/84562A | 33330A00135<br>3410A00178 | 30Hz-6GHz       | 24 Mo.     | 08/14/19 |
| REC-21 | Agilent               | Spectrum Analyzer      | E7405A        | MY45118341                | 9kHz-26.5GHz    | 24 Mo.     | 01/14/20 |
| REC-31 | Agilent               | Spectrum Analyzer      | E7402A        | US41160415                | 9kHz-3GHz       | 24 Mo.     | 05/20/19 |
| TC-01  | GS Blue M<br>Electric | Temperature<br>Chamber | ETC-04S-E     | 0003-ETC-201              | -40 to 100 C    | 24 Mo.     | 11/08/19 |
| THM-03 | Fluke                 | Temp/Humid Meter       | 971           | 95850465                  | N/A             | 12 Mo.     | 06/03/20 |

Note: All calibrated equipment is subject to periodic checks.

| Software Company | Test Software Name | Version  | Applicable Tests                                |
|------------------|--------------------|----------|-------------------------------------------------|
| Radiometrics     | EN550XX0           | 07.16.19 | RF Conducted Emissions (FCC Part 15 & EN 55032) |
| Radiometrics     | REREC11D           | 07.16.19 | RF Radiated Emissions (FCC Part 15 & EN 55032)  |
| Agilent          | PSA/ESA-E/L/EMC    | 2.4.0.42 | Bandwidth and screen shots                      |

## 11.0 TEST SECTIONS

### 11.1 AC Conducted Emissions

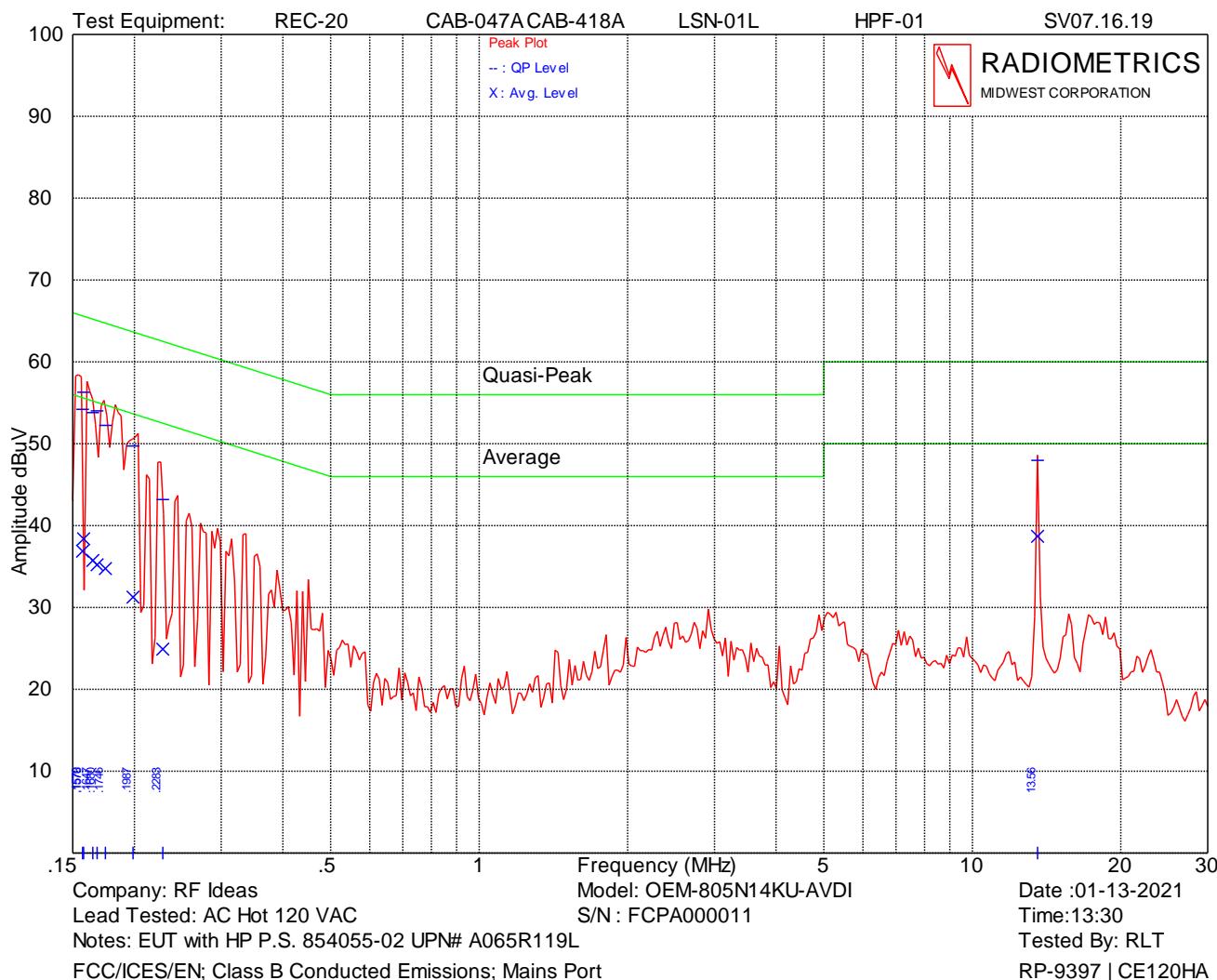
The tests and limits are in accordance with FCC section 15.207 and RSS Gen section 8.8.

A computer-controlled analyzer was used to perform the conducted emissions measurements. The computer recorded the data and then plotted it on a semi-log graph. Adjusting the positions of the cables and orientation of the test system then maximizes the highest emissions.

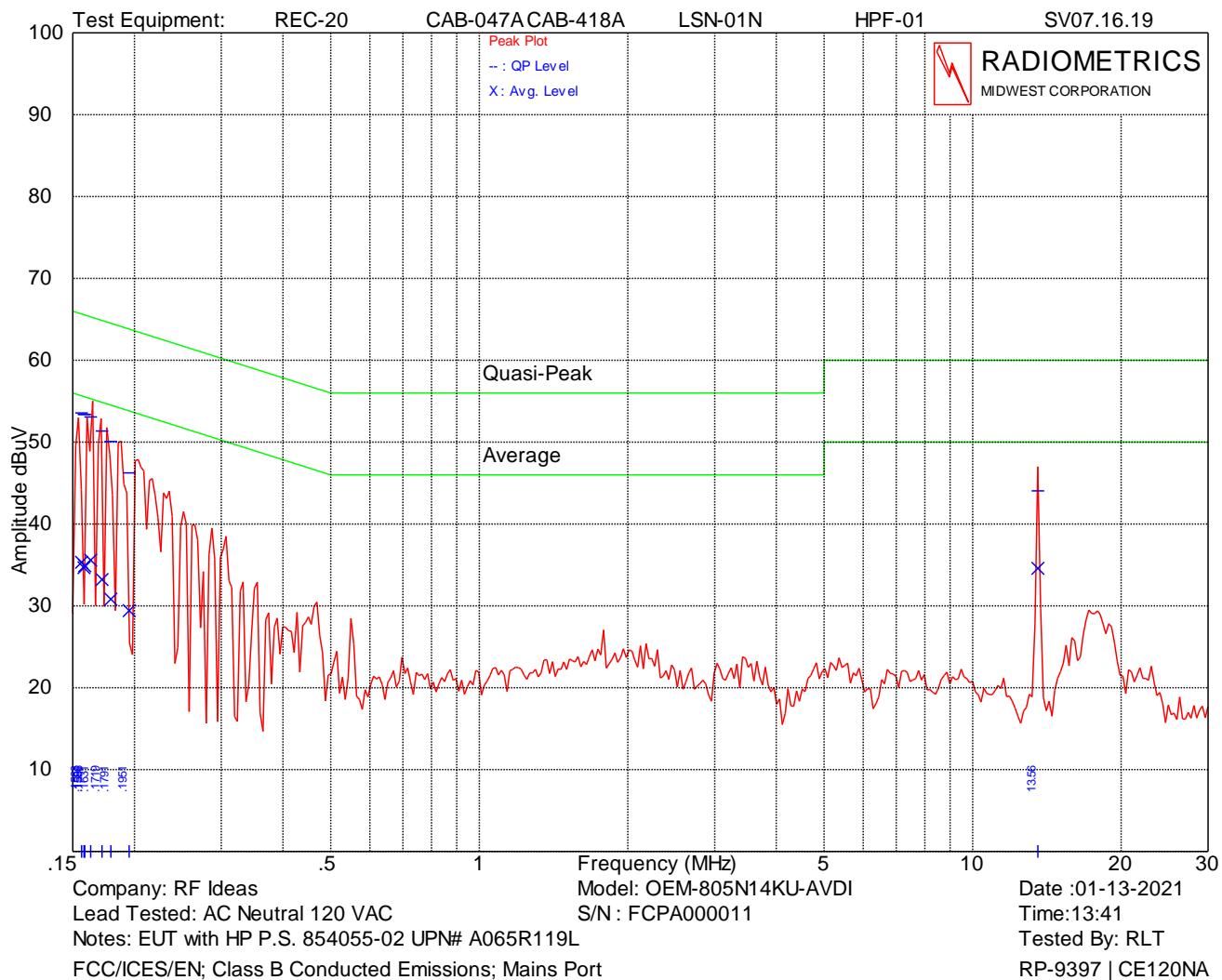
Mains Conducted emission measurements were performed using a 50 Ohm/50 uH Line Impedance Stabilization Network (LISN) as the pick-up device. Measurements were repeated on both leads within the power cord. If the EUT power cord exceeded 80 cm in length, the excess length of the power cord was made into a 30 to 40 cm bundle near the center of the cord. The LISN was placed on the floor at the base of the test platform and electrically bonded to the ground plane.

#### FCC/IC Limits of Conducted Emissions at the AC Mains Ports

| Frequency Range<br>(MHz) | Class B Limits (dBuV) |         |
|--------------------------|-----------------------|---------|
|                          | Quasi-Peak            | Average |
| 0.150 - 0.50*            | 66 - 56               | 56 - 46 |
| 0.5 - 5.0                | 56                    | 46      |
| 5.0 - 30                 | 60                    | 50      |

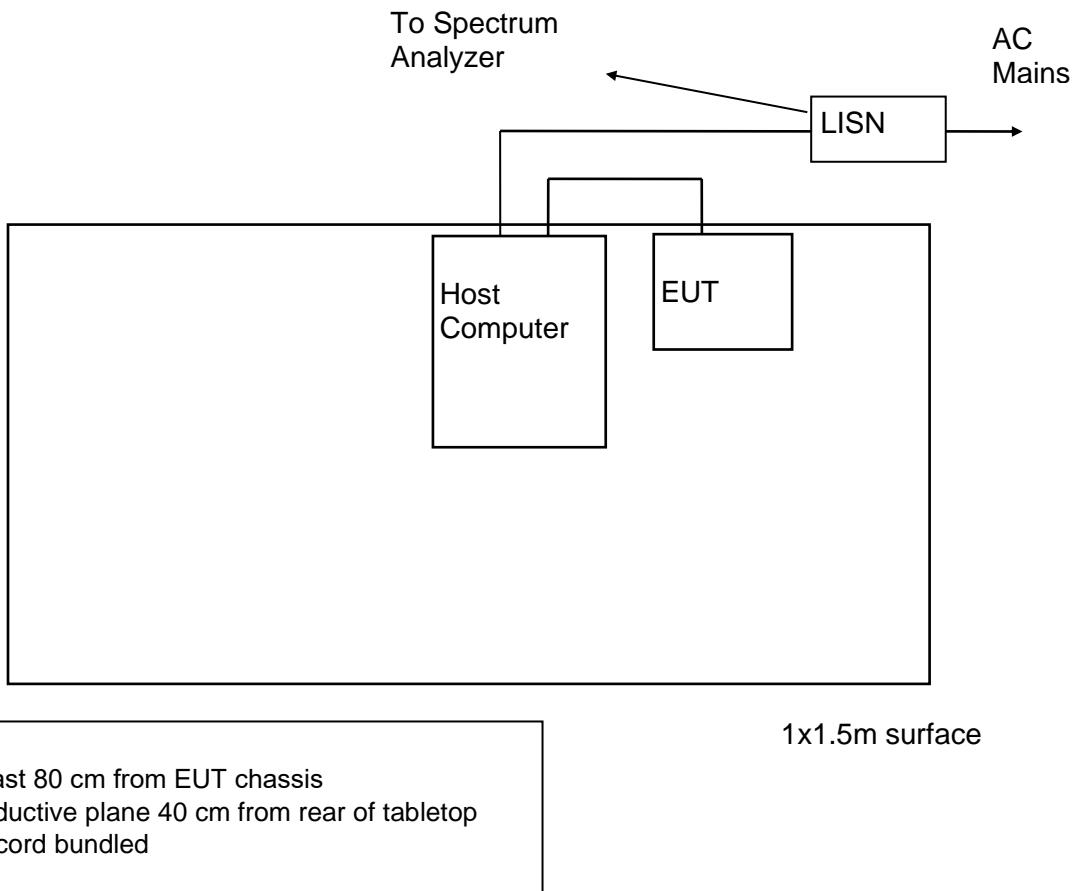

\* The limit decreases linearly with the logarithm of the frequency in this range.

The initial step in collecting conducted data is a peak detector scan and the plotting of the measurement range. Significant peaks are then marked as shown on the following table, and these signals are then measured with the quasi-peak detector. The following represents the worst case emissions from the host computer (with the EUT connected) power cord, after testing all modes of operation. QP readings are quasi-peak with a 9 kHz bandwidth and no video filter.


|            |                    |
|------------|--------------------|
| Tested by  | Richard Tichgelaar |
| Test Dates | 01/13/2021         |

The following shows the worst case from the 125 & 13.56 MHz transmitters.

The Limit shown in the graphs are the FCC 15.107 and RSS-GEN Table 3.




| Frequency (MHz) | QP Amp. (dBuV) | QP Limit (dBuV) | Average Amp. (dBuV) | Average Limit (dBuV) | Margin Under Limit (dB) |
|-----------------|----------------|-----------------|---------------------|----------------------|-------------------------|
| 0.157           | 54.2           | 65.6            | 36.9                | 55.6                 | 11.4                    |
| 0.158           | 56.3           | 65.6            | 38.4                | 55.6                 | 9.3                     |
| 0.165           | 53.8           | 65.2            | 35.7                | 55.2                 | 11.4                    |
| 0.168           | 54.0           | 65.1            | 35.2                | 55.1                 | 11.0                    |
| 0.175           | 52.3           | 64.7            | 34.8                | 54.7                 | 12.5                    |
| 0.199           | 49.7           | 63.7            | 31.3                | 53.7                 | 13.9                    |
| 0.228           | 43.2           | 62.5            | 24.9                | 52.5                 | 19.3                    |
| 13.560          | 48.0           | 60.0            | 38.7                | 50.0                 | 11.3                    |



| Frequency (MHz) | QP Amp. (dBuV) | QP Limit (dBuV) | Average Amp. (dBuV) | Average Limit (dBuV) | Margin Under Limit (dB) |
|-----------------|----------------|-----------------|---------------------|----------------------|-------------------------|
| 0.156           | 53.6           | 65.7            | 35.3                | 55.7                 | 12.1                    |
| 0.159           | 53.4           | 65.5            | 34.9                | 55.5                 | 12.1                    |
| 0.158           | 53.4           | 65.6            | 34.7                | 55.6                 | 12.2                    |
| 0.163           | 53.1           | 65.3            | 35.6                | 55.3                 | 12.2                    |
| 0.172           | 51.3           | 64.9            | 33.2                | 54.9                 | 13.5                    |
| 0.179           | 50.1           | 64.5            | 30.8                | 54.5                 | 14.4                    |
| 0.195           | 46.2           | 63.8            | 29.4                | 53.8                 | 17.6                    |
| 13.560          | 44.0           | 60.0            | 34.6                | 50.0                 | 15.4                    |

Judgement Pass by at least 8 dB.

**Figure 1. Conducted Emissions Test Setup**

## 11.2 Radiated RF Emissions

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. Figure 4 herein lists the details of the test equipment used during radiated emissions tests.

Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4 and CISPR 16-1. Chamber E is located at 12 Devonwood Ave. Romeoville, Illinois EMI test lab.

The entire frequency range from 30 to 1000 MHz was slowly scanned with particular attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.



The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground. The EUT was rotated through three orthogonal axes as per 5.10.1 of ANSI C63.10 during the radiated tests.

### Radiated Emissions Field Strength Limits

| Frequency Range (MHz) | Test Distance (meters) | Class B Limits |                   |
|-----------------------|------------------------|----------------|-------------------|
|                       |                        | uV/m           | dB(uV/m)          |
| 0.009-0.490           | 300                    | 2400/F(kHz)    | 20*LOG(2400/kHz)  |
| 0.490-1.705           | 30                     | 24000/F(kHz)   | 20*LOG(24000/kHz) |
| 1.705-30.0            | 30                     | 30             | 29.5              |
| 30 - 88               | 3                      | 100            | 40.0              |
| 88 - 216              | 3                      | 150            | 43.5              |
| 216 - 960             | 3                      | 200            | 46.0              |
| Above 960             | 3                      | 500            | 54.0              |

The emission limits shown in the above table are based on measurements using a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

#### 11.2.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

$$FS = RA + AF + CF - AG$$

Where: FS = Field Strength

RA = Receiver Amplitude in dB<sub>uv</sub>

AF = Antenna Factor in dB/m

CF = Cable Attenuation Factor in dB

AG = Amplifier Gain in dB

#### 11.2.2 Radiated Emissions Test Results

|               |                                                                                         |
|---------------|-----------------------------------------------------------------------------------------|
| Test Dates    | 01/12/2021                                                                              |
| Test Distance | 3 Meters                                                                                |
| Specification | FCC Part 15 Subpart C & RSS-210                                                         |
| Abbreviations | P = peak; Q = QP Pol = Antenna Polarization; V = Vertical; H = Horizontal               |
| Tested by     | Chris D'Alessio                                                                         |
| Note          | The following shows the worst case emissions from all transmitters and digital devices. |
| Configuration | With 12" cable                                                                          |
| EUT           | OEM-805N14KU-ADV1; Serial Number FCPA000011                                             |

The 125 kHz and the 13.56 MHz transmitter were both on during the following tests.

The following shows the highest emissions during the tests. The EUT was tested while rotating in all three axis of rotation (X, Y & Z)

| Freq. MHz | Meter Reading dB <sub>uV</sub> | Dect. | Ant. Pol. | Antenna Factor (dB/m) | Cable Loss (dB) | Distance Factor (dB) | EUT (dB <sub>uV/m</sub> ) | Limit (dB <sub>uV/m</sub> ) | Margin Under Limit (dB) |
|-----------|--------------------------------|-------|-----------|-----------------------|-----------------|----------------------|---------------------------|-----------------------------|-------------------------|
| 30.1      | 7.4                            | P     | H         | 13.8                  | 0.6             | 0.0                  | 21.8                      | 40.0                        | 18.2                    |
| 35.0      | 9.0                            | P     | H         | 12.4                  | 0.6             | 0.0                  | 22.0                      | 40.0                        | 18.0                    |
| 38.8      | 8.2                            | P     | H         | 11.5                  | 0.7             | 0.0                  | 20.4                      | 40.0                        | 19.6                    |
| 44.4      | 7.5                            | P     | H         | 10.4                  | 0.7             | 0.0                  | 18.6                      | 40.0                        | 21.4                    |
| 52.1      | 8.8                            | P     | H         | 9.5                   | 0.8             | 0.0                  | 19.1                      | 40.0                        | 20.9                    |



# Radiometrics Midwest Corporation

Testing of the RF IDEas, WAVE ID Plus, RFID Reader; Model OEM-805N14KU-ADV1

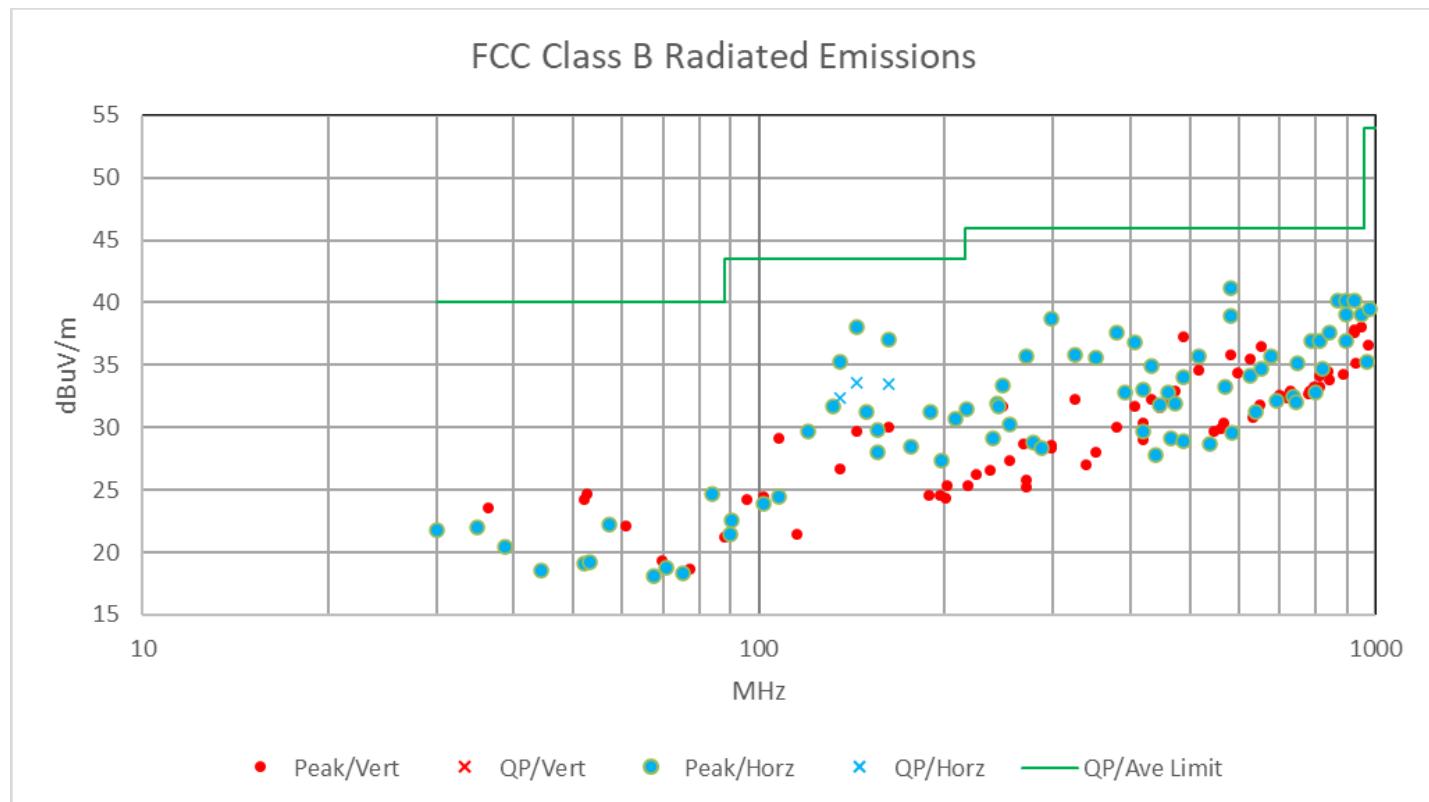
| Freq. MHz | Meter Reading dBuV | Dect. | Ant. Pol. | Antenna Factor (dB/m) | Cable Loss (dB) | Distance Factor (dB) | EUT (dBuV/m) | Limit (dBuV/m) | Margin Under Limit (dB) |
|-----------|--------------------|-------|-----------|-----------------------|-----------------|----------------------|--------------|----------------|-------------------------|
| 53.2      | 8.9                | P     | H         | 9.5                   | 0.8             | 0.0                  | 19.2         | 40.0           | 20.8                    |
| 57.1      | 12.1               | P     | H         | 9.3                   | 0.8             | 0.0                  | 22.2         | 40.0           | 17.8                    |
| 67.6      | 8.0                | P     | H         | 9.2                   | 0.9             | 0.0                  | 18.1         | 40.0           | 21.9                    |
| 70.9      | 8.6                | P     | H         | 9.3                   | 0.9             | 0.0                  | 18.8         | 40.0           | 21.2                    |
| 75.3      | 8.1                | P     | H         | 9.3                   | 0.9             | 0.0                  | 18.3         | 40.0           | 21.7                    |
| 84.1      | 14.2               | P     | H         | 9.5                   | 1.0             | 0.0                  | 24.7         | 40.0           | 15.3                    |
| 89.7      | 10.8               | P     | H         | 9.7                   | 1.0             | 0.0                  | 21.5         | 43.5           | 22.0                    |
| 90.2      | 11.8               | P     | H         | 9.8                   | 1.0             | 0.0                  | 22.6         | 43.5           | 20.9                    |
| 101.8     | 12.4               | P     | H         | 10.4                  | 1.1             | 0.0                  | 23.9         | 43.5           | 19.6                    |
| 107.9     | 12.5               | P     | H         | 10.8                  | 1.1             | 0.0                  | 24.4         | 43.5           | 19.1                    |
| 120.1     | 16.9               | P     | H         | 11.6                  | 1.2             | 0.0                  | 29.7         | 43.5           | 13.8                    |
| 132.2     | 18.3               | P     | H         | 12.2                  | 1.2             | 0.0                  | 31.7         | 43.5           | 11.8                    |
| 135.5     | 18.7               | Q     | H         | 12.4                  | 1.3             | 0.0                  | 32.4         | 43.5           | 11.1                    |
| 135.5     | 21.6               | P     | H         | 12.4                  | 1.3             | 0.0                  | 35.3         | 43.5           | 8.2                     |
| 143.8     | 19.7               | Q     | H         | 12.6                  | 1.3             | 0.0                  | 33.6         | 43.5           | 9.9                     |
| 143.8     | 24.2               | P     | H         | 12.6                  | 1.3             | 0.0                  | 38.1         | 43.5           | 5.4                     |
| 149.3     | 17.3               | P     | H         | 12.7                  | 1.3             | 0.0                  | 31.3         | 43.5           | 12.2                    |
| 156.0     | 13.8               | P     | H         | 12.9                  | 1.3             | 0.0                  | 28.0         | 43.5           | 15.5                    |
| 156.0     | 15.6               | P     | H         | 12.9                  | 1.3             | 0.0                  | 29.8         | 43.5           | 13.7                    |
| 162.6     | 19.1               | Q     | H         | 13.0                  | 1.4             | 0.0                  | 33.5         | 43.5           | 10.0                    |
| 162.6     | 22.6               | P     | H         | 13.0                  | 1.4             | 0.0                  | 37.0         | 43.5           | 6.5                     |
| 176.4     | 13.6               | P     | H         | 13.5                  | 1.4             | 0.0                  | 28.5         | 43.5           | 15.0                    |
| 189.7     | 15.8               | P     | H         | 13.9                  | 1.5             | 0.0                  | 31.2         | 43.5           | 12.3                    |
| 198.0     | 11.5               | P     | H         | 14.3                  | 1.5             | 0.0                  | 27.3         | 43.5           | 16.2                    |
| 208.5     | 14.5               | P     | H         | 14.6                  | 1.6             | 0.0                  | 30.7         | 43.5           | 12.8                    |
| 216.7     | 15.1               | P     | H         | 14.8                  | 1.6             | 0.0                  | 31.5         | 46.0           | 14.5                    |
| 239.9     | 12.2               | P     | H         | 15.2                  | 1.7             | 0.0                  | 29.1         | 46.0           | 16.9                    |
| 243.8     | 14.9               | P     | H         | 15.3                  | 1.7             | 0.0                  | 31.9         | 46.0           | 14.1                    |
| 244.4     | 14.7               | P     | H         | 15.3                  | 1.7             | 0.0                  | 31.7         | 46.0           | 14.3                    |
| 248.8     | 16.3               | P     | H         | 15.4                  | 1.7             | 0.0                  | 33.4         | 46.0           | 12.6                    |
| 255.2     | 16.6               | P     | H         | 12.0                  | 1.7             | 0.0                  | 30.3         | 46.0           | 15.7                    |
| 270.9     | 21.5               | P     | H         | 12.4                  | 1.8             | 0.0                  | 35.7         | 46.0           | 10.3                    |
| 279.1     | 14.0               | P     | H         | 13.0                  | 1.8             | 0.0                  | 28.8         | 46.0           | 17.2                    |
| 287.9     | 13.1               | P     | H         | 13.4                  | 1.8             | 0.0                  | 28.3         | 46.0           | 17.7                    |
| 298.6     | 22.8               | P     | H         | 14.0                  | 1.9             | 0.0                  | 38.7         | 46.0           | 7.3                     |
| 325.7     | 19.8               | P     | H         | 14.0                  | 2.0             | 0.0                  | 35.8         | 46.0           | 10.2                    |
| 352.8     | 19.3               | P     | H         | 14.3                  | 2.0             | 0.0                  | 35.6         | 46.0           | 10.4                    |
| 379.9     | 20.8               | P     | H         | 14.7                  | 2.1             | 0.0                  | 37.6         | 46.0           | 8.4                     |
| 393.1     | 15.3               | P     | H         | 15.3                  | 2.2             | 0.0                  | 32.8         | 46.0           | 13.2                    |
| 407.0     | 19.2               | P     | H         | 15.4                  | 2.2             | 0.0                  | 36.8         | 46.0           | 9.2                     |
| 420.2     | 11.9               | P     | H         | 15.6                  | 2.2             | 0.0                  | 29.7         | 46.0           | 16.3                    |
| 420.2     | 15.2               | P     | H         | 15.6                  | 2.2             | 0.0                  | 33.0         | 46.0           | 13.0                    |
| 434.1     | 16.6               | P     | H         | 16.0                  | 2.3             | 0.0                  | 34.9         | 46.0           | 11.1                    |
| 441.0     | 9.3                | P     | H         | 16.2                  | 2.3             | 0.0                  | 27.8         | 46.0           | 18.2                    |
| 447.3     | 13.1               | P     | H         | 16.4                  | 2.3             | 0.0                  | 31.8         | 46.0           | 14.2                    |
| 461.2     | 13.6               | P     | H         | 16.8                  | 2.4             | 0.0                  | 32.8         | 46.0           | 13.2                    |
| 465.6     | 9.7                | P     | H         | 17.0                  | 2.4             | 0.0                  | 29.1         | 46.0           | 16.9                    |
| 474.4     | 12.4               | P     | H         | 17.1                  | 2.4             | 0.0                  | 31.9         | 46.0           | 14.1                    |
| 487.0     | 9.3                | P     | H         | 17.2                  | 2.4             | 0.0                  | 28.9         | 46.0           | 17.1                    |
| 488.3     | 14.3               | P     | H         | 17.3                  | 2.4             | 0.0                  | 34.0         | 46.0           | 12.0                    |
| 516.3     | 14.4               | P     | H         | 18.8                  | 2.5             | 0.0                  | 35.7         | 46.0           | 10.3                    |
| 537.5     | 8.2                | P     | H         | 17.9                  | 2.6             | 0.0                  | 28.7         | 46.0           | 17.3                    |
| 570.0     | 12.3               | P     | H         | 18.3                  | 2.6             | 0.0                  | 33.2         | 46.0           | 12.8                    |
| 581.3     | 17.7               | P     | H         | 18.5                  | 2.7             | 0.0                  | 38.9         | 46.0           | 7.1                     |



| Freq. MHz | Meter Reading dBuV | Dect. | Ant. Pol. | Antenna Factor (dB/m) | Cable Loss (dB) | Distance Factor (dB) | EUT (dBuV/m) | Limit (dBuV/m) | Margin Under Limit (dB) |
|-----------|--------------------|-------|-----------|-----------------------|-----------------|----------------------|--------------|----------------|-------------------------|
| 581.3     | 20.0               | P     | H         | 18.5                  | 2.7             | 0.0                  | 41.2         | 46.0           | 4.8                     |
| 586.3     | 8.3                | P     | H         | 18.6                  | 2.7             | 0.0                  | 29.6         | 46.0           | 16.4                    |
| 625.0     | 12.4               | P     | H         | 19.0                  | 2.8             | 0.0                  | 34.2         | 46.0           | 11.8                    |
| 638.8     | 9.0                | P     | H         | 19.4                  | 2.8             | 0.0                  | 31.2         | 46.0           | 14.8                    |
| 651.3     | 12.0               | P     | H         | 19.9                  | 2.8             | 0.0                  | 34.7         | 46.0           | 11.3                    |
| 678.8     | 12.0               | P     | H         | 20.8                  | 2.9             | 0.0                  | 35.7         | 46.0           | 10.3                    |
| 692.5     | 8.4                | P     | H         | 20.8                  | 2.9             | 0.0                  | 32.1         | 46.0           | 13.9                    |
| 735.0     | 8.6                | P     | H         | 20.9                  | 3.0             | 0.0                  | 32.5         | 46.0           | 13.5                    |
| 742.5     | 8.1                | P     | H         | 20.9                  | 3.0             | 0.0                  | 32.0         | 46.0           | 14.0                    |
| 747.5     | 11.3               | P     | H         | 20.9                  | 3.0             | 0.0                  | 35.2         | 46.0           | 10.8                    |
| 787.5     | 12.8               | P     | H         | 21.0                  | 3.1             | 0.0                  | 36.9         | 46.0           | 9.1                     |
| 800.0     | 8.5                | P     | H         | 21.1                  | 3.2             | 0.0                  | 32.8         | 46.0           | 13.2                    |
| 813.8     | 12.2               | P     | H         | 21.5                  | 3.2             | 0.0                  | 36.9         | 46.0           | 9.1                     |
| 820.0     | 9.9                | P     | H         | 21.6                  | 3.2             | 0.0                  | 34.7         | 46.0           | 11.3                    |
| 841.3     | 12.3               | P     | H         | 22.1                  | 3.2             | 0.0                  | 37.6         | 46.0           | 8.4                     |
| 868.8     | 14.3               | P     | H         | 22.6                  | 3.3             | 0.0                  | 40.2         | 46.0           | 5.8                     |
| 895.0     | 10.9               | P     | H         | 22.7                  | 3.3             | 0.0                  | 36.9         | 46.0           | 9.1                     |
| 896.3     | 13.0               | P     | H         | 22.7                  | 3.3             | 0.0                  | 39.0         | 46.0           | 7.0                     |
| 896.3     | 14.2               | P     | H         | 22.7                  | 3.3             | 0.0                  | 40.2         | 46.0           | 5.8                     |
| 922.5     | 13.9               | P     | H         | 22.9                  | 3.4             | 0.0                  | 40.2         | 46.0           | 5.8                     |
| 950.0     | 12.4               | P     | H         | 23.2                  | 3.5             | 0.0                  | 39.1         | 46.0           | 6.9                     |
| 970.0     | 8.3                | P     | H         | 23.5                  | 3.5             | 0.0                  | 35.3         | 54.0           | 18.7                    |
| 977.5     | 12.5               | P     | H         | 23.5                  | 3.5             | 0.0                  | 39.5         | 54.0           | 14.5                    |
| 36.5      | 11.1               | P     | V         | 11.9                  | 0.6             | 0.0                  | 23.6         | 40.0           | 16.4                    |
| 52.1      | 13.9               | P     | V         | 9.5                   | 0.8             | 0.0                  | 24.2         | 40.0           | 15.8                    |
| 52.7      | 14.4               | P     | V         | 9.5                   | 0.8             | 0.0                  | 24.7         | 40.0           | 15.3                    |
| 60.9      | 12.1               | P     | V         | 9.2                   | 0.8             | 0.0                  | 22.1         | 40.0           | 17.9                    |
| 69.8      | 9.1                | P     | V         | 9.3                   | 0.9             | 0.0                  | 19.3         | 40.0           | 20.7                    |
| 77.5      | 8.5                | P     | V         | 9.3                   | 0.9             | 0.0                  | 18.7         | 40.0           | 21.3                    |
| 88.0      | 10.5               | P     | V         | 9.7                   | 1.0             | 0.0                  | 21.2         | 40.0           | 18.8                    |
| 95.7      | 13.1               | P     | V         | 10.1                  | 1.0             | 0.0                  | 24.2         | 43.5           | 19.3                    |
| 101.8     | 13.0               | P     | V         | 10.4                  | 1.1             | 0.0                  | 24.5         | 43.5           | 19.0                    |
| 107.9     | 17.2               | P     | V         | 10.8                  | 1.1             | 0.0                  | 29.1         | 43.5           | 14.4                    |
| 115.1     | 9.0                | P     | V         | 11.3                  | 1.2             | 0.0                  | 21.5         | 43.5           | 22.0                    |
| 135.5     | 13.0               | P     | V         | 12.4                  | 1.3             | 0.0                  | 26.7         | 43.5           | 16.8                    |
| 143.8     | 15.8               | P     | V         | 12.6                  | 1.3             | 0.0                  | 29.7         | 43.5           | 13.8                    |
| 162.6     | 15.6               | P     | V         | 13.0                  | 1.4             | 0.0                  | 30.0         | 43.5           | 13.5                    |
| 189.1     | 9.2                | P     | V         | 13.9                  | 1.5             | 0.0                  | 24.6         | 43.5           | 18.9                    |
| 196.3     | 8.9                | P     | V         | 14.2                  | 1.5             | 0.0                  | 24.6         | 43.5           | 18.9                    |
| 200.7     | 8.4                | P     | V         | 14.4                  | 1.5             | 0.0                  | 24.3         | 43.5           | 19.2                    |
| 201.8     | 9.5                | P     | V         | 14.4                  | 1.5             | 0.0                  | 25.4         | 43.5           | 18.1                    |
| 217.9     | 9.0                | P     | V         | 14.8                  | 1.6             | 0.0                  | 25.4         | 46.0           | 20.6                    |
| 225.0     | 9.7                | P     | V         | 14.9                  | 1.6             | 0.0                  | 26.2         | 46.0           | 19.8                    |
| 237.2     | 9.8                | P     | V         | 15.1                  | 1.7             | 0.0                  | 26.6         | 46.0           | 19.4                    |
| 248.8     | 14.6               | P     | V         | 15.4                  | 1.7             | 0.0                  | 31.7         | 46.0           | 14.3                    |
| 255.8     | 13.6               | P     | V         | 12.0                  | 1.7             | 0.0                  | 27.3         | 46.0           | 18.7                    |
| 269.0     | 14.5               | P     | V         | 12.4                  | 1.8             | 0.0                  | 28.7         | 46.0           | 17.3                    |
| 270.9     | 11.6               | P     | V         | 12.4                  | 1.8             | 0.0                  | 25.8         | 46.0           | 20.2                    |
| 271.5     | 10.9               | P     | V         | 12.5                  | 1.8             | 0.0                  | 25.2         | 46.0           | 20.8                    |
| 298.6     | 12.5               | P     | V         | 14.0                  | 1.9             | 0.0                  | 28.4         | 46.0           | 17.6                    |
| 298.6     | 12.7               | P     | V         | 14.0                  | 1.9             | 0.0                  | 28.6         | 46.0           | 17.4                    |
| 325.7     | 16.2               | P     | V         | 14.0                  | 2.0             | 0.0                  | 32.2         | 46.0           | 13.8                    |
| 339.6     | 10.7               | P     | V         | 14.3                  | 2.0             | 0.0                  | 27.0         | 46.0           | 19.0                    |
| 352.8     | 11.7               | P     | V         | 14.3                  | 2.0             | 0.0                  | 28.0         | 46.0           | 18.0                    |

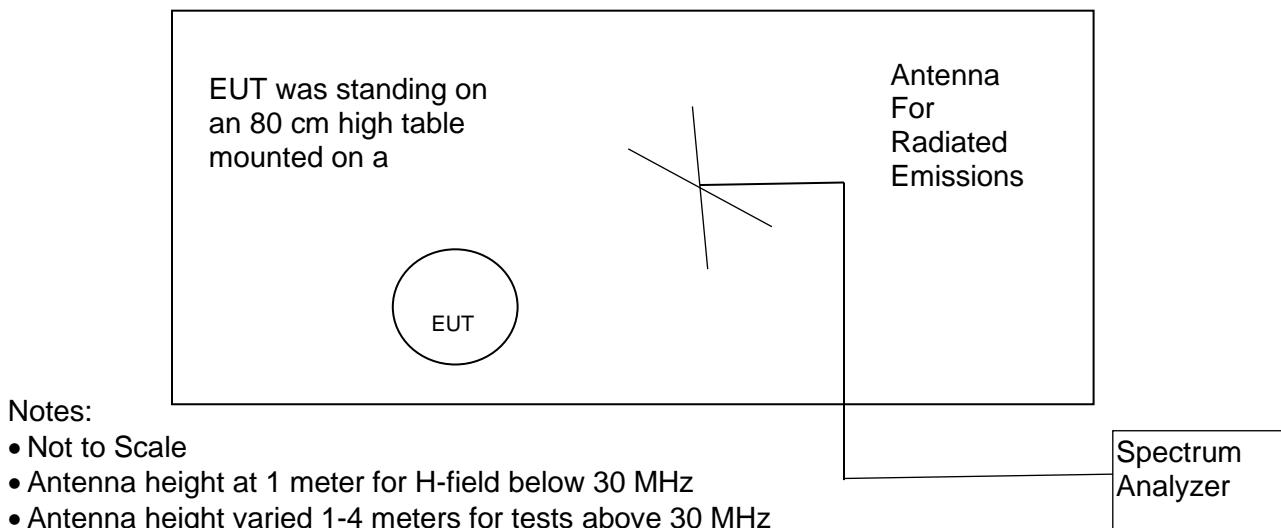


# Radiometrics Midwest Corporation


Testing of the RF IDEas, WAVE ID Plus, RFID Reader; Model OEM-805N14KU-ADV1

| Freq. MHz | Meter Reading dBuV | Dect. | Ant. Pol. | Antenna Factor (dB/m) | Cable Loss (dB) | Distance Factor (dB) | EUT (dBuV/m) | Limit (dBuV/m) | Margin Under Limit (dB) |
|-----------|--------------------|-------|-----------|-----------------------|-----------------|----------------------|--------------|----------------|-------------------------|
| 379.9     | 13.2               | P     | V         | 14.7                  | 2.1             | 0.0                  | 30.0         | 46.0           | 16.0                    |
| 407.0     | 14.1               | P     | V         | 15.4                  | 2.2             | 0.0                  | 31.7         | 46.0           | 14.3                    |
| 419.0     | 12.6               | P     | V         | 15.6                  | 2.2             | 0.0                  | 30.4         | 46.0           | 15.6                    |
| 419.6     | 11.2               | P     | V         | 15.6                  | 2.2             | 0.0                  | 29.0         | 46.0           | 17.0                    |
| 420.2     | 11.7               | P     | V         | 15.6                  | 2.2             | 0.0                  | 29.5         | 46.0           | 16.5                    |
| 434.1     | 14.0               | P     | V         | 16.0                  | 2.3             | 0.0                  | 32.3         | 46.0           | 13.7                    |
| 447.3     | 12.9               | P     | V         | 16.4                  | 2.3             | 0.0                  | 31.6         | 46.0           | 14.4                    |
| 461.2     | 13.0               | P     | V         | 16.8                  | 2.4             | 0.0                  | 32.2         | 46.0           | 13.8                    |
| 474.4     | 13.4               | P     | V         | 17.1                  | 2.4             | 0.0                  | 32.9         | 46.0           | 13.1                    |
| 488.3     | 17.6               | P     | V         | 17.3                  | 2.4             | 0.0                  | 37.3         | 46.0           | 8.7                     |
| 516.3     | 13.3               | P     | V         | 18.8                  | 2.5             | 0.0                  | 34.6         | 46.0           | 11.4                    |
| 547.5     | 9.1                | P     | V         | 18.0                  | 2.6             | 0.0                  | 29.7         | 46.0           | 16.3                    |
| 561.3     | 9.0                | P     | V         | 18.3                  | 2.6             | 0.0                  | 29.9         | 46.0           | 16.1                    |
| 567.5     | 9.5                | P     | V         | 18.3                  | 2.6             | 0.0                  | 30.4         | 46.0           | 15.6                    |
| 581.3     | 14.6               | P     | V         | 18.5                  | 2.7             | 0.0                  | 35.8         | 46.0           | 10.2                    |
| 597.5     | 13.0               | P     | V         | 18.7                  | 2.7             | 0.0                  | 34.4         | 46.0           | 11.6                    |
| 625.0     | 13.7               | P     | V         | 19.0                  | 2.8             | 0.0                  | 35.5         | 46.0           | 10.5                    |
| 631.3     | 8.7                | P     | V         | 19.3                  | 2.8             | 0.0                  | 30.8         | 46.0           | 15.2                    |
| 648.8     | 9.3                | P     | V         | 19.7                  | 2.8             | 0.0                  | 31.8         | 46.0           | 14.2                    |
| 651.3     | 13.8               | P     | V         | 19.9                  | 2.8             | 0.0                  | 36.5         | 46.0           | 9.5                     |
| 700.0     | 8.6                | P     | V         | 21.1                  | 2.9             | 0.0                  | 32.6         | 46.0           | 13.4                    |
| 718.8     | 8.5                | P     | V         | 20.9                  | 3.0             | 0.0                  | 32.4         | 46.0           | 13.6                    |
| 725.0     | 8.8                | P     | V         | 20.9                  | 3.0             | 0.0                  | 32.7         | 46.0           | 13.3                    |
| 730.0     | 8.9                | P     | V         | 21.0                  | 3.0             | 0.0                  | 32.9         | 46.0           | 13.1                    |
| 777.5     | 8.5                | P     | V         | 21.1                  | 3.1             | 0.0                  | 32.7         | 46.0           | 13.3                    |
| 785.0     | 8.8                | P     | V         | 21.0                  | 3.1             | 0.0                  | 32.9         | 46.0           | 13.1                    |
| 796.3     | 9.1                | P     | V         | 21.0                  | 3.2             | 0.0                  | 33.3         | 46.0           | 12.7                    |
| 812.5     | 8.5                | P     | V         | 21.5                  | 3.2             | 0.0                  | 33.2         | 46.0           | 12.8                    |
| 813.8     | 9.5                | P     | V         | 21.5                  | 3.2             | 0.0                  | 34.2         | 46.0           | 11.8                    |
| 837.5     | 9.3                | P     | V         | 22.0                  | 3.2             | 0.0                  | 34.5         | 46.0           | 11.5                    |
| 840.0     | 8.6                | P     | V         | 22.0                  | 3.2             | 0.0                  | 33.8         | 46.0           | 12.2                    |
| 887.5     | 8.3                | P     | V         | 22.7                  | 3.3             | 0.0                  | 34.3         | 46.0           | 11.7                    |
| 895.0     | 13.0               | P     | V         | 22.7                  | 3.3             | 0.0                  | 39.0         | 46.0           | 7.0                     |
| 922.5     | 11.3               | P     | V         | 22.9                  | 3.4             | 0.0                  | 37.6         | 46.0           | 8.4                     |
| 922.5     | 11.5               | P     | V         | 22.9                  | 3.4             | 0.0                  | 37.8         | 46.0           | 8.2                     |
| 930.0     | 8.9                | P     | V         | 22.9                  | 3.4             | 0.0                  | 35.2         | 46.0           | 10.8                    |
| 950.0     | 11.3               | P     | V         | 23.2                  | 3.5             | 0.0                  | 38.0         | 46.0           | 8.0                     |
| 976.3     | 9.6                | P     | V         | 23.5                  | 3.5             | 0.0                  | 36.6         | 54.0           | 17.4                    |

Judgment: Passed by 8.7 dB; the quasi-peak are the final determination of compliance.




Tabulated data from above represented graphically.



**Figure 2. Drawing of Radiated Emissions Test Setup**

Chamber E, anechoic



| Frequency Range | Receive Antenna | Spectrum Analyzer |
|-----------------|-----------------|-------------------|
| 0.01 to 30 MHz  | ANT-53          | REC-11            |
| 30 to 200 MHz   | ANT-80          | REC-11            |
| 200 to 1000 MHz | ANT-68          | REC-11            |

### 11.3 Magnetic Field Measurements and Decay Factor Calculations

Radiated emission measurements are performed with an EMCO shielded loop antenna. The antenna was rotated in order to find the maximize readings.

The distance correction factor is calculated as follows:

The distance factor in (dB) =  $DE \cdot 20 \cdot \log(TD/SD)$

Where: DE = Decay Exponent (2.0 is used for this)

TD = Test distance in meters. This is 3 meters

SD = Specifcation Distance in meters

From 9 kHz to 490 kHz, the Specifcation Distance is 300m therefore the distance factor is  $2 \cdot 20 \cdot \log(300/3) = 80$  dB.

From 490 kHz to 30 MHz, the Specifcation Distance is 30m therefore the distance factor is  $2 \cdot 20 \cdot \log(30/3) = 40$  dB.



### 11.3.1 Magnetic Field Radiated Emissions Results (0.009 to 30 MHz)

|               |                                                                                            |  |  |  |  |  |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Test Date     | 01/12/2021                                                                                 |  |  |  |  |  |  |  |  |  |
| EUT           | Model OEM-805N14KU-ADV1; Serial Number FCPA000011                                          |  |  |  |  |  |  |  |  |  |
| Test Distance | 3 Meters                                                                                   |  |  |  |  |  |  |  |  |  |
| Specification | FCC 15 & RSS-GEN                                                                           |  |  |  |  |  |  |  |  |  |
| Notes         | A shielded Loop Antenna was used for this test. Test were performed with a 0.8 meter table |  |  |  |  |  |  |  |  |  |
| Tested by     | Chris D'Alessio; Richard Tichgelaar                                                        |  |  |  |  |  |  |  |  |  |

| Freq (kHz) | Peak reading dBuV | Loop Ant Factor dB/m | Test Dist. (m) | Decay exp | Cable Loss dB | FCC Distance factor dB | Field Strength dBuV/m | RSS & FCC Limit dBuV/m | Margin under limit | Notes |
|------------|-------------------|----------------------|----------------|-----------|---------------|------------------------|-----------------------|------------------------|--------------------|-------|
| 125.0      | 55.9              | 19.1                 | 3.0            | 2.0       | 0.1           | -80.0                  | -4.9                  | 25.7                   | 30.6               |       |
| 250.0      | 34.8              | 18.9                 | 3.0            | 2.0       | 0.1           | -80.0                  | -26.2                 | 19.6                   | 45.8               |       |
| 375.0      | 33.9              | 18.9                 | 3.0            | 2.0       | 0.1           | -80.0                  | -27.1                 | 16.1                   | 43.2               |       |
| 500.0      | 31.5              | 18.8                 | 3.0            | 2.0       | 0.1           | -40.0                  | 10.4                  | 33.6                   | 23.2               |       |
| 625.0      | 27.6              | 18.7                 | 3.0            | 2.0       | 0.1           | -40.0                  | 6.4                   | 31.7                   | 25.3               |       |
|            |                   |                      |                |           |               |                        |                       |                        |                    |       |
| 13560      | 49.3              | 16.8                 | 3.0            | 2.0       | 0.4           | -40.0                  | 26.5                  | 40.5                   | 14.0               |       |
| 27120      | 22.4              | 16.0                 | 3.0            | 2.0       | 0.5           | -40.0                  | -1.1                  | 29.5                   | 30.6               |       |

The limit shown at 13.56 MHz in the above table is the lowest limit from 15.225 sections (a), (b) and (c).

The limit from 13.553-13.567 MHz at 30 meters is 15,848 uV/m which = 84 dBuV/m in accordance with FCC 15.225 (c) and RSS-210 section B.6 (a).

The limit drops to 334uV/m from 13.410-13.553 MHz and 13.567-13.710 MHz, and 106uV/m = 40.5 dBuV/m from the bands 13.110-13.410 MHz and 13.710-14.010 MHz.

The lower limit (40.5 dBuV/m) was used for all frequencies from 13.110-14.010 MHz. Therefore it also met 15.225 (a) (b) since the (a) & (b) limits are less stringent than (c).

All other limits are general limits of FCC 15.209 or the RSS-Gen.

The emissions were scanned from 10 kHz to 30 MHz, including 13.11 and 14.01 MHz.

No other emissions were detected from 10 kHz to 30 MHz within 10 dB of the 15.209 or the RSS-GEN limits.

Judgement: Passed by 14.0 dB.



## 11.4 Occupied Bandwidth Data

The occupied bandwidth of the RF output was measured using a spectrum analyzer using a peak detector function and a narrow resolution bandwidth. A broadband antenna was used to receive the modulated signal. The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The spectrum analyzer display was digitized and plotted. The plots of the occupied bandwidth for the EUT are supplied on the following page.

|                |                    |               |                            |
|----------------|--------------------|---------------|----------------------------|
| Model          | OEM-805N14KU-ADV1  | Specification | FCC Part 15.225<br>RSS-210 |
| Serial Number  | FCPA000011         | Test Date     | January 19, 2021           |
| Test Personnel | Richard Tichgelaar | Equipment     | REC-43                     |

99% OBW = 1.900 kHz at 125 kHz

99% OBW = 2.365 kHz at 13.56 MHz

Judgement: Pass

Figure 3. Occupied Bandwidth Plot





## 11.5 Frequency Stability

The tests were in accordance to FCC 15.225 and RSS-210 Section A2.6. Since the product is USB powered, a desktop PC was used to power the device. The input power to the desktop PC was varied by 15%, using a variable AC supply.

### 11.5.1 Test Results for Frequency Stability

|                   |                                                                                |               |                                         |
|-------------------|--------------------------------------------------------------------------------|---------------|-----------------------------------------|
| Model             | OEM-805N14KU-ADV1                                                              | Specification | FCC Part 15.225<br>RSS-210 Section A2.6 |
| Serial Number     | FCPA000011                                                                     | Test Date     | 01/22/2021                              |
| Test Personnel    | Richard Tichgelaar<br>Joseph Strzelecki                                        | Test Location | Chamber B                               |
| Test Equipment    | Spectrum Analyzer (REC-21); Temperature Chamber TC-01<br>Power Supply (PSA-02) |               |                                         |
| Notes             | 10 minutes at each Temperature; 1 min at each voltage                          |               |                                         |
| Nominal Frequency | 13.560070 MHz                                                                  |               |                                         |

| Volts VAC | Freq. (MHz) | Deviation % | PPM  |
|-----------|-------------|-------------|------|
| 102.0     | 13.560085   | 0.00011     | 1.11 |
| 120.0     | 13.560075   | 0.00004     | 0.37 |
| 138.0     | 13.560080   | 0.00007     | 0.74 |



| Temp.<br>Deg C | Freq.<br>(@0min.)<br>(MHz) | Freq.<br>(@2min.)<br>(MHz) | Freq.<br>(@5min.)<br>(MHz) | Freq.<br>(@10min.)<br>(MHz) | Change from Nominal |          |          |          |
|----------------|----------------------------|----------------------------|----------------------------|-----------------------------|---------------------|----------|----------|----------|
|                | % 0 min.                   | % 2 min.                   | % 5 min                    | % 10 min.                   |                     |          |          |          |
| 50             | 13.560014                  | 13.559913                  | 13.560005                  | 13.560008                   | -0.00041            | -0.00116 | -0.00048 | -0.00046 |
| 40             | 13.560005                  | 13.559998                  | 13.560003                  | 13.560013                   | -0.00048            | -0.00053 | -0.00049 | -0.00042 |
| 30             | 13.560023                  | 13.560020                  | 13.560018                  | 13.560025                   | -0.00035            | -0.00037 | -0.00038 | -0.00033 |
| 20             | 13.560088                  | 13.560075                  | 13.560080                  | 13.560063                   | 0.00013             | 0.00004  | 0.00007  | -0.00005 |
| 10             | 13.560088                  | 13.560080                  | 13.560085                  | 13.560075                   | 0.00013             | 0.00007  | 0.00011  | 0.00004  |
| 0              | 13.560098                  | 13.560125                  | 13.560101                  | 13.560088                   | 0.00021             | 0.00041  | 0.00023  | 0.00013  |
| -10            | 13.560073                  | 13.560078                  | 13.560088                  | 13.560103                   | 0.00002             | 0.00006  | 0.00013  | 0.00024  |
| -20            | 13.560028                  | 13.560045                  | 13.560040                  | 13.560036                   | -0.00031            | -0.00018 | -0.00022 | -0.00025 |

Max deviation is 11.6 ppm

Test Requirements: Limit is 100 ppm or 0.01% deviation.

Judgement: Pass

Only one sample was tested, since all models use the same frequency determining circuitry.

## 12.0 MEASUREMENT INSTRUMENTATION UNCERTAINTY

The uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of  $k=2$  in accordance with CISPR 16-4-2.

| Measurement                                            | Uncertainty          |
|--------------------------------------------------------|----------------------|
| Conducted Emissions, LISN method, 150 kHz to 30 MHz    | 2.7 dB               |
| Radiated Emissions, H-field, 3 meters, 9 kHz to 30 MHz | 2.7 dB               |
| Radiated Emissions, E-field, 3 meters, 30 to 200 MHz   | 3.3 dB               |
| Radiated Emissions, E-field, 3 meters, 200 to 1000 MHz | 4.9 dB               |
| Frequency counter with REC-11                          | 136 Hz               |
| 99% Occupied Bandwidth using REC-43                    | 1% of frequency span |
| Temperature THM-03                                     | 0.6 Deg C            |

## 13.0 REVISION HISTORY

| RP-9397 Revisions: |                   |             |           |
|--------------------|-------------------|-------------|-----------|
| Rev.               | Affected Sections | Description | Rationale |
|                    |                   |             |           |
|                    |                   |             |           |
|                    |                   |             |           |
|                    |                   |             |           |
|                    |                   |             |           |