

TEST REPORT

Test Report No.: 1-2403-01-19/10-A

Testing Laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10 66117 Saarbrücken/Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom.com e-mail: info@cetecom.com

Accredited Test Laboratory:

The test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025

DAR registration number: DGA-PL-176/94-D1

Applicant

Sagem Wireless

2 rue du Petit Albi

95801 Cergy Pontoise Cedex/France

+33-(0)1-58-11-91-0 Phone:

Contact: Xinni Yang

e-mail: Xinni.yang@sagemwireless.com.cn

+86 574 27960929 Phone: Fax:

+86 574 27960000

Manufacturer

CETECOM Shanghai

Room 102, Building 27, No. 1387 Zhangdong Road

Shanghai/CHINA

Test Standard/s

Methods of Measurement of Compatibility between Wireless Communications Devices and ANSI C63.19-2007

Hearing Aids

FCC 47 CFR §20.19 Hearing Aid Compatible Mobile Headsets

Test Item

Kind of test item: **GSM Mobile Phone** Device type: portable device Model name: Cosy 2G

S/N serial number: M9HCOSY2G FCC-ID:

IC: N/A

IMEI-Number: 352330040008166

Hardware status: V0x Software status: EA,R05

see technical details Frequency: Antenna: integrated antenna

Li-ion battery ABD463450LA BD-L4C 900mAh Battery option:

Test sample status: identical prototype

HAC-Rating: M3T3

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test performed:

Test Report authorised:

2010-07-30 Thomas Vogler 2010-08-03 Ralf Hoehn

2010-08-03 Page 1 of 53

1	Table of contents					
1	Table o	f contents	2			
2	Genera	l information				
	2.1 N	lotes				
		Application details				
		Statement of compliance				
		echnical details				
2		andard/s:				
3		andard/s:				
4		ary of Measurement Results				
5		vironment				
6		t-up				
		Neasurement system				
	6.1					
	6.1					
	6.1	•				
	6.1	· · · · · · · · · · · · · · · · · · ·				
	6.1 6.1	·				
	6.1					
	6.1	· · · · · · · · · · · · · · · · · · ·				
	6.1					
	6.1					
		est results				
		Conducted power measurements				
	6.3					
	6.3					
	6.3					
	6.3 6.3					
	6.3					
	6.3					
_		·				
7	Test eq	uipment and ancillaries used for tests	17			
8	Observ	ations	17			
Anı	nex A:	System performance verification	18			
Anı	nex B:	DASY4 measurement results	2			
	Annex	B.1: GSM 850	2			
		B.2: GSM 1800				
A						
Anı	nex C:	Photo documentation	45			
Anı	nex D:	HAC Calibration parameters	50			
		·				
Anı	nex E:	Document History	53			
Anı	nex F:	Further Information	53			

2 General information

2.1 Notes

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2010-06-24
Date of receipt of test item: 2010-07-19
Start of test: 2010-07-20
End of test: 2010-07-21

Person(s) present during the test:

2.3 Statement of compliance

TheCosy 2G GSM Mobile Phone has been tested in accorance with ANSI C63.19-2007: American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids.

C63.19 HAC Rated Category: T3

2010-08-03 Page 3 of 53

2.4 Technical details

Band tested for this SAR test report	Technology	Frequency band	Lowest transmit frequency/MHz	Highest transmit frequency/MHz	Lowest receive Frequency/MHz	Highest receive Frequency/MHz	Kind of modulation	Power Class	Tested power control level	GPRS/EGPRS mobile station class	GPRS/EGPRS multislot class	(E)GPRS voice mode or DTM	Test channel low	Test channel middle	Test channel high	Maximum output power/dBm)*
	GSM	GSM	880.2	914.8	925.2	959.8	GMSK 8-PSK	4 E2	5	В	10	no	975	37	124	
	GSM	DCS	1710.2	1784.8	1805.2	1879.8	GMSK 8-PSK	1 E2	0	В	10	no	512	698	885	
	GSM	cellular	824.2	848.8	869.2	893.8	GMSK 8-PSK	4 E2	5	В	10	no	128	190	251	33.1
	GSM	PCS	1850.2	1909.8	1930.2	1989.8	GMSK 8-PSK	1 E2	0	В	10	no	512	661	810	30.1
	UMTS	FDD I	1922.4	1977.6	2112.4	2167.6	QPSK	3	max		1	-	9612	9750	9888	
	UMTS	FDD II	1852.4	1907.6	1982.4	1987.6	QPSK	3	max				9262	9400	9538	
	UMTS	FDD IV	1712.4	1752.6	1807.4	1877.6	QPSK	3	max	-		-	1312	1412	1513	
	UMTS	FDD V	826.4	846.6	871.4	891.6	QPSK	3	max	-		1	4132	4182	4233	
	UMTS	FDD VIII	882.4	912.6	927.4	957.6	QPSK	3	max				2712	2787	2863	
	WLAN	ISM	2412	2472	2412	2472	CCK OFDM		max	1	1	1	1	7	13	
	WLAN US	ISM	2412	2462	2412	2462	CCK OFDM		max				1	6	11	n.a.
	ВТ	ISM	2412	2462	2412	2462	GFSK	3	max				0	39	78	<5.0

^{)*:} slotted peak power for GSM, averaged max. RMS power for UMTS, WLAN and BT.

2010-08-03 Page 4 of 53

3 Test standard/s:

Test Standard Version Test Standard Description

ANSI C63.19 2007 Methods of Measurement of Compatibility between Wireless

Communications Devices and Hearing Aids

FCC 47 CFR §20.19 Hearing Aid Compatible Mobile Headsets

3.1 Categories of hearing aid compatibility for wireless devices

Minimum intensity of magnetic field								
axial field intenisity	>= -18 dBA/m	radial field intensity	>= -18 dBA/m					
	Frequency response							
the frequency response curve shall be within the limits acc. to EIA RS-504-1983								
	at 1 kHz gnal quality requirement o		+2 dB -7 dB/Oct12 dB/Oct12 dB/Oct2000 3300					
T 1		assification of ANSI C63.19) o 10 dB						
T 2		to 20 dB						
Т3	20 1	20 to 30 dB						
T 4	>	30 dB						

2010-08-03 Page 5 of 53

4 Summary of Measurement Results

\boxtimes	No deviations from the technical specifications ascertained			
	HAC-Category : T			
	Deviations from the technical specifications ascertained			

5 Test Environment

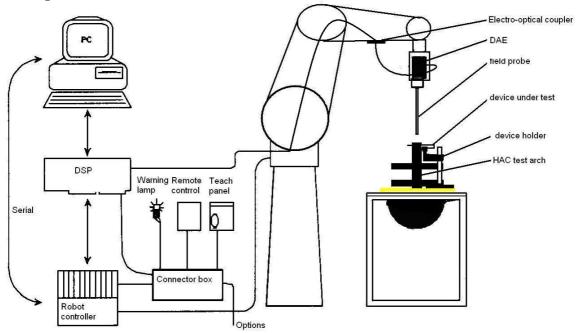
Ambient temperature: 20 – 24 °C

Relative humidity content: 40 - 50 %

Air pressure: not relevant for this kind of testing

Power supply: 230 V / 50 Hz

2010-08-03 Page 6 of 53



6 Test Set-up

6.1 Measurement system

6.1.1 System Description

For performing HAC measurements the Schmid & Partner DASY4 dosimetric assessment system is used which is described below. Instead of dosimetric probes E-field and H-field probes for measurement in air are in use together with a HAC test arch:

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>E</u>lectro-<u>O</u>ptical <u>C</u>oupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2000
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

2010-08-03 Page 7 of 53

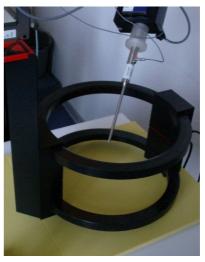
6.1.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions :

 $5 \times 2.5 \times 3 \text{ m}^3$, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

Additional absorbers are placed around the HAC test set-up to prevent reflections from the robot arm.

Picture 1 of the photo documentation shows a complete view of the test environment.


The system allows the measurement of E-field values larger than 2 V/m and H-field values larger than 10mA/m.

6.1.3 Probe description

Audio magnetic field probe AM1DV2 (Technical data according to manufacturer information)					
Construction One tilted probe coil is used to measure all three orthogonal					
	components by rotating the probe.				
Calibration In air using the Audio Magnetic Calibration Coil (AMCC)					
Frequency	100 Hz to 20 kHz				
Semsitivity	< -50 dBA/m at 1 kHz				
Dimensions	Overall length: 296 mm				
	Body diameter: 18 mm; Tip diameter: 6 mm				
	Distance from probe tip to sensor: 3 mm				

AMMI description (Technical data according to manufacturer information)					
Construction	desktop unit containing waveform generator, sampling unit and audio volt meter.				
data rate	48 KHz / 24 bit				
Dynamic range	85 dB				
Dimensions	19 mm x 65 mm x 270 mm				

Certificates of conformity for AM1D and AMCC included in the calibration data of this test report show further technical details.

2010-08-03 Page 8 of 53

6.1.4 HAC test arch description

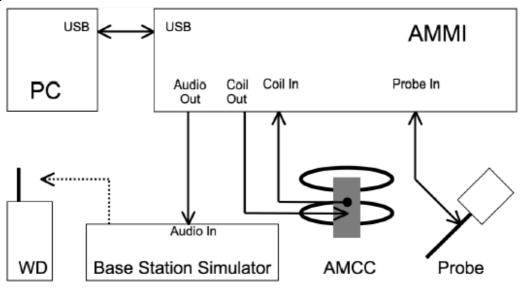
The HAC test arch is especially designed for performing measurements according to the requirements of ANSI C63.19. It allows centering the wireless device inside a 5 x 5 cm control area marked with 4 points for position adjustment. Plastic bridges allow an exact adjustment of the measurement distance to 1 cm from the DUT, which also includes the distance of the dipole center to the probe tip.

For centering the mobile phone speaker inside the control area and for adjusting the validation dipole position the test arch contains a nylon thread for alignment (see picture).

The HAC test arch is placed on the cover of the DASY4 SAM phantom.

6.1.5 Device holder description

The DASY4 device holder (see picture above) has three scales for device inclination, height and side adjustment. The device holder position is adjusted to the standard measurement position e.g. center of the DUT speaker to the center of the $5 \times 5 \text{ cm}^2$ control area with the device touching the plastic bridge of the HAC test arch. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.


2010-08-03 Page 9 of 53

6.1.6 Test set-up procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All tests are performed with the same configuration of test steps an in accordance with the requirements described in C63.19-2007.

Before starting the measurement cabling of test set-up needs to be verified according to the following description :

WD = Wireless Device

The AMMI is used to generate audio test signals via 'Audio Out' and 'Coil Out' as well as measuring audio levels via 'Coil In' and 'Probe In'.

At the beginning of the measurement a probe calibration is performed inside the AMCC Helmholtz coil. Frequency response and sensitivity are measured and can be compared with coil monitoring signal measured at 'Coil in'. See annex A for details.

These data are used as a reference during the following audio magnetic field measurements with the DUT.

Next step is the signal verification.

According to ANSI C63.19-2007 an audio input level of -16 dBm0 for GSM or WCDMA needs to be generated at the DUT. Audio speech codec option of CMU 200 offers different calibration procedures for adjusting the audio output level of the AMMI to the required level, which is described by the following routine recommended by SPEAG:

Audio Out of AMMI is connected to Speech codec handset in (9-pin connector) at CMU

Speech codec 'handset out' is connected to 'Coil in' of AMMI which can be used as audio volt meter after calibration.

Audio calibration requires setting up a call to the wireless device.

'Decoder Cal' at CMU is selected. This generates a 1 kHz sine with a level of 3.14 dBm0 at 'Handset Out'.

A measurement of the 'Coil In signal' is started, which is the CMU output signal now. The measured dBV value corresponds to 3.14dBm0 and the required value in dBV for -16 dBm0 can be calculated

A 1 kHz sine signal with AMMI gain value 10 is continuously generated by the AMMI.

'Codec Cal' is selected at the CMU. The input signal at the CMU is now sent back to AMMI input.

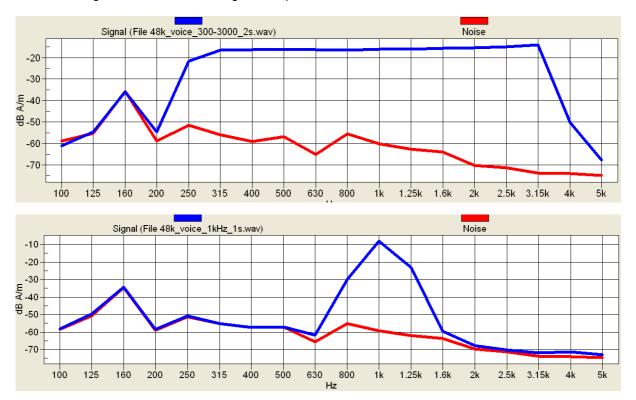
Measurement of 'Coil In Signal'. The measured dBV value corresponds to the gain value of 10 and the required gain value for -16 dBm0 can be calculated.

'Speech codec handset low' is selected at the CMU for measuring the audio output of the wireless device.

2010-08-03 Page 10 of 53

Compared to the 1 kHz sine any other selected audio signal requires different gain settings as those signals have a different peak-to-RMS ratio. The correction factors for the gain setting can be determined by directly connecting 'Audio Out' to 'Coil In' and measuring the signal levels.

CMU200 decoder calibration is device specific and needs to be performed after each re-calibration and adjustment.


For CMU200 S/N 106826 the following values have been determined:

3.14 dBm0 corresponds to -2.57 dBV \rightarrow -16 dBm0 = -21.71 dBV gain 10 corresponds to 20.6 dBV \rightarrow required gain setting for -21.71 dbV and 1 kHz sine : 8.8

gain settings for different signal types used in this report :

Signal	Duration	Peak to RMS	RMS	required gain	gain setting
		[dB]	[dB]	factor	
1 kHz sine		3.0	0.0	1.0	8.8
48k voice 1kHz	1 s	16.2	-12.7	4.33	38.1
48k voice	2 s	21.6	-18.6	8.48	74.6
300 – 3000 Hz					

broadband signal and narrowband signal compared to noise level:

2010-08-03 Page 11 of 53

6.1.7 HAC T-Coil measurement procedure

- The HAC test setup including AMCC is placed at the pre-defined position on top of the SAR phantom cover.
- A phantom adjustment and verification is performed, which allows checking the borders and centre position of the 5 x 5 cm² control area. The probe tip touches down on the 4 points at the corners of the control area.
- The probe distance of 0.7 mm to the test arch is calibrated by using the manual robot control. The corresponding robot settings and instructions are included in the pre-defined measurement files.
- A probe calibration is performed with a calibration signal and a broadband voice signal to check frequency response.
- A background noise check is performed inside AMCC and in test position with DUT removed.
- The wireless device (WD) is oriented in its intended test position (see photo documentation) with the reference plane in the horizontal plane and secured by the device holder. The acoustical output is placed in the centre of the control area (predefined by the HAC test arch).
- DUT is switched on and call is initiated at maximum RF output power, with T-Coil active at maximum volume. Additionally settings causing additional noise to T-Coil connection (e.g. backlight on) can be tested.
- A course scan for axial, longitudinal and transversal magnetic field at 50 x 50 mm with 4.2 mm spacing is performed with a narrowband voice signal at 1 kHz and with noise only at a distance of 0.7 mm above the HAC test arch.
- At the position of best SNR in course scans a fine scan of 8 x 8 mm at 2 mm spacing is performed with a narrowband voice signal and noise only. Steps 8 and 9 are performed for all 3 probe orientations (axial, longitudinal transversal).
- At the position with best SNR in fine scan of the axial component a broadband voice measurement is performed to determine the frequency response.

6.1.8 Signal flow of ABM1 and ABM2 measurements

ABM1:

Magnetic field probe AM1D delivers a voltage corresponding to a certain magnetic field intensity. This signal is amplified by 40 dB and measured by the AMMI. The measured value is corrected by the probe sensitivity factor (e.g. -32 dBV/(A/m)) for the measured frequency as determined during probe calibration, as well as by the 40 dB pre-amplification.

After filtering the signal by a 1/3 octave filter the ABM1 value for magnetic field intensity is obtained.

ABM2:

ABM2 is measured by turning the audio signal off and measuring noise. The measured noise level is corrected as above and is additionally filtered using half band integration and A-weighting filters by applying convolution in time-domain. ABM2 is obtained as the power sum inside the 0.1 to 10 kHz band.

6.1.9 Test data evaluation

- ABM1, ABM2 and ABM1/ABM2 (SNR) can be evaluated with the SEMCAD post processor. Values for each measurement position can be read directly by using a cursor.

All values can be displayed in dB (A/m). Therefore one of the three values can be derived from the two others by using the formula SNR = ABM1 - ABM2

- Frequency response from 300 to 3000 Hz can be evaluated from z-axis frequency response measurement and can be compared to limit lines which depend on the signal level at 1 kHz according to ANSI C.63-19 chapter 7.3.

For details about ABM1 and SNR see annex B. Section 7 summarizes the test results. Test procedures and data evaluation are referred to ANSI-C63.19-2007.

2010-08-03 Page 12 of 53

6.1.10 Measurement uncertainty evaluation for HAC T-Coil measurements

This measurement uncertainty budget is suggested by ANSI-C63.19 and determined by Schmid & Partner Engineering AG. It is valid for the frequency range 800 MHz – 3 GHz and represents a worst case analysis. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divi -sor	c _i AB M1	c _i AB M2	Standard Uncertainty ABM1	Standard Uncertainty ABM2
Probe Sensitivity							
Reference level	± 3.0%	Normal	1	1	1	± 3.0%	± 3.0%
AMCC geometry	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%
AMCC current	± 0.6%	Rectangular	√3	1	1	± 0.4%	± 0.4%
Probe position during calibration	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%
Noise contribution	± 0.7%	Rectangular	√3	0.01 4	1	± 0.0%	± 0.4%
Frequency slope	± 5.9%	Rectangular	√3	0.1	1	± 0.3%	± 3.5%
Probe System							
Repeatability / drift	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%
Linearity / dynamic range	± 0.6%	Rectangular	√3	1	1	± 0.4%	± 0.4%
Acoustic noise	± 1.0%	Rectangular	√3	0.1	1	± 0.1%	± 1.0%
Probe angle	± 2.3%	Rectangular	√3	1	1	± 1.4%	± 1.4%
Spectral processing	± 0.9%	Rectangular	√3	1	1	± 0.5%	± 0.5%
Integration time	± 0.6%	Normal	1	1	5	± 0.6%	± 3.0%
field disturbation	± 0.2%	Rectangular	√3	1	1	± 0.1%	± 0.1%
Test signal							
Reference signal spectral	± 0.6%	Rectangular	√3	0	1	± 0.0%	± 0.4%
response							
Positioning							
Probe positioning	± 1.9%	Normal	1	1	1	± 1.1%	± 1.1%
Phantom thickness	± 0.9%	Normal	1	1	1	± 0.5%	± 0.5%
DUT positioning	± 1.9%	Rectangular	√3	1	1	± 1.1%	± 1.1%
External contributions							
RF interference	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%
test signal variation	± 2.0%	Rectangular	√3	1	1	± 1.2%	± 1.2%
Expanded Std. Uncertainty						± 8.2%	± 12.3%

Table 1: Measurement uncertainties

2010-08-03 Page 13 of 53

6.2 Test results

6.3 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used. The output power was measured using an integrated RF connector and attached RF cable.

Note: CMU200 measures GSM peak and average output power for active timeslots.

For SAR e.g. the timebased average power is relevant. The difference inbetween depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8	1: 4	1:2.66	1:2
timebased avg. power compared to slotted avg. power	- 9 dB	- 6 dB	- 4.25 dB	- 3 dB

6.3.1 Conducted power measurements GSM 850 MHz

Channel / frequency	modulation	timeslots	slotted avg. power	timebased avg. power (calculated)
128 / 824.2 MHz	GMSK	1	33.0dBm	24.0dBm
190 / 836.6 MHz	GMSK	1	33.0dBm	24.0dBm
251 / 848.0 MHz	GMSK	1	33.1dBm	24.1dBm

Table 2: Test results conducted power measurement GSM 850 MHz

6.3.2 Conducted power measurements GSM 1900 MHz

Channel / frequency	modulation	timeslots	slotted avg. power	timebased avg. power (calculated)
512 / 1850.2 MHz	GMSK	1	29.9dBm	20.9dBm
661 / 1880.0 MHz	GMSK	1	30.0dBm	21.0dBm
810 / 1909.8 MHz	GMSK	1	30.1dBm	21.1dBm

Table 3: Test results conducted power measurement GSM 1900 MHz

6.3.3 System background noise check

The background noise was checked in axial, longitudinal and transversal probe orientations. The noise spectrum is shown in annex A.1. Highest noise levels at 1 kHz do not exceed -52 dBA/m.

6.3.4 ABM2 check

ABM2 has been evaluated at T-coil position to select the channel with highest noise as test channel (1 frequency per band / communication system).

ABM2 comparison					
Mode / channel	ABM2 / dBA/m (noise level at T-Coil position)				
GSM850 / 128	-25.28				
GSM850 / 190	-23.82				
GSM850 / 251	-26.99				
GSM1900 / 512	-28.12				
GSM1900 / 698	-26.67				
GSM1900 / 885	-28.71				

2010-08-03 Page 14 of 53

6.3.5 ABM1 and SNR measurement

ABM1 minimum field level requirement: -18 dBA/m

T-Coil requirement: T4 : minimum 30 dB

T3: minimum 20 dB

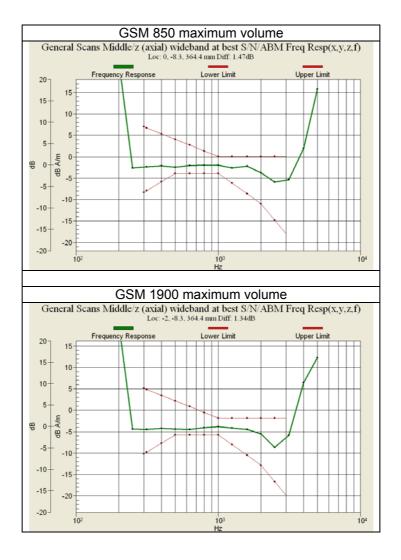
Note: the ABM1 value in the table below represents the field maximum at the position with best SNR. For radial V and radial H orientation this is not necessarily the highest maximum.

Hearing Aid Compatibility results for T-Coil with GSM 850							
Channel / frequency probe orientation position (x/y) dBA/m ABM1 ABM2 dBA/m SNR category air temperature				air temperature			
190 / 836.6 MHz	axial (z)	(0.8, -8.8)	-2.45	-26.35	23.9	T3	22.5 °C
190 / 836.6 MHz	radial V (x)	(-17.1 , -14.2)	-16.2	-46.6	30.4	T4	22.5 °C
190 / 836.6 MHz	radial H (y)	(-3.7,0)	-11.6	-47.7	36.1	T4	22.5 °C

Table 4: Test results GSM 850

Hearing Aid Compatibility results for T-Coil with GSM 1900							
Channel / frequency	probe orientation	measured position (x/y)	ABM1 dBA/m	ABM2 dBA/m	SNR	category	air temperature
		` , , ,					22 / 22
512 / 1850.2 MHz	axial (z)	(0 , -8.8)	0.16	-27.46	27.3	T3	22.4 °C
512 / 1850.2 MHz	radial V (x)	(-0.4 , -11.3)	-17.3	-50.6	33.3	T4	22.4 °C
512 / 1850.2 MHz	radial H (y)	(-4.6,0)	-14.2	-48.5	34.3	T4	22.4 °C

Table 5: Test results GSM 1900


Overall category: T3

2010-08-03 Page 15 of 53

6.3.6 Frequency response

Frequency response has been measured at position with best SNR using a voice-like signal of 300 - 3000 Hz. Measurement was performed with maximum volume. The frequency response margin is shown in the plots ('Diff').

Frequency response verdict: passed

6.3.7 Description of test set-up

The device was tested using a CMU 200 communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power. The conducted output power was measured using an integrated RF connector and attached RF cable. The test was performed under the following conditions:

Speaker muted
Backlight off
Maximum volume
Bluetooth off
T-Coil HAC mode on

2010-08-03 Page 16 of 53

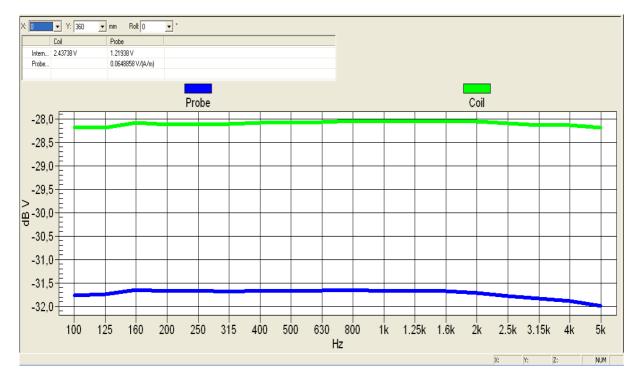
7 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

No	used	Equipment	Туре	Manufacturer	Serial No.		Frequency (months)
1		Audio Magnetic 1D Field Probe	AM1DV2	Schmid & Partner Engineering AG	1005	2009-08-19	12
2		Audio Magnetic Measurement Instrument		Schmid & Partner Engineering AG	1006	N/A	
3		Audio Magnetic Calibration Coil		Schmid & Partner Engineering AG	1007	N/A	
6		Data acquisition electronics	_	Schmid & Partner Engineering AG	477	May 7, 2010	12
7		Software	_	Schmid & Partner Engineering AG		N/A	
8		HAC test arch		Schmid & Partner Engineering AG	1022	N/A	
9		Universal Radio Communication Tester	CMU 200	Rohde & Schwarz	106826	January 12, 2010	12

Measurement devices are in a 1 or 2 year calibration cycle. System calibration with AMCC performed before each measurement. The DAE is not an active part of the HAC measurement system.

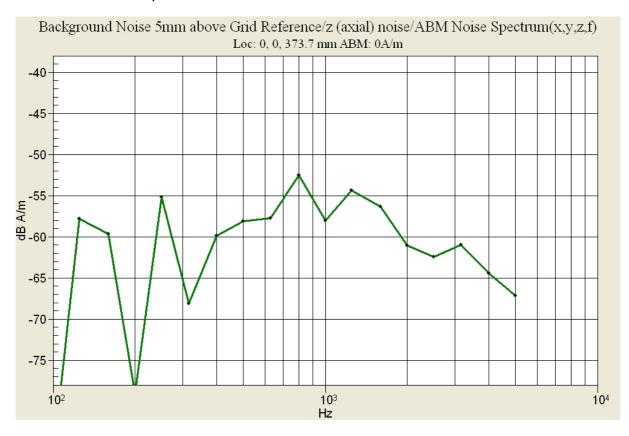
8 Observations


No observations exceeding those reported with the single test cases have been made.

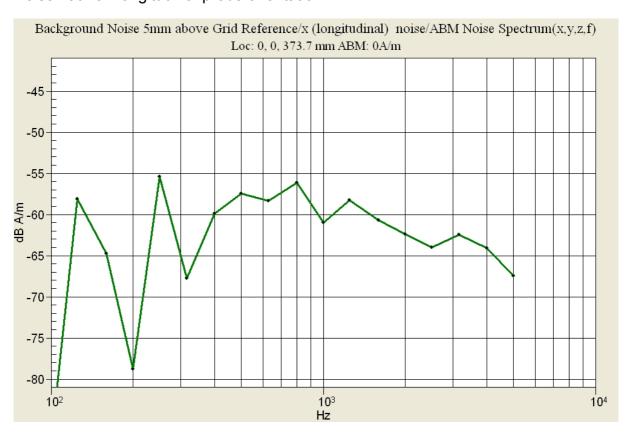
2010-08-03 Page 17 of 53

Annex A: System performance verification

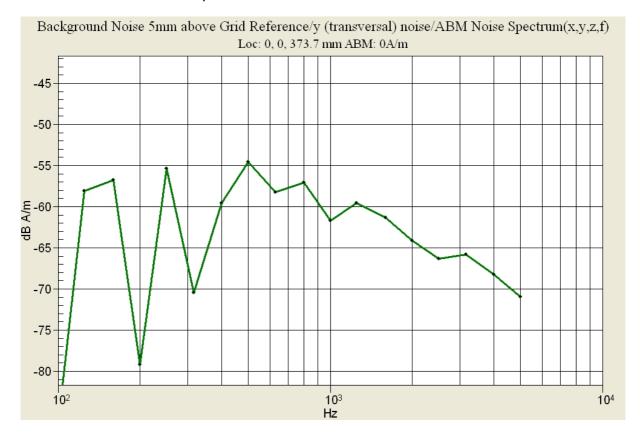
Probe calibration is performed using the AMCC Helmholtz coil. Frequency response and sensitivity is measured according to the following screen shot



Remark: appearance of calibration result has changed since DASY4 V4.7. The constant offset between coil and probe channel has replaced the slope starting at -50 dBV for 100 Hz and ending at -20 dBV for 4 kHz showing probe coil sensitivity as defined in chapter C.5 of ANSI-C63.


2010-08-03 Page 18 of 53

Noise floor of axial probe orientation


Noise floor of longitudinal probe orientation

2010-08-03 Page 19 of 53

Noise floor of transversal probe orientation

2010-08-03 Page 20 of 53

Annex B: DASY4 measurement results

Note: The following plots show the position of the maximum magnetic field intensity and the position of the best SNR for each field orientation. Positions with best SNR are not necessarily identical to those with highest field strength.

Annex B.1: GSM 850

Date/Time: 20.07.2010 15:23:49

HAC TCoil 850 z

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: PCS 850; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 - 1005; ; Calibrated: 17.08.2009

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE3 Sn477; Calibrated: 07.05.2010

- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/z (axial) fine 2mm 8 x 8/ABM Interpolated Signal(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.553025 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = -2.45 dB A/m BWC Factor = 0.553025 dB Location: -0.6, -9.1, 364.4 mm

General Scans Middle/z (axial) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1):

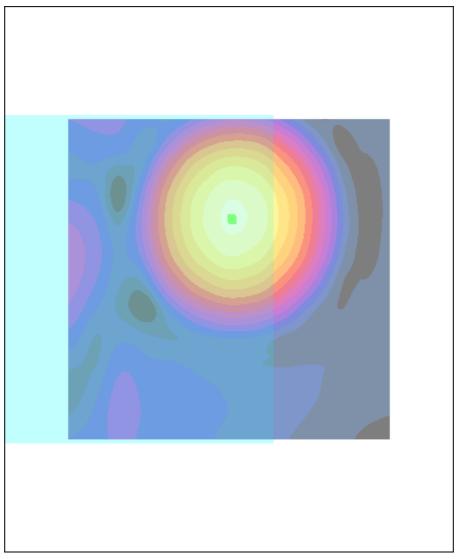
Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms
Measure Window Length: 1000ms
PWC applied: 0.552025 dB

BWC applied: 0.553025 dB


Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = -2.04 dB A/m BWC Factor = 0.553025 dB Location: -0.4, -9.6, 364.4 mm

2010-08-03 Page 21 of 53

0 dB = 1.00A/m

2010-08-03 Page 22 of 53

Date/Time: 20.07.2010 15:23:49

HAC_TCoil_850_z2

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: PCS 850; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 - 1005; ; Calibrated: 17.08.2009

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE3 Sn477; Calibrated: 07.05.2010

- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/z (axial) fine 2mm 8 x 8/ABM Interpolated SNR(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.553025 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]		
Category T1	0 dB to 10 dB		
Category T2	10 dB to 20 dB		
Category T3	20 dB to 30 dB		
Category T4	> 30 dB		

Cursor:

ABM1/ABM2 = 25.8 dB ABM1 comp = -2.61 dB A/m BWC Factor = 0.553025 dB Location: 0.2, -8.5, 364.4 mm

General Scans Middle/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Measurement grid: dx=10mm, dy=10mm

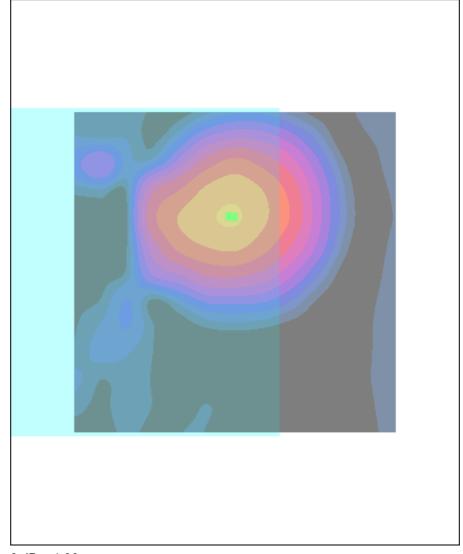
Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.553025 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]		
Category T1	0 dB to 10 dB		
Category T2	10 dB to 20 dB		
Category T3	20 dB to 30 dB		
Category T4	> 30 dB		


Cursor:

ABM1/ABM2 = 23.9 dB

2010-08-03 Page 23 of 53

ABM1 comp = -2.44 dB A/m BWC Factor = 0.553025 dB Location: 0.8, -8.8, 364.4 mm

0 dB = 1.00

2010-08-03 Page 24 of 53

Date/Time: 20.07.2010 15:26:53

HAC_TCoil_850_x

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: PCS 850; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 1005; ; Calibrated: 17.08.2009
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn477; Calibrated: 07.05.2010
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/x (longitudinal) fine 2mm 8 x 8/ABM Interpolated Signal(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.553025 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = -12.2 dB A/m BWC Factor = 0.553025 dB Location: -12.7, -10.3, 364.4 mm

General Scans Middle/x (longitudinal) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1):

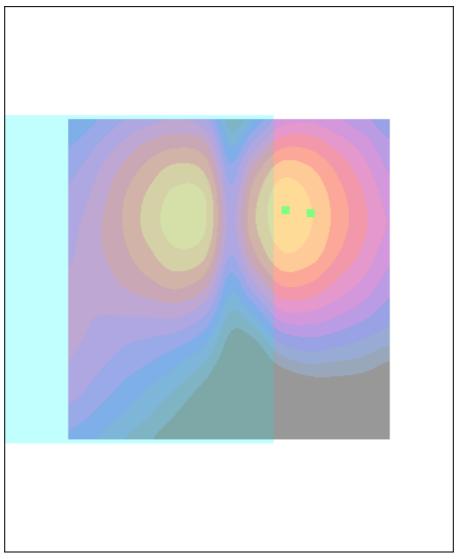
Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms

BWC applied: 0.553025 dB


Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = -10.1 dB A/m BWC Factor = 0.553025 dB Location: -8.7, -10.8, 364.4 mm

2010-08-03 Page 25 of 53

0 dB = 1.00A/m

2010-08-03 Page 26 of 53

Date/Time: 20.07.2010 15:26:53

HAC_TCoil_850_x2

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: PCS 850; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 - 1005; ; Calibrated: 17.08.2009

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE3 Sn477; Calibrated: 07.05.2010

- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/x (longitudinal) fine 2mm 8 x 8/ABM Interpolated SNR(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.553025 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]		
Category T1	0 dB to 10 dB		
Category T2	10 dB to 20 dB		
Category T3	20 dB to 30 dB		
Category T4	> 30 dB		

Cursor:

ABM1/ABM2 = 29.9 dB ABM1 comp = -16.6 dB A/m BWC Factor = 0.553025 dB Location: -17.3, -13.9, 364.4 mm

General Scans Middle/x (longitudinal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Measurement grid: dx=10mm, dv=10mm

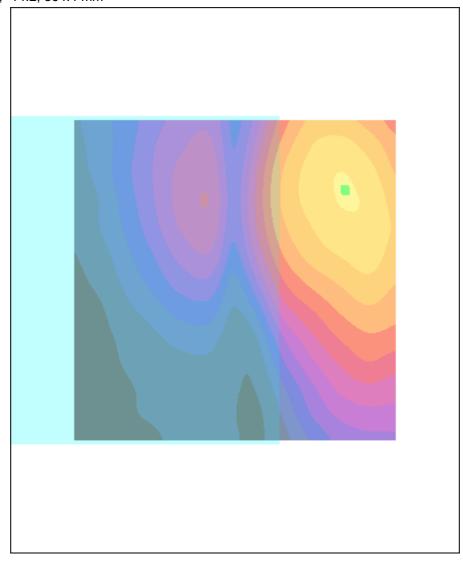
Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.553025 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]		
Category T1	0 dB to 10 dB		
Category T2	10 dB to 20 dB		
Category T3	20 dB to 30 dB		
Category T4	> 30 dB		


Cursor:

ABM1/ABM2 = 30.4 dB

2010-08-03 Page 27 of 53

ABM1 comp = -16.2 dB A/m BWC Factor = 0.553025 dB Location: -17.1, -14.2, 364.4 mm

0 dB = 1.00

2010-08-03 Page 28 of 53

Date/Time: 20.07.2010 15:29:43

HAC_TCoil_850_y

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: PCS 850; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 1005; ; Calibrated: 17.08.2009
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn477; Calibrated: 07.05.2010
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/y (transversal) fine 2mm 8 x 8/ABM Interpolated Signal(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.553025 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = -11.4 dB A/m BWC Factor = 0.553025 dB Location: -0.2, -0.4, 364.4 mm

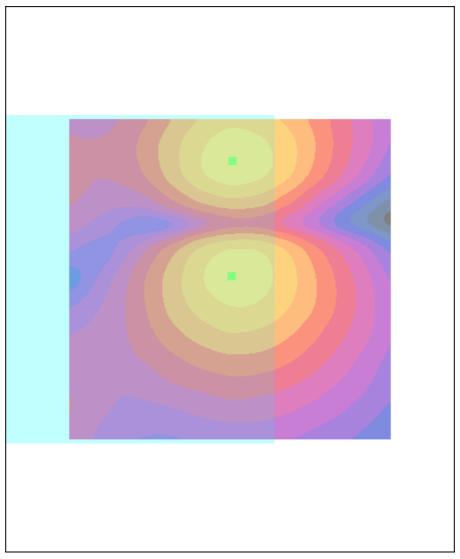
General Scans Middle/y (transversal) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.553025 dB


Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = -11.0 dB A/m BWC Factor = 0.553025 dB Location: -0.4, -18.3, 364.4 mm

2010-08-03 Page 29 of 53

0 dB = 1.00A/m

2010-08-03 Page 30 of 53

Date/Time: 20.07.2010 15:29:43

HAC_TCoil_850_y2

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: PCS 850; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 - 1005; ; Calibrated: 17.08.2009

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE3 Sn477; Calibrated: 07.05.2010

- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/y (transversal) fine 2mm 8 x 8/ABM Interpolated SNR(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.553025 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]		
Category T1	0 dB to 10 dB		
Category T2	10 dB to 20 dB		
Category T3	20 dB to 30 dB		
Category T4	> 30 dB		

Cursor:

ABM1/ABM2 = 36.1 dB ABM1 comp = -11.6 dB A/m BWC Factor = 0.553025 dB Location: -3.6, -0.8, 364.4 mm

General Scans Middle/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Measurement grid: dx=10mm, dy=10mm

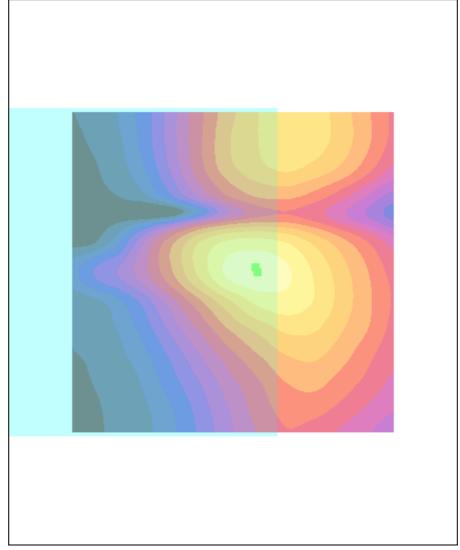
Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.553025 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]		
Category T1	0 dB to 10 dB		
Category T2	10 dB to 20 dB		
Category T3	20 dB to 30 dB		
Category T4	> 30 dB		


Cursor:

ABM1/ABM2 = 36.1 dB

2010-08-03 Page 31 of 53

ABM1 comp = -11.8 dB A/m BWC Factor = 0.553025 dB Location: -3.7, 0, 364.4 mm

0 dB = 1.00

2010-08-03 Page 32 of 53

Annex B.2: GSM 1800

Date/Time: 20.07.2010 16:38:58

HAC_TCoil_1900_z

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 - 1005; ; Calibrated: 17.08.2009

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE3 Sn477; Calibrated: 07.05.2010

- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/z (axial) fine 2mm 8 x 8/ABM Interpolated Signal(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms
Measure Window Length: 1000ms

BWC applied: 0.148981 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = 0.016 dB A/m BWC Factor = 0.148981 dB Location: -0.6, -8.9, 364.4 mm

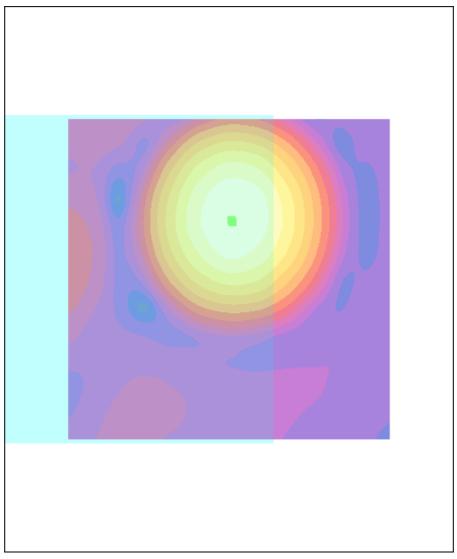
General Scans Middle/z (axial) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB


Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = 0.223 dB A/m BWC Factor = 0.148981 dB Location: -0.4, -9.2, 364.4 mm

2010-08-03 Page 33 of 53

0 dB = 1.00A/m

2010-08-03 Page 34 of 53

Date/Time: 20.07.2010 16:38:58

HAC TCoil 1900 z2

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 - 1005; ; Calibrated: 17.08.2009

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE3 Sn477; Calibrated: 07.05.2010

- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/z (axial) fine 2mm 8 x 8/ABM Interpolated SNR(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]		
Category T1	0 dB to 10 dB		
Category T2	10 dB to 20 dB		
Category T3	20 dB to 30 dB		
Category T4	> 30 dB		

Cursor:

ABM1/ABM2 = 31.4 dBABM1 comp = -0.248 dB A/m BWC Factor = 0.148981 dB Location: -2.2, -9.1, 364.4 mm

General Scans Middle/z (axial) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Measurement grid: dx=10mm, dv=10mm

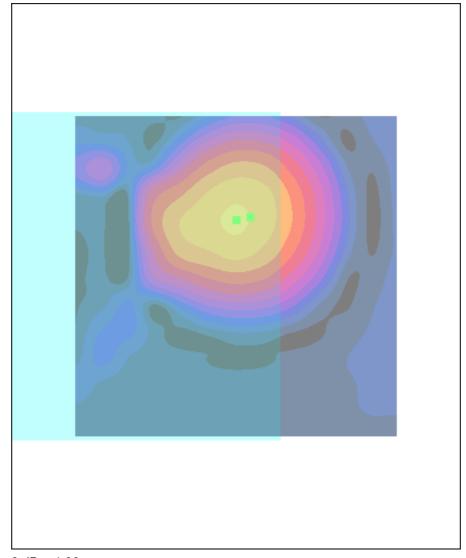
Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]		
Category T1	0 dB to 10 dB		
Category T2	10 dB to 20 dB		
Category T3	20 dB to 30 dB		
Category T4	> 30 dB		


Cursor:

ABM1/ABM2 = 27.3 dB

2010-08-03 Page 35 of 53

ABM1 comp = 0.167 dB A/m BWC Factor = 0.148981 dB Location: 0, -8.8, 364.4 mm

0 dB = 1.00

2010-08-03 Page 36 of 53

Date/Time: 20.07.2010 16:42:05

HAC_TCoil_1900_x

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 1005; ; Calibrated: 17.08.2009
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn477; Calibrated: 07.05.2010
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/x (longitudinal) fine 2mm 8 x 8/ABM Interpolated Signal(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = -17.4 dB A/m BWC Factor = 0.148981 dB Location: -16.8, -10.3, 364.4 mm

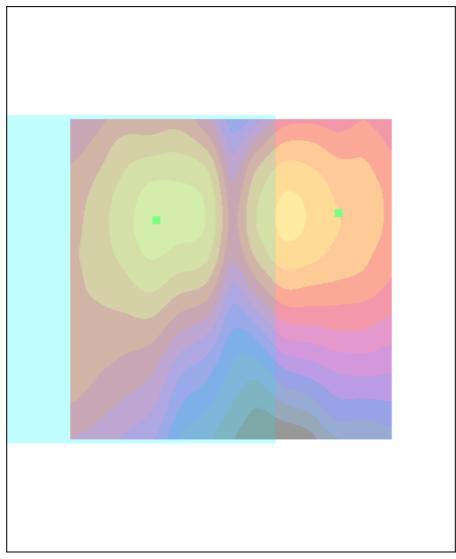
General Scans Middle/x (longitudinal) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB


Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = -11.4 dB A/m BWC Factor = 0.148981 dB Location: 11.7, -9.2, 364.4 mm

2010-08-03 Page 37 of 53

0 dB = 1.00A/m

2010-08-03 Page 38 of 53

Date/Time: 20.07.2010 16:42:05

HAC_TCoil_1900_x2

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 - 1005; ; Calibrated: 17.08.2009

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE3 Sn477; Calibrated: 07.05.2010

- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/x (longitudinal) fine 2mm 8 x 8/ABM Interpolated SNR(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Cursor:

ABM1/ABM2 = 30.9 dB ABM1 comp = -17.7 dB A/m BWC Factor = 0.148981 dB Location: -16.8, -12.9, 364.4 mm

General Scans Middle/x (longitudinal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Measurement grid: dx=10mm, dy=10mm

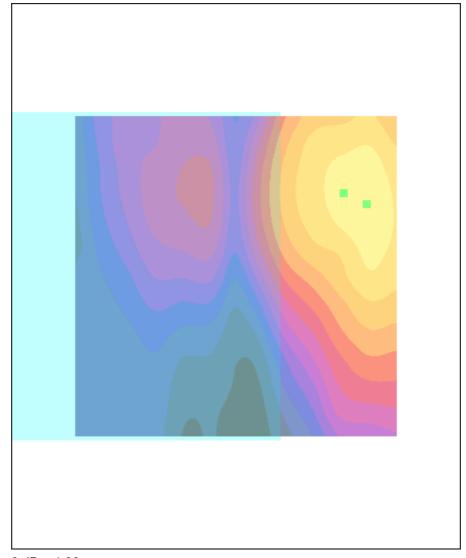
Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]	
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB


Cursor:

ABM1/ABM2 = 33.3 dB

2010-08-03 Page 39 of 53

ABM1 comp = -17.3 dB A/m BWC Factor = 0.148981 dB Location: -20.4, -11.3, 364.4 mm

0 dB = 1.00

2010-08-03 Page 40 of 53

Date/Time: 20.07.2010 16:44:57

HAC_TCoil_1900_y

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 1005; ; Calibrated: 17.08.2009
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn477; Calibrated: 07.05.2010
- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/y (transversal) fine 2mm 8 x 8/ABM Interpolated Signal(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = -13.0 dB A/m BWC Factor = 0.148981 dB Location: -2, -1.2, 364.4 mm

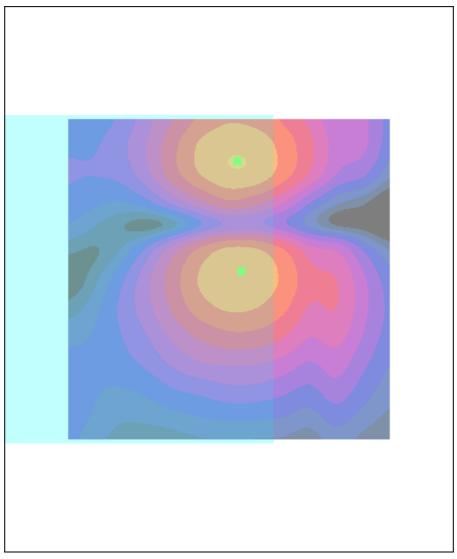
General Scans Middle/y (transversal) 4.2mm 50 x 50/ABM Interpolated Signal(x,y,z) (121x121x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB


Device Reference Point: 0.000, 0.000, 353.7 mm

Cursor:

ABM1 = -13.2 dB A/m BWC Factor = 0.148981 dB Location: -1.2, -18.3, 364.4 mm

2010-08-03 Page 41 of 53

0 dB = 1.00A/m

2010-08-03 Page 42 of 53

Date/Time: 20.07.2010 16:44:57

HAC_TCoil_1900_y2

DUT: Sagem; Type: Cosy Phone 2G; Serial: 352330040008166

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium: Air Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: AMB with Coil Section

DASY4 Configuration:

- Probe: AM1DV2 - 1005; ; Calibrated: 17.08.2009

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE3 Sn477; Calibrated: 07.05.2010

- Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

General Scans Middle/y (transversal) fine 2mm 8 x 8/ABM Interpolated SNR(x,y,z) (41x41x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Cursor:

ABM1/ABM2 = 36.7 dB ABM1 comp = -13.1 dB A/m BWC Factor = 0.148981 dB Location: -2.2, -0.8, 364.4 mm

General Scans Middle/y (transversal) 4.2mm 50 x 50/ABM Interpolated SNR(x,y,z) (121x121x1):

Measurement grid: dx=10mm, dy=10mm

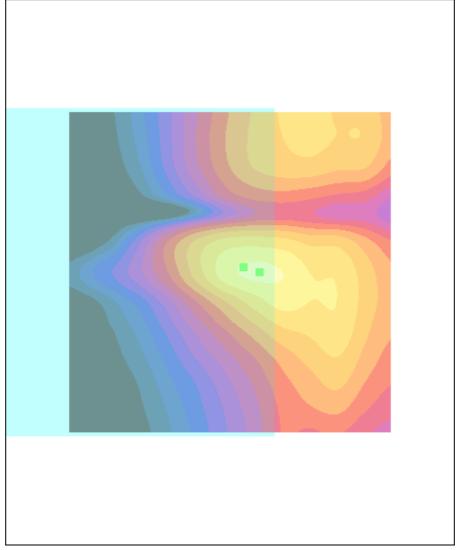
Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 38.1

Measure Window Start: 0ms Measure Window Length: 1000ms BWC applied: 0.148981 dB

Device Reference Point: 0.000, 0.000, 353.7 mm

Category	Telephone parameters WD signal quality [(signal+noise)-to-noise ratio in decibels]	
Category T1	0 dB to 10 dB	
Category T2	10 dB to 20 dB	
Category T3	20 dB to 30 dB	
Category T4	> 30 dB	


Cursor:

ABM1/ABM2 = 34.3 dB

2010-08-03 Page 43 of 53

ABM1 comp = -14.2 dB A/m BWC Factor = 0.148981 dB Location: -4.6, 0, 364.4 mm

0 dB = 1.00

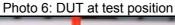
2010-08-03 Page 44 of 53

Annex C: Photo documentation

2010-08-03 Page 45 of 53

Photo 3: DUT - rear view (open without battery)

Photo 4: DUT - label

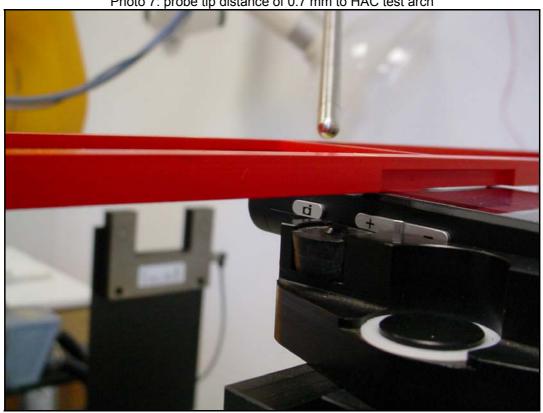


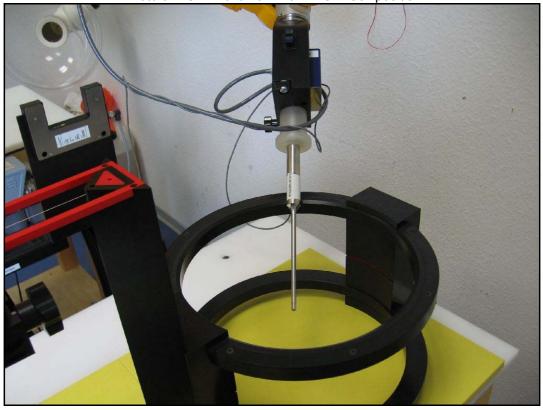
2010-08-03 Page 46 of 53

Photo 5: battery

2010-08-03 Page 47 of 53

Photo 7: probe tip distance of 0.7 mm to HAC test arch




Photo 8: DUT at test position (side view)

2010-08-03 Page 48 of 53

Photo 9: DUT - front view with HAC T-Coil position

2010-08-03 Page 49 of 53

Annex D: HAC Calibration parameters

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schwelzerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Cetecom

Certificate No: AM1DV2-1005_Aug09

Accreditation No.: SCS 108

Calibration procedure for AM1D magnetic field probes and TMFS in the audio range Calibration date: August 17, 2009 Condition of the calibrated item In Tolerance This calibration cortilicate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncontainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been continued in the closed laboratory facility: environment temperature (22 ± 3) C and humid by < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Celibration Sequence Probe AM1DV2 SN: 0810270 30-Sep-08 (No. 7870) Sup-08 30-Sep-08 (No. 7870) Sup-08 30-Sep-09 (No. AM1D-1008 Jan00) Jan-10 AB4 Check Date (in house) Scheduled Check MMCC 1050 SO-JJ-09 (in house) Scheduled Check Miso Meh RE Technician Name Function Signature Approved by: Ein Bornholf RED Director Fill Bull July	CALIBRATION C	ERTIFICA	ſΕ	
Calibration procedure for AM1D magnetic field probes and TMFS in the author range Calibration date: August 17, 2009 Condition of the calibrated item In Tolerance This calibration continuate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the unconstructed in the characteristic probability are given on the following pages and are part of the certificate. All calibrations have been continuated in the closed laboratory facility: environment temperature (22 ± 3) °C and humid by < 70%. Calibration Equipment used (M8.TE critical for pailibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Celibration Scheduled Celibration Scheduled Celibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Celibration Scheduled Celibration Scheduled Celibration DAE4 SN: 1008 12-Jan-09 (No. AM10-1008 Jan-00) Jan-10 DAE4 Secondary Standards ID # Check Date (in house) Scheduled Chock AMCC ID50 SO-Jul-09 (in house check Jul 09) Jul-10 Name Function Signature Approved by: Fin Bornhair R&D Director	Object	AM1DV2 - SN	1: 1005	
Calibration procedure for AM1D magnetic field probes and TMFS in the auticio range Calibration date: August 17, 2009 Condition of the calibrated item In Tolerance This calibration continuate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the unconstinues with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humid by < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Celibration (Scheduled Celibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Celibration (Supple No. AM1D-1008 Jan03) Jan-10 DAE4 SN: 781 20-Feb-09 (No. AM1D-1008 Jan03) Jan-10 Feb-10 ABBoondary Standards ID # Check Date (in house) Scheduled Chock AMCC ID50 SO-Jul-09 (in house chock Jul 09) Jul-10 Name Function RE Technician Fin Bornholt Fin Bornholt RED Director				
This calibration continuate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncontainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) C and humid by < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) 30-Sep-08 (No: 7670) Sep-09 Reference Probe AM1DV2 SN: 0810270 SN: 1008 12-Jan-09 (No. AM1D-1008 Jan03) Jan-10 PRED-10 Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 Name Function Signature Mike Meth RETechnistan Name Function Signature Approved by: Fin Bornholf RED Director The Director	Calibration procedure(s)	Calibration procedure for AM1D magnetic field probes and TMFS in the		
This calibration continuate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncontainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conflucted in the closed laboratory facility: environment temperature (22 ± 3)°C and humid by < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Septical Notation (Notation) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Septical Notation (Notation) Suppose (Not. 7670) Suppose (Not. 7	Calibration date:	August 17, 20	09	
Secondary Standards	Condition of the calibrated item	In Tolerance		
Secondary Standards	All calibrations have been conduc	ated in the closed labor	ratory facility: environment temperature $(22\pm3)^\circ$	
Secondary Standards	Primary Standards	# מו	Cal Date (Certificate No.)	Scheduled Calibration
SN: 1008	Keithley Multimater Type 2001	SN: 0810278		177
Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 30-JJI-09 (in house check Jul 09) Jul-10 Name Function Signature Approved by: Fin Bornholf RED Director	Reference Probe AM1DV2	SN: 1008	12-Jan-09 (No. AM1D-1008 Jan09)	
Name Function Signature Calibrated by: Name Function Signature Mike Medi RF Technician Approved by: Fin Bornholf R&D Director	DAE4	SN: 781	20-Feb-09 (No. DAE4-781_Feb09)	Feb-10
Name Function Signature Calibrated by: Mike Meni RF Technician Communication Approved by: Fin Bornholf R&D Director F. Cambull	Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrated by: Mike Merit RE Technician RE Technician RE Technician RE Technician RE Technician	AMCS	1050	30-Jul-09 (in house check Jul-09)	Jul-10
Calibrated by: Mike Merit RE Technician RE Technician RE Technician RE Technician RE Technician			20	
Approved by: Fin Bornholt RED Director F. Banfault		Name	Function	Signature
				T 1
	Calibrated by:	Mike Meili		0 . Tech
Issued: August 20, 20	260			F. Romfulf

Certificate No: AM1D-1005_Aug09

Page 1 of 3

2010-08-03 Page 50 of 53

References

- [1] ANSI C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] DASY4 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension

Description of the AM1D probe

The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface.

The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below. The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1] without additional shielding.

Handling of the item

The probe is manufactured from stainless stool. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter).

Methods Applied and Interpretation of Parameters

- Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC
 Test Arch phantom with AMCC Helmholtz calibration coil according to [2], with the tip pointing to
 "southwest" orientation.
- Functional Test: The functional test preceding calibration includes test of Noise level
 - BF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz.
- Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally +120° and 120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil.
- Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from the two minima at nominally +120° and -120°. DASY system uses this angle to align the sensor for radial measurements to the x and y axis in the horizontal plane.
- Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is
 compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given
 by the geometry and the current through the coil, which is monitored on the precision shunt resistor
 of the coil.

Certificate No: AM1D-1005_Aug09 Page 2 of 3

2010-08-03 Page 51 of 53

AM1D probe identification and configuration data

Item	AM1DV2 Audio Magnetic 1D Field Probe	
Type No	SP AM1 001 AA	
Serial No	1005	

Overall length	296 mm	
Tip diameter	6.0 mm (at the tip)	
Sensor offset	3.0 mm (centre of sensor from tip)	
Internal Amplifier	40 dB	

Manufacturer / Origin	Schmid & Partner Engineering AG, Zurich, Switzerland	
Manufacturing date	Feb-2006	
Last calibration date	August 19, 2008	

Calibration data

Connector rotation angle (in DASY system) 181.7 $^{\circ}$ +/- 3.6 $^{\circ}$ (k=2)

Sensor angle (in DASY system) 2.45 $^{\circ}$ +/- 0.5 $^{\circ}$ (k=2)

Sensitivity at 1 kHz (in DASY system) **0.0661 V / (A/m)** +/- 2.2 % (k=2)

Annex E: Document History

Version	Applied Changes	Date of Release
	Initial Release	2010-07-30
А	Battery information updated	2010-08-03

Annex F: Further Information

Glossary

DUT - Device under Test EUT - Equipment under Test

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - not applicable

SAR - Specific Absorption Rate

S/N - Serial Number SW - Software

2010-08-03 Page 53 of 53