Chris Harvey

From: Alice Wong [alice_wong@hkstc.com]
Sent: Tuesday, April 10, 2001 6:57 AM

To: charvey@metlabs.com
Cc: EED - Choy, Kitty

Subject: MET #10737 FCC ID: M8Q8121627 "Ngai Keung Metal & Plastic

Manufactory Ltd."

Dear Chris,

MET# 10737

FCC ID: M8Q8121627

Ngai Keung Metal & Plastic Manufactory Ltd.

- 1) Please see attached file "bandwidth" for spectral plots.
- 2) Duty cycle correction during 100 msec:

Each function key sends a different series of characters, bat each packet period (17.25 msec)

never exceeds a series of 4 long (1.25 msec) and 10 short (375usec) pulses. Transmit duty cycle would be considered (4 x 1.25 msec)+(10 x 375 usec) per 17.25 msec = 50.7%.

Duty cycle correction = $20 \log (0.507) = -5.9 dB$

Figure A to C show the characteristics of the pulse for one of these

functions. (See attached file "pulse")

Thanks.

Best Regards

Alice

> >

- > > Ngai Keung FCCID:M8Q8121627 MET#10737
- > >
- > > RC Toy Transmitter (DXX) ... 27.145 MHz ... Section 15.227

> >

- >> 1. Please provide spectral plots wide enough to show both the upper and
- > > lower bandedges (26.96 MHz and 27.28 MHz) that
- >> demonstrate bandedge compliance. The FCC prefers spectral plots rather
- > > than tabular data indicating emission levels at the
- > > bandedges.

> >

- >> 2. Radiated test data indicates a 12 dB difference between the measured
- > > peak and average field strength levels. What type of
- > > modulation is employed? If pulsed, measurements with an average
- > > detector are not permitted. Instead, the peak level is
- > > measured, and then the average level is mathematically calculated, based
- > > on the duty cycle. If this is the case, please provide
- > > time domain plots so that the duty cycle correction factor may be
- > > calculated. If the emission is not pulsed, please explain why
- > > there is such a large peak to average ratio, since the plots indicate
- > > that the emission is narrower than the measurement bandwidth
- > > of 100 kHz specified by the test procedure (ANSI C63.4).

> >