

Measurement Report

Product.....: **REMOTE CONTROL TRANSMITTER**
Manufacture.....: **FEGO PRECISION INDUSTRIAL CO., LTD.**
FCC ID.....: **M8CRL202**
Model.....: **RL202**
Report No......: **MLT9909P15009**
Test Date.....: **October.04.1999**

Test By

Max Light Technology Co.,Ltd.

*Room 5, 8F, No.125, Section 3 Roosevelt Road,
Taipei, Taiwan., R.O.C.*

Tel: 886-2-363-2447 Fax: 886-2-363-2597

**The test report consists of 19 pages in total. It may be duplicated completely
for legal use with the allowance of the applicant. It shall not be reproduced
except in full, without the written approval of our laboratory.**

MAX LIGHT

MEASUREMENT REPORT

Page: 2/19

Table of Contents :

I. General	4
II. Conducted Emissions Requirements	6
III. Radiated Emissions Requirements	7
IV. Transmitter Bandwidth Measurements	13
V. Transmitter Duty Cycle Measurements	15
Appendix I (EUT Test Setup)	17

MAX LIGHT

MEASUREMENT REPORT

Page: 3/19

CERTIFICATION

We here by verify that :

The test data, data evaluation, test procedures and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4-1992. All test were conducted by MLT (Max Light Technology Co.,Ltd) Room 5, 8F, No.125, Section 3 Roosevelt Road, Taipei, Taiwan, R.O.C Also, we attest to the accuracy of each.

We further submit that the energy emitted by the sample EUT tested as described in the report is in compliance with radiated emission limit of FCC Rules Part 15 Subpart C Section 15.231.

EUT : REMOTE CONTROL TRANSMITTER

**Applicant : FEGO PRECISION INDUSTRIAL CO., LTD.
NO. 947 LIN-SEN RD., WU FONG
SHIANG, TAICHUNG HSIEN,
TAIWAN**

**Manufacturer : FEGO PRECISION INDUSTRIAL CO., LTD.
NO. 947 LIN-SEN RD., WU FONG
SHIANG, TAICHUNG HSIEN,
TAIWAN**

Model No : RL202

FCC ID : M8CRL202

Prepared by : Country Huang Approved by : Roger Chen
Country Huang *Roger Chen*

MAX LIGHT

MEASUREMENT REPORT

Page: 4/19

I. GENERAL

1.1 Introduction

The following measurement report is submitted on behalf of Fego Precision Industrial Co., Ltd. In support of an Intentional Periodic Radiator certification in accordance with Part 2 Subpart J and Part 15 Subpart A And C of the Commission's and Regulations.

1.2 Description of EUT

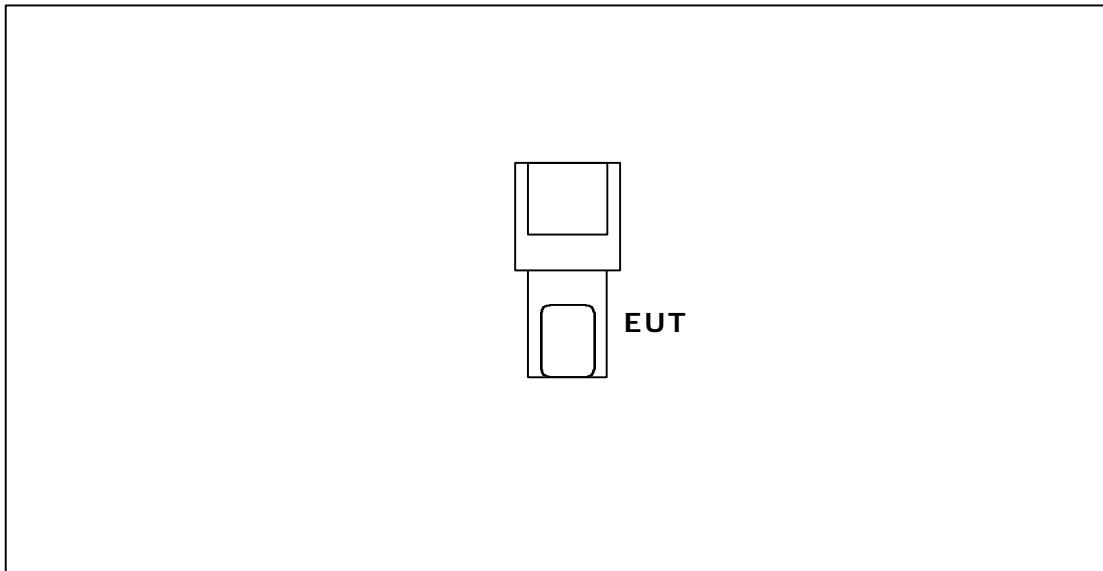
EUT : REMOTE CONTROL TRANSMITTER

Applicant : FEGO PRECISION INDUSTRIAL CO., LTD.
NO. 947 LIN-SEN RD., WU FONG
SHIANG, TAICHUNG HSIEN,
TAIWAN

Manufacturer : FEGO PRECISION INDUSTRIAL CO., LTD.
NO. 947 LIN-SEN RD., WU FONG
SHIANG, TAICHUNG HSIEN,
TAIWAN

Model No : RL202

FCC ID : M8CRL202


Power Type : Powered by DC 9V Battery

The EUT(RL202) is Remote Control of Lamp/Fan Controller. The operation frequency is 315.54 Mhz. Press the button on remote transmitter, can set the 0 / I / II / III / DIMMER / DELAY OFF / LIGHT (ON/OFF) button.

1.3 Description of Support Equipment

The EUT itself forms a system. No support equipment is required for its normal operation.

1.4 Configuration of System Under Test

1.5 Test Procedure

All measurements contained in this report were performed according to the techniques described in Measurement procedure ANSI C63.4-1992 "Measurement of Intentional Radiators."

MAX LIGHT

MEASUREMENT REPORT

Page: 6/19

1.6 General Test Condition

The conditions under which the EUT operates were varied to determine their effect on the equipment's emission characteristics. The final configuration of the test system and the mode of operation used during these tests was chosen as that which produced the highest emission levels. However, only those conditions which the EUT was considered likely to encounter in normal use were investigated.

MAX LIGHT

MEASUREMENT REPORT

Page: 7/19

II. Conducted Emissions Requirements

The EUT operates solely by the battery. According to the rule of Section 15.207(c), the EUT exempt to the power line conducted test.

III. Radiated Emissions Requirements

3.1 General Configuration:

Prior to open-field testing, the EUT was placed in a shielded enclosure and scanned at a close distance to determine its emission characteristics. The physical arrangement of the EUT was varied (within the scope of arrangements likely to be encountered in actual use) to determine the effect on the unit's emanations in amplitude, directivity, and frequency. The exact system configuration which produced the highest emissions was noted so it could be reproduced later during the open-field tests. This was done to ensure that the final measurements would demonstrate the worst-case interference potential of the EUT.

3.2 General Configuration:

Final radiation measurements were made on a three-meter, open-field test site. The EUT system was placed on a nonconductive turntable which is 0.8 meters height, top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 4 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously and the switch was positioned to yield the maximum duty cycle which had measured before radiated emissions test.

A nonconductive material surrounded the EUT to supporting the EUT for standing on three orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

The field strength below 1 GHz was measured by EMCO Biconilog Antenna (mode 3142) at 3 Meter and the EMCO Double Ridged Guide Antenna (model 3115) was used in frequencies 1 – 4 GHz at a distance of 1 meter. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20dB/decade).

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post - detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 3 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in microvolts per meter(uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in microvolts per meter (dBuV/m).

The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer, duty cycle correction factor (dB), and distance extrapolation Factor (dB) at the appropriate frequency.

(1) Amplitude (dBuV/m)= FI(dBuV)+AF(dBuV)+CL(dBuV)-Gain(dB)

FI= Reading of the field intensity.

AF= Antenna factor.

CL= Cable loss.

P.S Amplitude is auto calculate in spectrum analyzer.

(2) Actual Amplitude (dBuV/m)= Amplitude (dBuV)-Duty(dB)-Dis(dB)

The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:

(1) For fundamental frequency :

$$\text{Emission Limit}(\mu\text{V/m}) = [\text{FEUT}(\text{MHz}) - 260(\text{MHz})] \times \frac{12500(\mu\text{V/m}) - 3750(\mu\text{V/m})}{470(\text{MHz}) - 260(\text{MHz})} + 3750(\mu\text{V/m})$$

FEUT= EUT Operating Frequency.

(2) For spurious frequency :

Spurious emission limits = fundamental emission limit /10

3.3 Test Equipment List:

- A. HP 8591EM 9KHz-1.8GHz Spectrum Analyzer (S/N:73412A00230)**
- B. HP 8447D Pre Amplifier (S/N:2944A08954)**
- C. HP 8449B Pre Amplifier (S/N:2813A19931)**
- D. EMCO 3142 Biconilog Antenna (S/N:1184)**
- E. EMCO 3115 Double Ridged Guide Antenna (S/N:0871)**
- D. HP 8592A 50KHz-22GHz Spectrum Analyzer (S/N:12314A010415)**
- E. HP 9872B Plotter (S/N:20447A03436)**

3.4 Test Configuration:

Front View of The Test Configuration

Rear View of The Test Configuration

3.5 Measurement Data Of Radiated Emissions:

3.5.1 Open Field Radiated Emissions (Horizontal)

The highest peak values of radiated emissions from the EUT at various antenna heights, antenna polarization, EUT orientation , etc. are recorded on the following

Manufacturer : FEGO PRECISION INDUSTRIAL CO., LTD.
 Model No : RL202
 EUT : REMOTE CONTROL TRANSMITTER

Radiated Emissions (HORIZONTAL)									
Frequency (MHz)	Amplitude (dBuV/m)	Ant. (m)	Table (Degree)	Duty (dB)	Dist (dB)	Actual Amp (dBuV/m)	Limit (dBuV/m)	Margin (dB)	
315.54	54.32	1.5	270	5.35	0	48.97	75.65	-26.68	
631.08	38.59	1	320	5.35	0	33.24	55.65	-22.41	
946.68	46.55	1	300	5.35	0	41.20	54.00	-12.80	
1262.16	45.81	1.5	300	5.35	9.54	30.92	55.65	-24.73	
1577.73	49.93	1	360	5.35	9.54	35.04	54.00	-18.96	
1893.25	40.35	1.5	200	5.35	9.54	25.46	55.65	-30.19	
2208.78	43.29	1	360	5.35	9.54	28.40	54.00	-25.60	

Notes : 1. Margin= Amplitude - Limits
 2. Distance of Measurement : 3 Meter (30-1000MHz)
 3. Height of table for EUT placed: 0.8 Meter.
 4. ANT= Antenna height.
 5. Duty= Duty cycle correction factor.
 6. Dis= Distance extrapolation factor.
 7. Amplitude= Reading Amplitude – Amplifier gain+Cable loss
 +Antenna factor
 (Auto calculate in spectrum analyzer)
 8. Actual Amp= Amplitude – Duty – Dis.

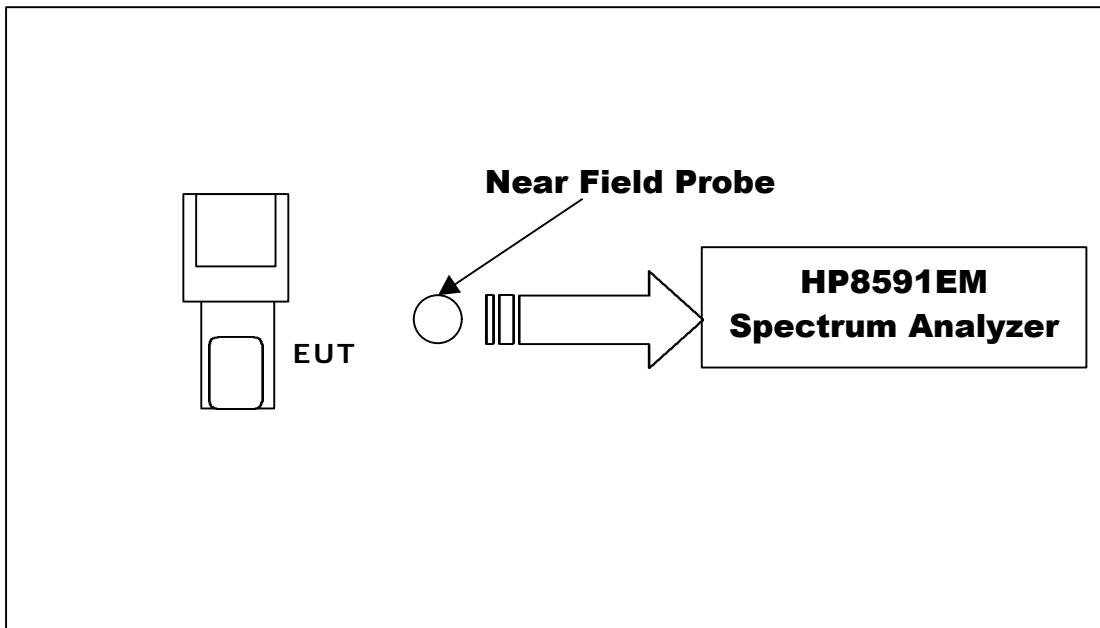
3.5.2 Open Field Radiated Emissions (Vertical)

The highest peak values of radiated emissions from the EUT at various antenna heights, antenna polarization, EUT orientation , etc. are recorded on the following.

Manufacturer : FEGO PRECISION INDUSTRIAL CO., LTD.
 Model No : RL202
 EUT : REMOTE CONTROL TRANSMITTER

Radiated Emissions (VERTICAL)								
Frequency (MHz)	Amplitude (dBuV/m)	Ant. (m)	Table (Degree)	Duty (dB)	Dist (dB)	Actual Amp (dBuV/m)	Limit (dBuV/m)	Margin (dB)
315.54	75.98	1	300	5.35	0	70.63	75.65	-5.02
631.08	44.89	1.5	350	5.35	0	39.54	55.65	-16.11
946.68	51.22	1	250	5.35	0	45.87	54.00	-8.13
1262.16	50.73	1	360	5.35	9.54	35.84	55.65	-19.81
1577.73	53.98	1	300	5.35	9.54	39.09	54.00	-14.91
1893.25	44.25	1.5	270	5.35	9.54	29.36	55.65	-26.29
2208.78	45.57	1	360	5.35	9.54	30.68	54.00	-23.32

Notes :


1. Margin= Amplitude - Limits
2. Distance of Measurement : 3 Meter (30-1000MHz)
3. Height of table for EUT placed: 0.8 Meter.
4. ANT= Antenna height.
5. Duty= Duty cycle correction factor.
6. Dis= Distance extrapolation factor.
7. Amplitude= Reading Amplitude – Amplifier gain+Cable loss
+Antenna factor
(Auto calculate in spectrum analyzer)
8. Actual Amp= Amplitude – Duty – Dis.

IV. Transmitter Bandwidth Measurement

4.1 Test Condition & Setup :

The transmitter bandwidth measurements were performed in a shielded enclosure. The EUT was placed on a wooden table which is 0.8 meters height and a near field probe was used at a distance about 20 cm for receiving. While testing, EUT was set to transmit continuously. The resolution bandwidth of the spectrum analyzer was set to 10KHz. The detector function was set to peak and hold mode to clearly observe the components. The maximum permitted bandwidth at -20dB with respect to the reference level specified by the rule was 0.25 % of the center frequency of the EUT.

4.2 Test Instruments Configuration:

MAX LIGHT

MEASUREMENT REPORT

Page: 16/19

4.3 Test Equipment List:

- A. **Tektronix FG504 0.1Hz~40MHz (S/N:43AS251)**
- B. **EMCO Near Field Probe (S/N:7901-291)**
- C. **HP 8591EM 9KHZ-1.8GHz Spectrum Analyzer (S/N:73412A00110)**
- D. **Shielded Room (MLT-SR1)**

4.4 Test Result:

Permitted Maximum Bandwidth	788.86KHz
Bandwidth Measurement	68.50KHz

4.5 Test Graphs:

See next page.

MLT9909P15009

MARKER A
68.5 kHz
-.38 dB

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKRA 68.5 kHz
-.38 dB

MARKER
NORMAL

MARKER
A

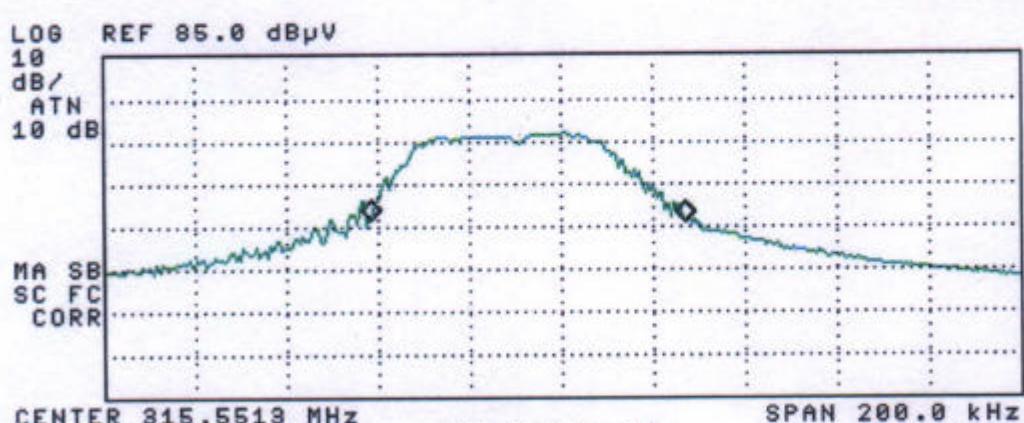
LOG REF 85.0 dB μ V

18
dB/
ATN
10 dB

MA SB
SC FC
CORR

CENTER 315.5519 MHz
#IF BW 10 kHz

Avg BW 10 kHz


SPAN 200.0 kHz
SWP 30.0 msec

MARKER
AMPTD

SELECT
1 2 3 4

MARKER 1
ON OFF

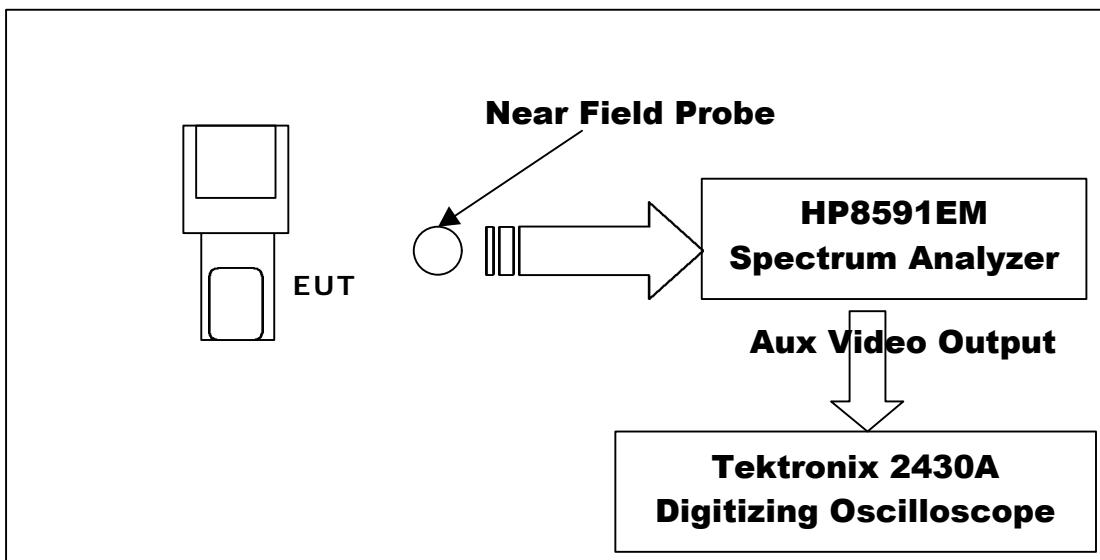
More
1 of 3

V. Transmitter Duty Cycle Measurement

5.1 Test Condition & Setup :

The transmitter bandwidth measurements were performed in a shielded enclosure. The EUT was placed on a wooded table which is 0.8 meters height and a near field probe was used at a distance about 20 cm for receiving. While testing, EUT was set to transmit continuously. Various key configurations were also investigated to find the maximum duty cycle.

The spectrum analyzer resolution bandwidth and video bandwidth were all set to 1 MHZ to encompass all Significant spectral components during the test. The analyzer was operated in linear scale and zero span mode after tuning to the transmitter carrier frequency. A digital oscilloscope was connected to the aux video output of the spectrum analyzer for measuring pulse width. The pulse width was determined by the difference between the half voltage points on a pulse.


The duty cycle was determined by the following equation :

TO calculate the actual field intensity, the duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion :

$$\text{Duty Cycle}(\%) = \frac{(\text{Total On Interval in a Complete Pulse Train})}{(\text{Length of a Complete Pulse Train})} \times 100\%$$

$$\text{Duty Cycle Correction Factor (dB)} = 20 \times \log_{10} (\text{Duty Cycle}(\%))$$

5.2 Test Instruments Configuration:

5.3 Test Equipment List:

- A. **Tektronix FG504 0.1Hz~40MHz (S/N:43AS251)**
- B. **EMCO Near Field Probe (S/N:7901-291)**
- C. **HP 8591EM 9KHZ-1.8GHz Spectrum Analyzer (S/N:73412A00110)**
- D. **Tektronix 2230 Digitizing Oscilloscope (S/N:A13F148F09)**
- E. **Shielded Room (MLT-SR1)**

5.4 Test Result:

Total ON interval in a complete pulse train	16.90 msec
Length of a complete pulse train	31.20 msec
Duty Cycle (%)	54.16%
Duty Cycle Correction Factor (dB)	5.35

5.5 Test Graphs:

See next page.

MLT9909P15009
MARKER A
16.900 msec
-1.30 dB

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKRA 16.900 msec
-1.30 dB

MARKER
NORMAL

MARKER
A

LOG REF 85.0 dB μ V
10 dB/
ATN
10 dB

VA SB
SC FC
CORR

CENTER 315.5473 MHz
#IF BW 10 kHz

Avg BW 10 kHz

SPAN 0 Hz
#SWP 40.0 msec

MARKER
AMPTD

SELECT
1 2 3 4

MARKER 1
ON OFF

More
1 of 3

MLT9909P15009
MARKER A
31.200 msec
-.81 dB

ACTV DET: PEAK
MEAS DET: PEAK QP AVG
MKRA 31.200 msec
-.81 dB

MARKER
NORMAL

MARKER
A

LOG REF 85.0 dB μ V
10 dB/
ATN
10 dB

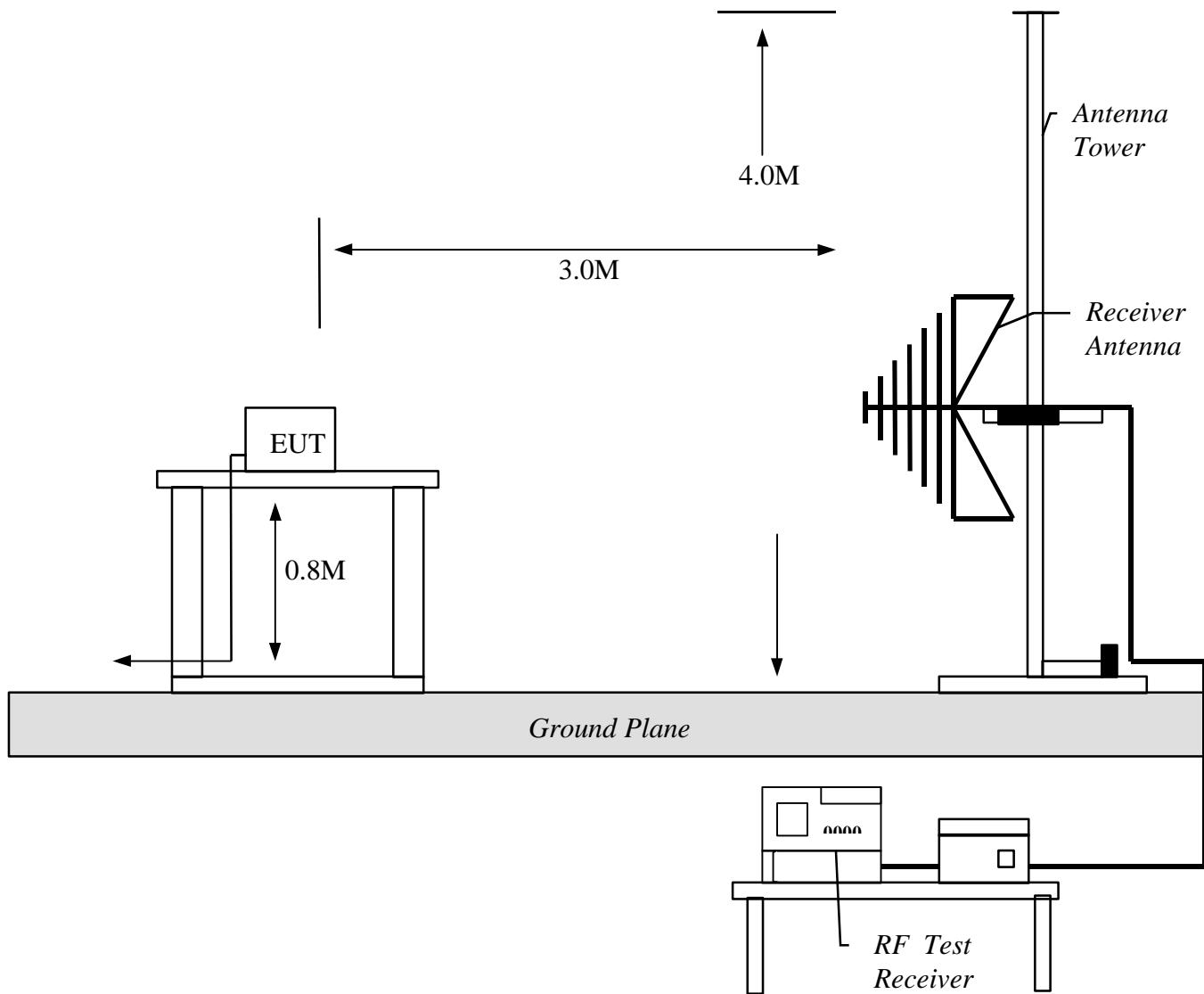
VA SB
SC FC
CORR

CENTER 315.5473 MHz
#IF BW 10 kHz

Avg BW 10 kHz

SPAN 0 Hz
#SWP 40.0 msec

MARKER
AMPTD


SELECT
1 2 3 4

MARKER 1
ON OFF

More
1 of 3

Appendix I- EUT Test SETUP

MEASUREMENT OF RADIATED EMISSION

