

TEST REPORT

Test Report No.: 1-2403-01-16/10

Testing Laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 – 10 66117 Saarbrücken/Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom-ict.de

e-mail: info@ict.cetecom.de

Accredited Test Laboratory:

The test laboratory (area of testing) is accredited

according to DIN EN ISO/IEC 17025

DAR registration number: DAT-P-176/94-D1

Appendix with calibration data and system validation information

2010-06-30 Page 1 of 41

Table of contents

1	Table of contents	2
2	Calibration report "Probe ER3DV6"	3
3	Calibration report "Probe H3DV6"	.13
4	Calibration report "1880 MHz HAC System validation dipole"	.23
5	Calibration report "835 MHz HAC System validation dipole"	.32
6	Calibration certificate of Data Acquisition Unit (DAE)	.38
7	SPEAG application note : determination of PMF	.39

2 Calibration report "Probe ER3DV6"

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di teratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Multilateral Agreement for the recognition of calibration certificates

Client Cetecom Certificate No: ER3-2262_Jan10

CALIBRATION CERTIFICATE ER3DV6 - SN:2262 Object QA CAL-02.v5 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for E-field probes optimized for close near field evaluations in air January 8, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the confidence. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humid ty < 70%. Calibration Equipment used (M&TE critical for calibration) Pr mary Standards ID # Ca Date (Certificate No.) Schedulec Calibration GH41293874 Power meter E4418B 1-Apr-C9 (No. 217-01030) Apr-10 Power sensor E4412A MY41495277 1-Apr-09 (No. 217-01030) Арг-10 Power sensor E4412A MY41498037 1-Apr-09 (No. 217-01030) Apr-10 Reference 3 dB Attonuator SN: S5054 (3c) 31-Mer-09 (No. 217-01026) Mar-10 Reference 20 dB Attenuator SN, S5086 (20b) 31-Mar-09 (No. 217-01028) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) 31-Mar-09 (No. 217-01027) Mar-10 Reference Prope ER3DV6 SN: 2328 3-Oct-09 (No. ER3-2328_Oct09) Oct-10 DAE4 SN: 789 23-Dec-08 (No DAE4 789_Dec09) Dec-10 Secondary Standards Check Date (in house). Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E LS3739C585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Signature Calibrated by: Katja Pokovis Technical Manager Nie's Kuster Approved by: Quality Manager Issued: January 8, 2010 This calibration cortificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2262_Jan10

Page 1 of 10

2010-06-30 Page 3 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization op φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 3 = 0 is normal to probe axis

Cannector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx, y.z.: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f < 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z; DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2262 Jan10 Page 2 of 10

2010-06-30 Page 4 of 41

ER3DV6 SN:2262 January 8, 2010

Probe ER3DV6

SN:2262

Manufactured: May 18, 2001 Last calibrated: January 9, 2009 Recalibrated: January 8, 2010

Calibrated for DASY Systems
(Note: non-compatible with DASY2 system!)

Cortificate No: ER3-2262 Jan10 Page 3 of 10

2010-06-30 Page 5 of 41

ER3DV6 SN:2262 January 8, 2010

DASY - Parameters of Probe: ER3DV6 SN:2262

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	1.54	1.35	1.64	± 10.1%
DCP (mV) ²	97.7	97.0	100.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc [∈] (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300	± 1.5 %
			Y	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

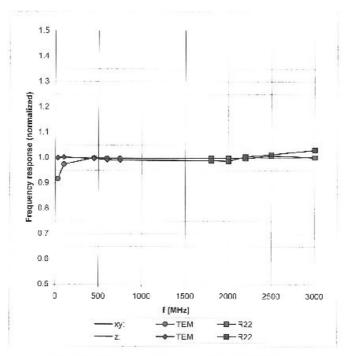
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2262_Jan10

Page 4 of 10

2010-06-30 Page 6 of 41

 $^{^{\}Lambda}$ numerical linear zation parameter; uncertainty not required

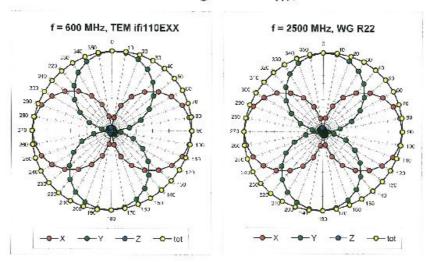

Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value

ER3DV6 SN:2262 January 8, 2010

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ER3 2262_Jan10 Page 5 of 10

2010-06-30 Page 7 of 41

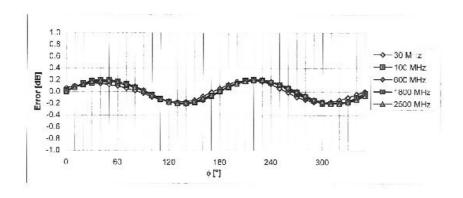


ER3DV6 SN:2262 January 8, 2010

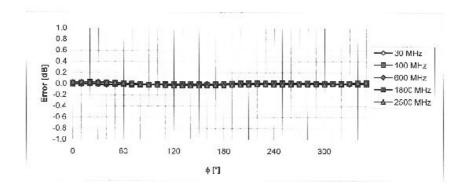
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), ϑ = 90°

Certificate No: ER3-2262 Jan10


Page 3 of 10

2010-06-30 Page 8 of 41


ER3DV6 SN:2262 January 8, 2010

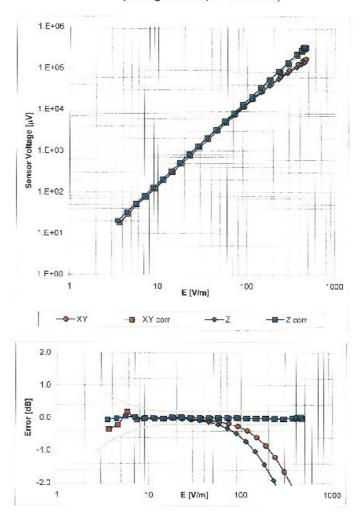
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ER3-2252 Jan10 Page 7 of 10

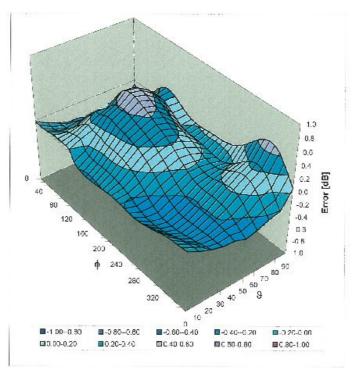

2010-06-30 Page 9 of 41

ER3DV6 SN:2262 January 8, 2010

Dynamic Range f(E-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ER3-2262_Jan10 Page 8 of 10

2010-06-30 Page 10 of 41

ER3DV6 SN:2262 January 8, 2010

Deviation from Isotropy in Air Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Continuate No: ER3-2262 Jen10 Page 9 of 10

2010-06-30 Page 11 of 41

ER3DV6 SN:2262 January 8, 2010

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	33.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8.0 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Certificate No: ER3-2262_Jan10 Page 10 of 10

2010-06-30 Page 12 of 41

3 Calibration report "Probe H3DV6"

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalennage
Servizie svizzere di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: H3-6086_Jan10

Client Cetecom

CALIBRATION CERTIFICATE

Object H3DV6 - SN:6086

Calibration procedure(s) QA CAL-03.v5 and QA CAL-25.v2

evaluations in air

Calibration procedure for H-field probes optimized for close near field

Calibration date. January 8, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Approved by:

Primary Standards	ID#	Call Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor F4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31 Mar 09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-C1027)	Mar-10
Reference Probe H3DV6	SN: 5182	3-Oct-09 (No. H3-6182 Octu9)	Oct-10
DAE4	SN: 789	23-Dec-09 (No. DAE4-789 Dec09)	Dec-10

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 80480	US3942U01700	4-Aug-99 (in house check Oct-09)	In house check: Oc:-11
Network Analyzer HP 8753E	US37390585	18 Oct-01 (in house check Oct-09)	In house check: Oc:10
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	12 101

Quality Manager

Issued: January 8, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: H3 6386_Jan10 Page 1 of 10

Niels Kuster

2010-06-30 Page 13 of 41

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnane C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization o o rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ for XY sensors and $\vartheta = 90$ for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diodo.
- Sphorical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X a0a1a2 (no uncertainty required).

Certificate No: H3-6085 Jan10 Page 2 of 10

2010-06-30 Page 14 of 41

H3DV6 SN:6086 January 8, 2010

Probe H3DV6

SN:6086

Manufactured: June 1, 2001 Last calibrated: January 9, 2009 Recalibrated: January 8, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: H3-6086_Jan10

2010-06-30 Page 15 of 41

Page 3 of 10

H3DV6 SN:6086 January 8, 2010

DASY - Parameters of Probe: H3DV6 SN:6086

Basic Calibration Parameters

		Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (A/m / √(µV))	а0	2.90E-3	2.76E-3	3.00E-3	± 5.1%
Norm (A/m / √(μV))	а1	-7.83E-5	-8.00 E -5	-2.92E-4	± 5.1%
Norm (A/m / √(μV))	a2	-4.87E-5	-2.46E-5	-1.13E-5	± 5.1%
DCP (mV) ^A		81.6	91.0	80.4	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^c (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300	± 1.5 %
			Y	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

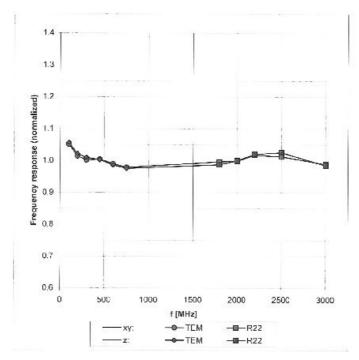
Certificate No. H3-5086_Jan10

Page 4 of 10

2010-06-30 Page 16 of 41

 $^{^{4}}$ numerical linearization parameter, uncortainty not required

Euncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value



H3DV6 SN:6086

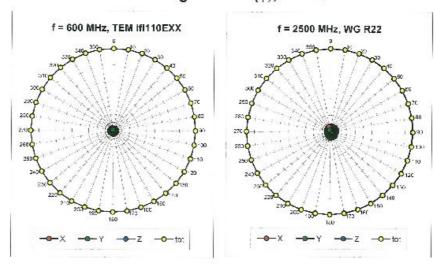
January 8, 2010

Frequency Response of H-Field

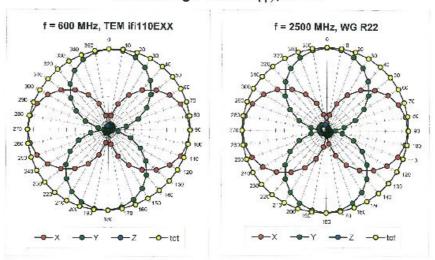
(TEM-Cell:ifi110 EXX, Waveguide R22)

Uncertainty of Frequency Response of H-field: \pm 6.3% (k=2)

Certificate No: H3-6086_Jan10


Page 5 of 10

2010-06-30 Page 17 of 41



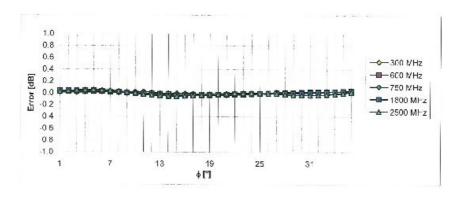
H3DV6 SN:6086 January 8, 2010

Receiving Pattern (ϕ), ϑ = 90°

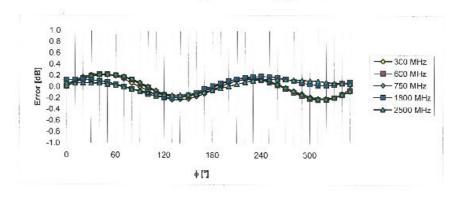
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Certificate No. H3-5085, Jan 10

Page 6 of 10


2010-06-30 Page 18 of 41

H3DV6 SN:6086


January 8, 2010

Receiving Pattern (6), 9 = 90°

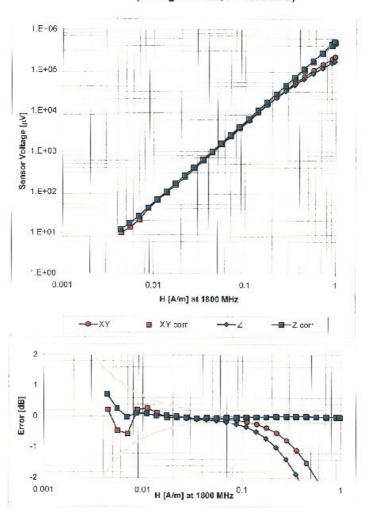
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No. H3-8086_Jan10

Page 7 of 10


2010-06-30 Page 19 of 41

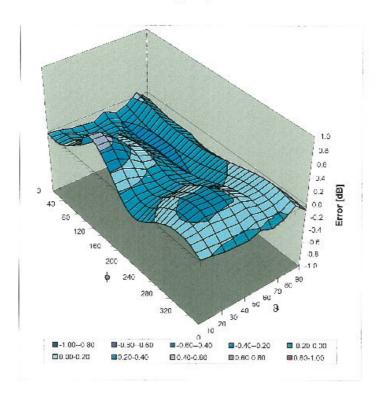
H3DV6 SN:6086 January 8, 2010

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No. H3-8098_Jan 10


Page 8 of 10

2010-06-30 Page 20 of 41

H3DV6 SN:6086 January 8, 2010

Deviation from Isotropy in Air Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: H3-6086_Jan13

Page 9 of 10

2010-06-30 Page 21 of 41

H3DV6 SN:6086 January 8, 2010

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	-149.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	20 mm
Tip Diameter	6.0 mm
Probe Tip to Sensor X Calibration Point	3 mm
Probe Tip to Sensor Y Calibration Point	3 mm
Probe Tip to Sensor Z Calibration Point	3 mm

Certificate No. H3-8086_Jarr10

2010-06-30 Page 22 of 41

⊇age 10 of 10

4 Calibration report "1880 MHz HAC System validation dipole"

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- C Service suisse d'étalonnage Servizio svizzero di taratura
- S Swies Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Cetecom

Certificate No: CD1880V3-1021 May10

Accreditation No.: SCS 108

ALIDITATION	CERTIFICAT	E A TOUR TO A TOUR	
Object	CD1880V3 - SN	l: 1021	
Calibration procedure(s)	QA CAL-20.v5 Calibration proc	edure for dipoles in air	
Calibration date:	May 17, 2010		
	ucted in the closed laborate	ational standards, which realize the physical upper facility: anvironment temperature (22 ± 3)	
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	08-Oct-09 (No. 217-01086)	OcI-10
Probe ER3DV8	SN: 2336	30-Dec-09 (No. ER3-2336_Dec09)	Dec-10
Probe H3DV6	SN: 6065	30-Dec-39 (No. H3-6065_Dec39)	Dec-10
	SN: 781	22-Jan-10 (No. DAE4-781 Jan10)	Jan-11
DAE4			
	ID#	Check Date (in house)	Scheduled Check
Secondary Standards	ID# SN: GB42420191	Check Date (in house) 09-Oct-09 (in house check Oct-09)	Scheduled Check In house check: Oct-10
Secondary Standards Power mater Agilent 4419B			
Secondary Standards Power meter Agilent 4419B Power sensor HP 8482H	SN: GB42420191	09-Oct-09 (in house check Oct-09)	In house check: Oct-10
Secondary Standards Power meter Agilent 4419B Power sensor HP 8482H Power sensor HP 8482A	SN: GB42420191 SN: 3318A09450	09-Oct-09 (in house check Oct-09) 09-Oct-09 (in house check Oct-09)	In house check: Oct-10 In house check: Oct-10
Secondary Standards Power meter Agilent 4419B Power sensor HP 8482H Power sensor HP 8482A Network Analyzer HP 8753E	SN: GB42420191 SN: 3318A09450 SN: US37295597	09-Cct-09 (in house check Oct-09) 09-Cct-09 (in house check Oct-09) 09-Cct-09 (in house check Oct-09)	In house check: Oct-10 In house check: Oct-10 In house check: Oct-10
DAE4 Secondary Standards Power meter Agilent 44-19B Power sensor HP 8482H Power sensor HP 8482A Network Analyzer HP 8753E RF generator E4433B	SN: GB42420191 SN: 3318A09450 SN: US37295697 US37390585	09-Cat-09 (in hause check Oct-09) 09-Cat-09 (in hause check Oct-09) 09-Cat-09 (in hause check Oct-09) 18-Cat-01 (in hause check Oct-09)	In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-11
Secondary Standards Power meter Agilent 4419B Power sensor HP 8482H Power sensor HP 8482A Network Analyzer HP 8753E RF generator E4433B	Sh: GB42420191 Sh: 3818A09450 Sh: US37295697 US37390585 MY 41000675	09-Cat-09 (in hause check Oct-09) 09-Cat-09 (in hause check Oct-09) 09-Cat-09 (in hause check Oct-09) 18-Cat-01 (in hause check Oct-09) 03-Nov-04 (in hause check Oct-09)	In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-10
Secondary Standards Power meter Agilent 4419B Power sensor HP 8482H Power sensor HP 8482A Network Analyzer HP 8753E	SN: GB42420191 SN: 3818A09450 SN: US37295597 US37390585 MY 41000675	09-Cat-09 (in house check Oct-09) 09-Cat-09 (in house check Oct-09) 09-Cat-09 (in house check Oct-09) 18-Cat-01 (in house check Oct-09) 03-Nov-04 (in house check Oct-09) Function Laboratory Technician	In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-10 In house check: Oct-11

Certificate No: CD1880V3-1021_May10

Page 1 of 9

2010-06-30 Page 23 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdlenst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

References

 ANSI-C63.19-2007
 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other
 axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are
 selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate.
 All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
 value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the
 dipole surface at the feed point.

Certificate No: GD1880V3-1021_May10

Page 2 of 9

1. Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2 B162
DASY PP Version	SEMCAD X	V14.0 B59
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2. Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.472 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	141.9 V/m
Maximum measured above low end	100 mW forward power	134.6 V/m
Averaged maximum above arm	100 mW forward power	138.3 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3. Appendix

3.1 Antenna Parameters

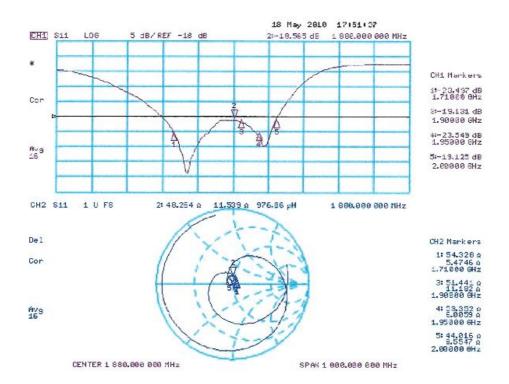
Frequency	Return Loss	Impedance
1710 MHz	23.5 dB	(54.3 + j5.5) Ohm
1880 MHz	18.6 dB	(48.3 + j11.5) Ohm
1900 MHz	19.1 dB	(51.4 + j11.2) Ohm
1950 MHz	23.5 dB	(53.4 + j6.0) Ohm
2000 MHz	19.1 dB	(44.0 + j8.6) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.


After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD1880V3-1021_May10 Page 3 of 9

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

3.3.2 DASY4 H-Field Result

Date/Time: 17.05.2010 10:23:08

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_H_1021_100512_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1021

Communication System: CW; Communication System Band: CD1880 (1880.0 MHz); Frequency: 1880 MHz;

Communication System PAR: 0 dB

Medium parameters used: $\sigma = 0$ mho/m, $z_r = 1$; $\rho = 1$ kg/m²

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IBC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: H3DV6 - SN6065; ; Calibrated: 30.12.2009

· Sensor-Surface: (Fix Surface)

Electronies: DAE4 Sn781; Calibrated: 22.01.2010

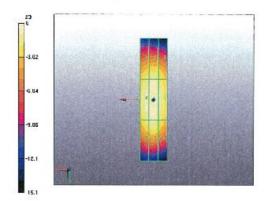
Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY5, V5.2 Boild 162; SEMCAD X Version 14.0 Build 59

Dipole II-Field measurement @ 1880MHz/H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hcaring Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.472 A/m


Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.501 A/m; Power Drift = -0.026 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.406	0.425	0.402
M2	M2	M2
Grid 4	Grid 5	Grid 6
0.451	0.472	0.445
M2	M2	M2
Grid 7	Grid 8	Grid 9
0.415	0.436	0.406
M2	M2	M2

 $0~\mathrm{dB}=0.472\mathrm{A/m}$

Certificate No: CD1880V3-1021 May10 Page 5 of 9

2010-06-30 Page 27 of 41

3.3.3 DASY4 E-Field Result

Date/Time: 12.05.2010 15:18:16

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_E_1021_100512_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1021

Communication System: CW; Communication System Band: CD1880 (1880.0 MHz); Frequency: 1880 MHz;

Communication System PAR: 0 dB

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2009

· Sensor Surface: (Fix Surface)

Electronics: DAE4 Sn781; Calibrated: 22.01.2010

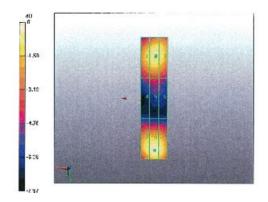
Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Dipole E-Field measurement @ 1880MHz/E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 141.9 V/m


Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 160.5 V/m; Power Drift = -0.028 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
128.2	134.6	133.3
M2	M2	M2
Grid 4	Grid 5	Grid 6
89.5	92.9	90.4
M3	M3	M3
Grid 7	Grid 8	Grid 9
134.5	141.9	138.2
M2	M2	M2

 $0~\mathrm{dB} = 141.9 V/m$

Certificate No: CD1880V3-1021_May10 Page 6 of 9

2010-06-30 Page 28 of 41

4. Additional Measurements

4.1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2 B162
DASY PP Version	SEMCAD X	V14.0 B59
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1730 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

4.1.1 Maximum Field values

H-fleid 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.493 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	154.7 V/m
Maximum measured above low end	100 mW forward power	148.0 V/m
Averaged maximum above arm	100 mW forward power	151.4 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

2010-06-30 Page 29 of 41

4.1.2 DASY4 H-field result

Date/Fime: 12.05.2010 17:56:51

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_H_1021_100512_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1021

Communication System: CW; Communication System Band: CD1880 (1730.0 MHz); Frequency: 1730 MHz;

Communication System PAR: 0 dB

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_i = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe; H3DV6 - SN6065; ; Calibrated: 30.12.2009

Senser-Surface: (Fix Surface)

Electronics: DAE4 Sn781; Calibrated: 22.01.2010

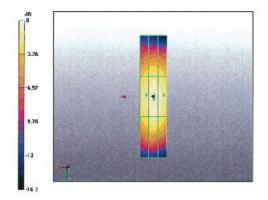
Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Dipole H-Field measurement @ 1880MHz/H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10num @ 1730 MHz/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.493 A/m


Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.525 A/m; Power Drift = -0.014 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H field in A/m

Grid 1	Grid 2	Grid 3
0.390	0.417	0.404
M2	M2	M2
Grid 4	Grid 5	Grid 6
0,459	0.493	0.474
M2	M2	M2
Grid 7	Grid 8	Grid 9
0,418	0.446	0.424
M2	M2	M2

0 dB = 0.493 A/m

Certificate No: CD1880V3-1021_May10

Page 8 of 9

2010-06-30 Page 30 of 41

4.1.3 DASY4 E-field result

Date/Time: 12.05.2010 17:20:13

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_E_1021_100512_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1021

Communication System: CW; Communication System Band: CD1880 (1730.0 MHz); Frequency: 1730 MHz;

Communication System PAR: 0 dB

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_c = 1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

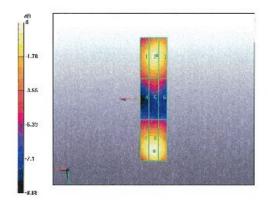
DASY5 Configuration:

- Probe: BR3DV6 SN2336; ConvP(1, 1, 1); Calibrated: 30.12.2009.
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 22,01,2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Scrial: 1070
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Dipole E-Field measurement @ 1880 MHz/E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10 mm @ 1730 MHz/Hearing Aid Compatibility Test (41x181x1);

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 154.7 V/m


Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 173.7 V/m; Power Drift = 0.017 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid I	Grid 2	Grid 3
139.3	148.0	146.9
M2	M2	M2
Grid 4	Grid 5	Grid 6
100	104.8	102.5
M3	M3	M3
Grid 7	Grid 8	Grid 9
146.6	154.7	150.6
M2	M2	M2

0 dB = 154.7 V/m

Certificate No: CD1880V3-1021_May10 Page 9 of 9

2010-06-30 Page 31 of 41

5 Calibration report "835 MHz HAC System validation dipole"

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

	CERTIFICAT		
Object	CD835V3 - SN:	1027	
Calibration procedure(s)	QA CAL-20.v5		
	Calibration proc	edure for dipoles in air	
Calibration date:	May 07, 2010		
	ucted in the closed laborate	tional standards, which realize the physical u ory facility: environment temperature (22 ± 3)	
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-03 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Probe ERODV6	SN: 2336	30-Dec-09 (No. ER3-2336 Dec09)	Dec-10
Probe H3DV6	SN: 6065	30-Dec-09 (No. H3-6065_Dec09)	Dec-10
DAE4	SN: 781	22-Jan-10 (No. DAE4-781_Jan10)	Jan-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-09)	In house check: Oct-10
Power sensor HP 8482H	SN: 3318A09450	09-Oct-09 (in house check Oct-09)	In house check; Oct-10
Power sensor HP 84R2A	SN: US37295597	09-Oct-09 (in house check Oct-09)	In house chack: Oct-10
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check; Oct-10
RF generator E4433B	MY 41000675	03-Nov-04 (in house check Oct-09)	In house check: Oct-11
V. Subsequently considerations	Name	Function	Signature
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Salibrated by:	NAME AND POST OF PERSONS ASSOCIATED BY	THE TAXABLE DISTRICT CONTRACTOR OF THE STATE	Signature
Calibrated by: Approved by:	NAME AND POST OF PERSONS ASSOCIATED BY	Laboratory Technician	Signature Signature Renderal

Certificate No: CD835V3-1027 May10

Page 1 of 6

2010-06-30 Page 32 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 49, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Callbration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2006 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

[2] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other
 axes. In coincidence with the standards [1, 2], the measurement planes (probe sensor center) are
 selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate.
 All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is solocted by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1, 2], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
 value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the
 dipole surface at the feed point.

Certificate No: CD835V3-1027_May10

Page 2 of 6

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2 B162
DASY PP Version	SEMCAD X	V14.0 B59
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, $dy = 5$ mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.463 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end-	100 mW forward power	174.7 V/m
Maximum measured above low end	100 mW forward power	162.4 V/m
Averaged maximum above arm	100 mW forward power	168.6 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.5 dB	(43.2 - j12.3) Ohm
835 MHz	24.5 dB	(48.1 + j5.6) Ohm
900 MHz	18.2 dB	(58.7 - j10.2) Ohm
950 MHz	18.1 dB	(49.8 + j12.6) Ohm
960 MHz	13.7 dB	(59.3 + j21.0) Ohm

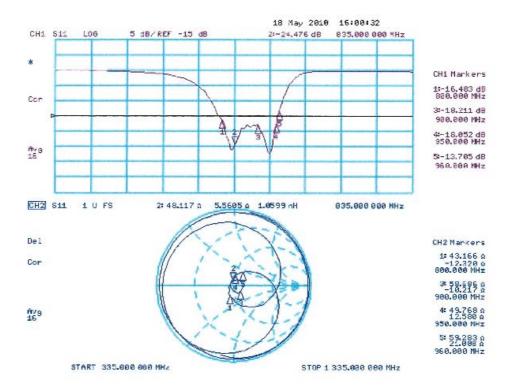
3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: CD835V3-1027_May10 Page 3 of 6

2010-06-30 Page 34 of 41

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD835V3-1027_May10 Page 4 of 6

2010-06-30 Page 35 of 41

3.3.2 DASY4 H-field Result

Date/l'ime: 07.05.2010 15:08:22

Test Laboratory: SPEAG Lab2

HAC RF CD835 H 1027 100507 CL

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1027

Communication System: CW; Communication System Band: CD835 (835.0 MHz); Frequency; 835 MHz;

Communication System PAR: 0 dB

Medium parameters used: $\sigma = 0$ mho/m, $c_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: H3DV6 - SN6065; ; Calibrated: 30.12.2009

Sensor-Surface: (Fix Surface)

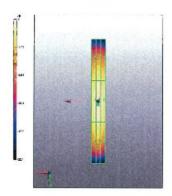
Electronics: DAE4 Sn781: Calibrated: 22.01.2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Dipole H-Field measurement @ 835MHz/H Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Toral field = 0.463 A/m


Probe Modulation Factor = 1

Device Reference Point: 0, 0, -6.3 mm Reference Value = 0.492 A/m; Power Drift = -0.00443 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.372	0.397	0.381
M4	M4	M4
Grid 4	Grid 5	Grid 6
0.435	0.463	0.439
M4	M4	M4
Grid 7	Grid 8	Grid 9
0.392	0.412	0.385
M4	M4	M4

0 dB = 0.463 A/m

Certificate No: CD835V3-1027 May10

Page 5 of 6

2010-06-30 Page 36 of 41

3.3.3 DASY4 E-field Result

Date/Time: 07.05.2010 12:15:46

Test Laboratory: SPEAG Lab2

HAC RF CD835 E 1027 100507 CL

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1027 Communication System: CW; Communication System Band: CD835 (835.0 MHz); Frequency: 835 MHz;

Communication System PAR: 0 dB

Medium parameters used: $\sigma = 0$ mho/m, $c_r = 1$; $\rho = 1000 \text{ kg/m}^2$

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ER3DV6 - SN2336; ConvF (1, 1, 1); Calibrated: 30.12.2009

Sensor-Surface: (Fix Surface)

Blectronics: DAE4 Sn781; Calibrated: 22.01.2010

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

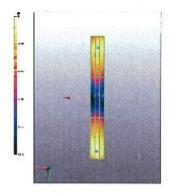
Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Dipole E-Field measurement @ 835MHz/E Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 174.7 V/m

Probe Modulation Factor = 1


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 114.2 V/m; Power Drift = -0.023 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
156.5	162.9	161.0
M4	M4	M4
Grid 4	Grid 5	Grid 6
85.1	87.8	85.8
M4	M4	M4
Grid 7	Grid 8	Grid 9
170.2	174.7	164.6
M4	M4	M4

0 dB = 174.7 V/m

Certificate No: CD835V3-1027_May10 Page 6 of 6

2010-06-30 Page 37 of 41

6 Calibration certificate of Data Acquisition Unit (DAE)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizeriecher Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

alibration certificates

CETECOM Certificate No: DAE3-477 May10 Client **CALIBRATION CERTIFICATE** DAE3 - SD 000 D03 AA - SN: 477 Object QA CAL-06.v21 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 7, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Certificate No.) Primary Standards Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 1-Oct-09 (Not 9055) Oct-10 Secondary Standards Scheduled Check ID# Check Date (in house) Calibrator Box V1.1 SE UMS 006 AB 1004 05-Jun-09 (in house check) In house check: Jun-10 Name Function Calibrated by: Dominique Steffen Technician Fin Bomholt R&D Director Approved by: Issued: May 7, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-477_May10

Page 1 of 5

2010-06-30 Page 38 of 41

7 SPEAG application note: determination of PMF

28.8 Definition/Determination of the Probe Modulation Factor

Purpose

The HAC Standard requires measurement of the peak envelope E- and H-fields of the wireless device (WD). Para. 4.1.2.1 and C.3.1 of the standard describes the Probe Modulation Response Factor that shall be applied to convert the probe reading to Peak Envelope Field.

The E-field free space probes (ER3DVx) as well as the H-field probe (H3DVx) are calibrated for unmodulated (CW) fields. The HAC standard requires calibration for the Field Envelope Peak, a calibration that SPEAG is currently setting up and that will become available at the beginning of 2006. For the time being, software version V4.6 or later provides the means for DASY4 users to determine and apply the Probe Modulation Factor (PMF). A step-by-step procedure is provided in the following. An equivalent but less complete procedure is described in the standard (Para. 4.1.2.1). However, it is advised to use the one described here for accurate results.

Definitions

The Crest Factor (CF) utilized in DASY4 is the inverse of the duty cycle and must be applied for all TDMA systems.

The Probe Modulation Factor (PMF) is defined as the ratio of the field readings for a CW and a modulated signal with the equivalent Field Envelope Peak as defined in the Standard (Chapter C.3.1).

Applicability

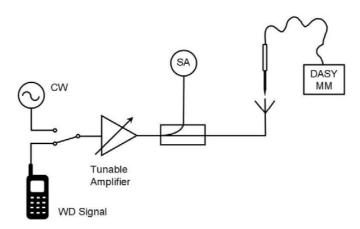
According to the Standard the results measured in the scan must be multiplied with the PMF to obtain the peak values. As long as the probes are not calibrated for specific modulations, the PMF must be obtained for the following cases:

- For any H-field scan of any modulation scheme
- For any E-field scan other than analog systems, TDMA systems and fully coded CDMA signals
- For E-field scans of TDMA systems and fully coded CDMA signals, PMF is equal to the square root of the CF, i.e., the PMF must not be manually determined.

Schmid & Partner Engineering AG, DASY4 Manual, September 2005

28-16

2010-06-30 Page 39 of 41



Note: The CF shall be applied for any TDMA signal; otherwise the CF is set to 1.

Evaluation Procedure for Unknown PMF

The proposed measurement setup corresponds to the procedure as required in the Standard, Chapter C.3.1.

- Install a validation dipole for the appropriate frequency band under the Test Arch Phantom and select the proper phantom section according to the probe type installed (E- or H-field). Move the probe to the field reference point. (Do not move the probe between the subsequent CW and modulated measurements.)
- 2. Install the field probe in the setup.
- 3. The signal to the dipole must be monitored to record peak amplitude. Set a CW signal to the same level (e.g., with a directional coupler and a spectrum analyzer in zero span mode set to the operating frequency). (Resolution bandwidth > signal bandwidth; keep the same bandwidth and attenuation for CW and modulated signals.)
- Define a DASY4 document and set the procedure properties (frequency, modulation frequency and crest factor) according to the measured signal. Define a multimeter job for the field reading.
- Define a second procedure for the evaluation of the CW signal (frequency set as above, modulation frequency = 0, crest factor = 1) and a multimeter job.

The HAC measurement procedure is as follows:

- 1. Modulated signal measurement: Connect the modulated signal using the appropriate frequency via the cable to the dipole.
- 2. Run the multimeter in the procedure with the corresponding modulation setting in continuous mode.

2010-06-30 Page 40 of 41

- 3. Adjust the signal amplitude to achieve the same field level display in the multimeter as during the WD field scan. Read the multimeter display and note it together with the probe ID, modulation type and frequency.
- 4. Read the envelope peak on the monitor in order to adjust the CW signal later to the same level.
- 5. Switch the signal source off and verify that the ambient and instrumentation noise level is at least 10 dB lower (a factor of 3 in field).
- 6. CW measurement: Change the signal to CW at the same center frequency, without touching or moving the dipole or probe in the setup.
- 7. Adjust the CW signal amplitude to the same peak level on the spectrum analyzer.
- 8. Run the multimeter in the CW procedure in continuous mode.
- 9. Read the multimeter total field display and note it together with the probe ID, modulation type and frequency.
- 10. Calculate the Probe Modulation Factor as the ratio between the CW multimeter field reading and the reading for the applicable modulation. I.e., $PMF = \frac{E_{CW}}{E_{mod}}$ and similar for H.

Perform the above setup and procedure for both E-field and H-field probes. (For the H-field probe, it is important that the frequency setting is correct.)

The resulting Probe Modulation Factor is valid for the specific settings of modulation, amplitude, frequency and probe.

Application of the Probe Modulation Factor in the DASY4 Postprocessor

The application of the PMF within the DASY4 Postprocessor is outlined in Section 28.5 Data Extraction and Postprocessing.

Additional Uncertainty for PMF

The uncertainty of determining the PMF as described above is less than 15% provided the evaluation is conducted carefully. This uncertainty is composed of:

- 0.3 dB (3.5% field): monitoring amplitude ratio
- 0.2 dB (2.3% field): setup repeatability
- 1dB (12% field): sensor amplitude

2010-06-30 Page 41 of 41