

RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	Patient Infotainment Terminal/Computer
Frequency band (Operating)	<input checked="" type="checkbox"/> WLAN: 2.412GHz ~ 2.462GHz <input type="checkbox"/> WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz <input type="checkbox"/> WLAN: 5.745GHz ~ 5.825GHz <input type="checkbox"/> Others
Device category	<input type="checkbox"/> Portable (<20cm separation) <input checked="" type="checkbox"/> Mobile (>20cm separation) <input type="checkbox"/> Others
Exposure classification	<input type="checkbox"/> Occupational/Controlled exposure (S = 5mW/cm ²) <input checked="" type="checkbox"/> General Population/Uncontrolled exposure (S=1mW/cm ²)
Antenna diversity	<input type="checkbox"/> Single antenna <input checked="" type="checkbox"/> Multiple antennas <input type="checkbox"/> Tx diversity <input type="checkbox"/> Rx diversity <input checked="" type="checkbox"/> Tx/Rx diversity
Max. output power	IEEE 802.11b mode: 20.69 dBm IEEE 802.11g mode: 24.30 dBm draft 802.11n 20 MHz Channel mode: 27.27 dBm draft 802.11n 40 MHz Channel mode: 26.07 dBm
Antenna gain (Max)	2.11 dBi (Numeric gain: 1.63)
Evaluation applied	<input checked="" type="checkbox"/> MPE Evaluation <input type="checkbox"/> SAR Evaluation <input type="checkbox"/> N/A

Remark:

1. The maximum output power is 27.27dBm (533.33mW) at 2437 MHz (with 1.63 numeric antenna gain.)
2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given $E = \frac{\sqrt{30 \times P \times G}}{d}$ & $S = \frac{E^2}{3770}$

Where E = Field strength in Volts / meter
 P = Power in Watts
 G = Numeric antenna gain
 d = Distance in meters
 S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770 d^2}$$

Changing to units of mW and cm, using:

$$P (\text{mW}) = P (\text{W}) / 1000 \text{ and}$$

$$d (\text{cm}) = d(\text{m}) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2} \quad \text{Equation 1}$$

Where d = Distance in cm
 P = Power in mW
 G = Numeric antenna gain
 S = Power density in mW / cm²

Maximum Permissible Exposure

EUT output power = 533.3mW

Numeric Antenna gain = 1.63

Substituting the MPE safe distance using $d = 20$ cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW
 G = Numeric antenna gain
 S = Power density in mW / cm²
 \rightarrow Power density = 0.173 mW / cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)

程智科技股份有限公司
Compliance Certification Services Inc.

For RFID Antenna Gain is 0dBi or 1 (numeric)

Output power into Antenna & RF Exposure value at distance 20cm:

RFID Max out power: 0.00000057(mW) (0.0000000011mW/cm²)

CONCULSION:

Both of eh modules can transmit simultaneously, the formula of calculated the MIP is

CPD1/LPD1+CPD2/LPD2+ etc.<1

CPD= Calculation Power density

LPD= limit of power density

Therefore, the worst-cast situation is $0.173/1 + 0.0000000011/1 = 0.1730000011$, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.