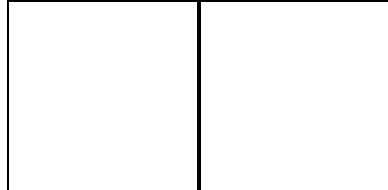


**Chris Harvey**

**From:** Alice Wong [alice\_wong@hkstc.com]  
**Sent:** Tuesday, April 10, 2001 6:39 AM  
**To:** charvey@metlabs.com  
**Cc:** EED - Choy, Kitty  
**Subject:** MET #10739 FCC ID: M8Q3250027 "Ngai Keung Metal & Plastic  
Manufactury Ltd."

Dear Chris,


1) Please see attached file "bandwidth" for spectral plots.  
2) Duty cycle correction during 100 msec:  
Each function key sends a different series of characters, but each packet  
period (17.125 msec)  
never exceeds a series of 4 long (1.375 msec) and 10 short (375usec) pulses.  
Transmit duty cycle would be considered  $(4 \times 1.375 \text{ msec}) + (10 \times 375 \text{ usec})$  per  
17.125 msec = 54%.  
Duty cycle correction =  $20 \log (0.54) = -5.3 \text{ dB}$   
Figure A to C show the characteristics of the pulse for one of these  
functions. (See attached file "pulse")  
Thanks.

Best Regards

Alice

> > Ngai Keung FCC ID: M8Q3250027 MET#10739  
> >  
> > RC Toy Transmitter (DXX) ... 27.145 MHz ... Section 15.227  
> >  
> > 1. Please provide spectral plots wide enough to show both the upper and  
> > lower bandedges (26.96 MHz and 27.28 MHz) that  
> > demonstrate bandedge compliance. The FCC prefers spectral plots rather  
> > than tabular data indicating emission levels at the  
> > bandedges.  
> >  
> > 2. Radiated test data indicates a 10 dB difference between the measured  
> > peak and average field strength levels. What type of  
> > modulation is employed? If pulsed, measurements with an average  
> > detector are not permitted. Instead, the peak level is  
> > measured, and then the average level is mathematically calculated, based  
> > on the duty cycle. If this is the case, please provide  
> > time domain plots so that the duty cycle correction factor may be  
> > calculated. If the emission is not pulsed, please explain why  
> > there is such a large peak to average ratio, since the plots indicate  
> > that the emission is narrower than the measurement bandwidth  
> > of 100 kHz specified by the test procedure (ANSI C63.4).

> >

