

RF TEST REPORT

ISSUED BY
Shenzhen BALUN Technology Co., Ltd.

FOR

Computer

ISSUED TO
Advantech Co., Ltd.

NO.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114,
Taiwan

Tested by: Ye Hongji

Ye Hongji

Date

NOV.24.2021

Approved by: Wei Yanquan

Wei Yanquan
(Chief Engineer)

Date

NOV. 24. 2021

Report No.: BL-EC2190969-604
EUT Name: Computer
Model Name: DLT-V7215P+ (refer to section 2.4)
Brand Name: ADVANTECH DLOG
Test Standard: 47 CFR Part 15 Subpart E
FCC ID: M82-DLTV72

Test Conclusion: Pass

Test Date: Oct. 09, 2021 ~ Oct. 21, 2021

Date of Issue: Nov. 24, 2021

NOTE: This test report of test results only related to testing samples, which can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. Any objections should be raised within thirty days from the date of issue. To validate the report, please contact us.

Revision History

Version	Issue Date	Revisions Content
<u>Rev. 01</u>	<u>Nov. 24, 2021</u>	<u>Initial Issue</u>

TABLE OF CONTENTS

1	ADMINISTRATIVE DATA (GENERAL INFORMATION)	4
1.1	Identification of the Testing Laboratory	4
1.2	Identification of the Responsible Testing Location	4
1.3	Laboratory Condition.....	4
1.4	Announce.....	4
2	PRODUCT INFORMATION.....	5
2.1	Applicant	5
2.2	Manufacturer	5
2.3	Factory	5
2.4	General Description for Equipment under Test (EUT)	5
2.5	Technical Information.....	6
2.6	Channel List	7
3	SUMMARY OF TEST RESULTS.....	10
3.1	Test Standards	10
3.2	Verdict.....	10
4	GENERAL TEST CONFIGURATIONS.....	11
4.1	Test Environments	11
4.2	Test Equipment List	11
4.3	Measurement Uncertainty	12
4.4	Description of Test Setup.....	12
5	TEST ITEMS.....	15
5.1	RF Output Power	15
5.2	Emission Bandwidth and 6 dB Bandwidth.....	16
5.3	Power Spectral density (PSD).....	17
5.4	Conducted Emission	18
5.5	Radiated Spurious Emissions and Band Edge (Restricted-band).....	19
	ANNEX A TEST RESULT	24

A.1	RF Output Power	24
A.2	Emission Bandwidth & 99% Bandwidth	24
A.3	6 dB Bandwidth	24
A.4	Power Spectral Density	24
A.5	Conducted Emissions	24
A.6	Radiated Spurious Emissions and Band Edge (Restricted-band).....	25
ANNEX B	TEST SETUP PHOTOS	31
ANNEX C	EUT EXTERNAL PHOTOS	31
ANNEX D	EUT INTERNAL PHOTOS	31

1 ADMINISTRATIVE DATA (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a accredited testing laboratory. The designation number is CN1196.
Description	All measurement facilities used to collect the measurement data are located at Block B, FL 1, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China 518055

1.3 Laboratory Condition

Ambient Temperature	20°C to 25°C
Ambient Relative Humidity	45% to 55%
Ambient Pressure	100 kPa to 102 kPa

1.4 Announce

- (1) The test report reference to the report template version v4.4.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (7) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 PRODUCT INFORMATION

2.1 Applicant

Applicant	Advantech Co., Ltd.
Address	NO.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan

2.2 Manufacturer

Manufacturer	Advantech Co., Ltd.
Address	NO.1, Alley 20, Lane 26, Rueiguang Road, Neihu District, Taipei 114, Taiwan

2.3 Factory

Factory	Advantech Co., Ltd.
Address	No. 27-3, Wende Rd., Guishan Dist., Taoyuan City 333, Taiwan

2.4 General Description for Equipment under Test (EUT)

EUT Name	Computer
Model Name Under Test	DLT-V7215P+
Series Model Name	DLT-V7210XXXXXXXX, DLT-V7212XXXXXXXX, DLT-V7215XXXXXXXX (X can be 0-9, A-Z, a-z, any symbol, blank or nothing)
Description of Model name differentiation	The difference between the three series models is a different screen size, all models have two internal antennas and one external antenna.
Hardware Version	N/A
Software Version	N/A
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.5 Technical Information

Network and Wireless connectivity	2G Network GSM/GPRS/EDGE 900/1800 MHz 3G Network WCDMA/HSDPA/HSUPA Band 1/2/5/8 4G Network FDD LTE Band 1/2/3/4/5/7/8/12/20 TDD LTE Band 38/40/41 Bluetooth 4.0 BLE 2.4G WIFI: 802.11b, 802.11g, 802.11n(HT20/40) 5G WIFI: 802.11a, 802.11n(HT20/40) and ac(VHT20/40/80) GPS, GLONASS
-----------------------------------	--

The requirement for the following technical information of the EUT was tested in this report:

Frequency Range	Band I: 5150 MHz to 5250 MHz, Band II: 5250 MHz to 5350 MHz, Band III: 5470 MHz to 5725 MHz Band IV: 5725 MHz to 5850 MHz		
Product Type	<input checked="" type="checkbox"/> Mobile <input type="checkbox"/> Portable <input type="checkbox"/> Fix Location		
Modulation technology	OFDM		
Modulation Type	256QAM, 64QAM, 16QAM, BPSK, QPSK		
Product Type	Mobile and portable for FCC standard		
Transfer Rate (Mbps) (Single RF path)	802.11a: 54/ 48/ 36 / 24 / 18/12 / 9/ 6 Mbps 802.11n: up to 150 Mbps 802.11ac: up to VHT-MCS9		
Channel Bandwidth	802.11a: 20 MHz 802.11n: 20 MHz, 40 MHz 802.11ac: 20 MHz, 40 MHz, 80 MHz		
Maximum Output Power	802.11a: 77.033 mW 802.11ac20: 63.586 mW 802.11ac40: 47.366 mW 802.11ac80: 43.894 mW		
Antenna System (eg., MIMO, Smart Antenna)	Cyclic Delay Diversity (CDD)		
Categorization as Correlated or Completely Uncorrelated	Correlated		
Antenna Type	Internal Antenna 1	ANT 0 ANT 1	PIFA Antenna
	Internal Antenna 2	ANT 0 ANT 1	PIFA Antenna
External Antenna		Dipole Antenna	
Antenna Gain	Internal Antenna 1	ANT 0	2.70 dBi (In test items related to antenna gain, the final results reflect this figure.)
		ANT 1	2.80 dBi (In test items related to antenna gain, the final results reflect this figure.)
	Internal Antenna 2	ANT 0	2.64 dBi (In test items related to antenna gain, the final results reflect this figure.)
		ANT 1	2.85 dBi (In test items related to antenna gain, the final results reflect this figure.)

		results reflect this figure.)
	External Antenna	2.90 dBi (In test items related to antenna gain, the final results reflect this figure.)
About the Product		The equipment is Computer, intended for used with information technology equipment.

2.6 Channel List

20 MHz		40 MHz		80 MHz		160 MHz	
Channel Number	Frequency (MHz)						
36	5180	38	5190	42	5210	50	5250
40	5200	46	5230	58	5290	114	5570
44	5220	54	5270	106	5530		
48	5240	62	5310	122	5610		
52	5260	102	5510	155	5775		
56	5280	110	5550				
60	5300	118	5590				
64	5320	134	5670				
100	5500	151	5755				
104	5520	159	5795				
108	5540						
112	5560						
116	5580						
120	5600						
132	5660						
136	5680						
140	5700						
149	5745						
153	5765						
157	5785						
161	5805						
165	5825						

The Lowest frequency, the middle frequency and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11a/n(HT20)/ac(VHT20)

U-NII-1 (5150 - 5250 MHz)			U-NII-2A (5250 - 5350 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
36	Low	5180	52	Low	5260
44	Mid	5220	60	Mid	5300
48	High	5240	64	High	5320

U-NII-2C (5470 - 5725 MHz)			U-NII-3 (5725 - 5850 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
100	Low	5500	149	Low	5745
116	Mid	5580	157	Mid	5785
140	High	5700	165	High	5825

For 802.11n(HT40)/ac(VHT40)

U-NII-1 (5150 - 5250 MHz)			U-NII-2A (5250 - 5350 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
38	Low	5190	54	Low	5270
46	High	5230	62	High	5310

U-NII-2C (5150 - 5250 MHz)			U-NII-3 (5725 - 5850 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
102	Low	5510	151	Low	5755
118	Mid	5590	159	High	5795
134	High	5670			

For 802.11ac(VHT80)

U-NII-1 (5150 - 5250 MHz)			U-NII-2A (5250 - 5350 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
42	Mid	5210	58	Mid	5290

U-NII-2C (5470 - 5725 MHz)			U-NII-3 (5725 - 5850 MHz)		
Channel Number	Channel	Frequency (MHz)	Channel Number	Channel	Frequency (MHz)
106	Low	5530	155	Mid	5775
122	High	5610			

Note: Preliminary tests were performed in different data rate in above table to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Modulation Type	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3
				Channel	Channel	Channel	Channel
RF Output Power	11a	6	BPSK	48/44/36	64/60/52	140/116/100	165/157/149
	11n(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11n(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11ac(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(80 MHz)	29.3		42	58	122/106	155
Emission Bandwidth & 99% Occupied Bandwidth	11a	6	BPSK	48/44/36	64/60/52	140/116/100	165/157/149
	11n(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11n(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11ac(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(80 MHz)	29.3		42	58	122/106	155
6 dB bandwidth	11a	6	BPSK	N/A	N/A	N/A	165/157/149
	11n(20 MHz)	6.5		N/A	N/A	N/A	165/157/149
	11n(40 MHz)	13.5		N/A	N/A	N/A	159/151
	11ac(20 MHz)	6.5		N/A	N/A	N/A	165/157/149
	11ac(40 MHz)	13.5		N/A	N/A	N/A	159/151
	11ac(80 MHz)	29.3		N/A	N/A	N/A	155
Power Spectral Density	11a	6	BPSK	48/44/36	64/60/52	140/116/100	165/157/149
	11n(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11n(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11ac(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(80 MHz)	29.3		42	58	122/106	155
Radiated Spurious Emissions	11a	6	BPSK	48/44/36	64/60/52	140/116/100	165/157/149
	11n(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11n(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(20 MHz)	6.5		48/44/36	64/60/52	140/116/100	165/157/149
	11ac(40 MHz)	13.5		46/38	62/54	134/118/102	159/151
	11ac(80 MHz)	29.3		42	58	122/106	155
Band Edge (Restricted -band)	11a	6	BPSK	48/36	64/52	140/100	165/149
	11n(20 MHz)	6.5		48/36	64/52	140/100	165/149
	11n(40 MHz)	13.5		46/38	62/54	134/102	159/151
	11ac(20 MHz)	6.5		48/36	64/52	140/100	165/149
	11ac(40 MHz)	13.5		46/38	62/54	134/102	159/151
	11ac(80 MHz)	29.3		42	58	122/106	155

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 15 Subpart E	Unlicensed National Information Infrastructure Devices
2	KDB Publication 789033 D02v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E
3	KDB Publication 662911 D01v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band (e.g., MIMO, Smart Antenna, etc)
4	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

3.2 Verdict

No.	Description	FCC Part No.	Test Result	Verdict
1	Antenna Requirement	15.203	--	Pass ^{Note1}
2	RF Output Power	15.407(a)	ANNEX A.1	Pass
3	Emission Bandwidth & 99% Occupied Bandwidth	15.407(a)	ANNEX A.2	Pass
4	6 dB bandwidth	15.407(e)	ANNEX A.3	Pass
5	Power Spectral Density	15.407(a)	ANNEX A.4	Pass
6	Conducted Emission	15.207	ANNEX A.5	Pass
7	Radiated Spurious Emissions and Band Edge (Restricted-band)	15.407(b)	ANNEX A.6	Pass
8	Receiver Spurious Emissions	--	--	N/A ^{Note2}

Note ¹: The EUT has a permanently and irreplaceable attached antenna, which complies with the requirement FCC 15.203.

Note ²: Under all normal operating conditions specified in the user manual, frequency stability can keep radiation within the operating frequency band.

Note ³: The only difference between the test sample EUT in this report and the BL-EC18C0175-604 test sample issued by Shenzhen BALUN Technology Co., Ltd. on Apr. 11, 2019. shown as below:

1. A 15-inch screen has been added to the original.

And others hardware circuit and software were all the same. so just Cabinet Radiated test of Radiated Emission & Band Edge (Restricted-band band-edge) was retested in this report, other test data originate from the report BL-EC18C0175-604, which was issued by Shenzhen BALUN Technology Co., Ltd. on Apr. 11, 2019.

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

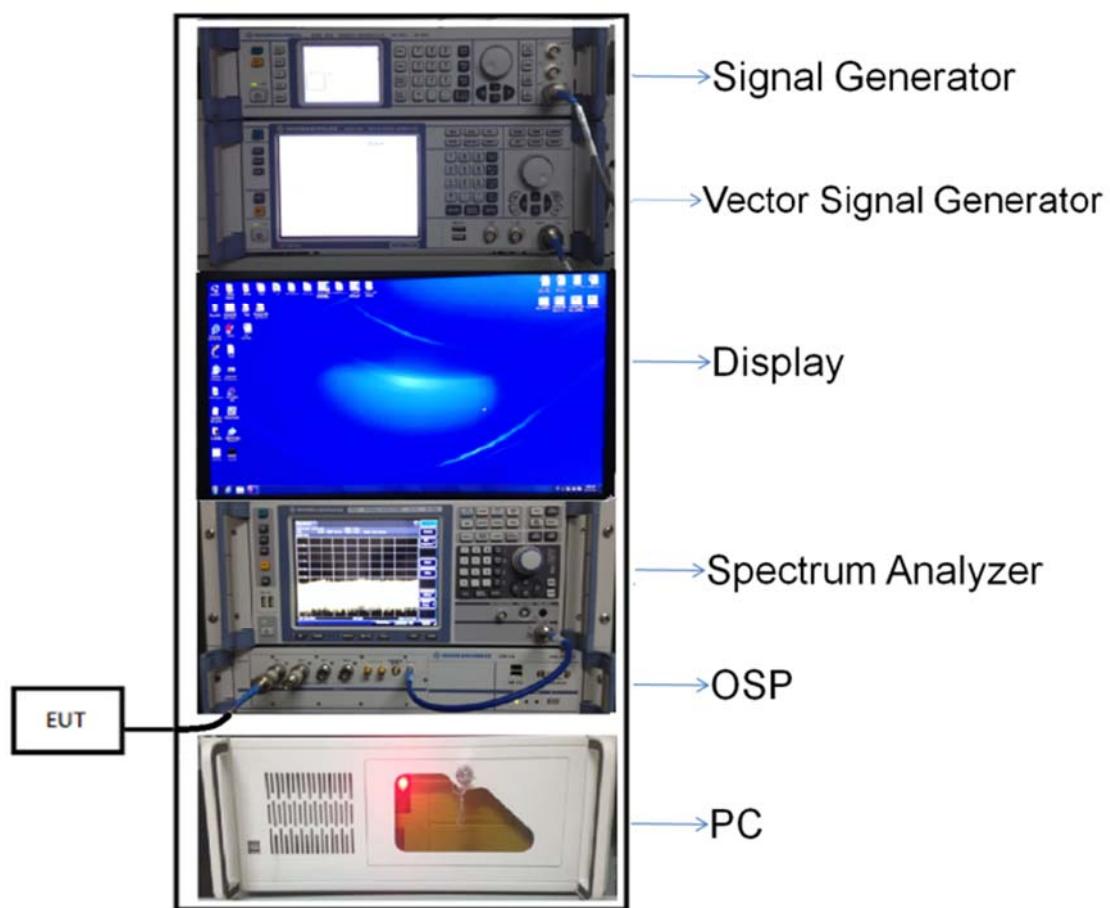
During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	45% to 55%		
Atmospheric Pressure	100 kPa to 102 kPa		
Temperature	NT (Normal Temperature)	+22°C to +25°C	
	LT (Low Temperature)	-30°C	
	HT (High Temperature)	+50°C	
Working Voltage of the EUT	NV (Normal Voltage)	24 V	
	LV (Low Voltage)	12 V	
	HV (High Voltage)	48 V	

4.2 Test Equipment List

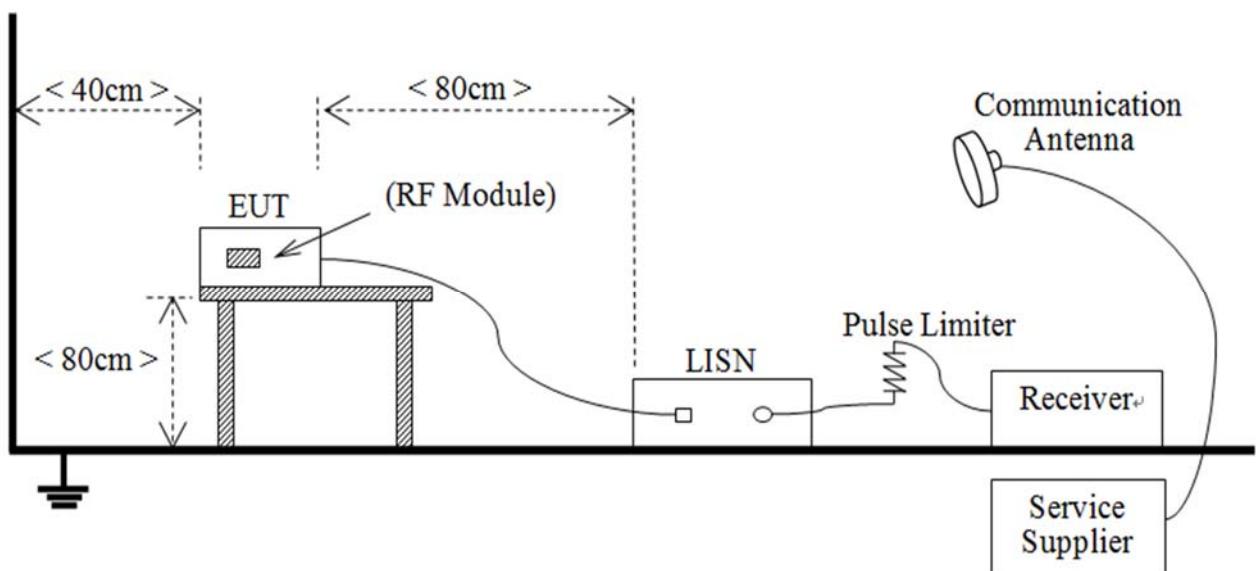
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-40	101544	2021.04.01	2022.03.31
Bluetooth Signaling Unit	ROHDE&SCHWARZ	CMW500	142028	2021.06.01	2022.05.31
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-30	103118	2021.06.01	2022.05.31
Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	260592	2021.01.27	2022.01.26
Signal Generator	ROHDE&SCHWARZ	SMB100A	177746	2021.06.01	2022.05.31
Switch Unit with OSP-B157	ROHDE&SCHWARZ	OSP120	101270	2021.06.01	2022.05.31
EMI Receiver	KEYSIGHT	N9038A	MY53220118	2021.06.01	2022.05.31
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2021.06.01	2022.05.31
LISN	SCHWARZBECK	NSLK 8127	8127-687	2021.06.01	2022.05.31
Test Antenna-Loop(9 kHz-30 MHz)	SCHWARZBECK	FMZB 1519	1519-037	2021.04.16	2024.04.15
Test Antenna-Bi-Log(30 MHz-3 GHz)	SCHWARZBECK	VULB 9163	9163-624	2021.08.20	2024.08.19
Test Antenna-Horn(1-18 GHz)	SCHWARZBECK	BBHA 9120D	9120D-1917	2019.07.02	2022.07.01
Test Antenna-Horn (18-40 GHz)	A-INFO	LB-180400KF	J211060273	2021.07.02	2023.07.01
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2017.02.21	2022.02.20
Anechoic Chamber	EMC Electronic Co., Ltd	20.10*11.60 *7.35m	N/A	2019.08.08	2022.08.07
Shielded Enclosure	ChangNing	CN-130701	130703	--	--

4.3 Measurement Uncertainty

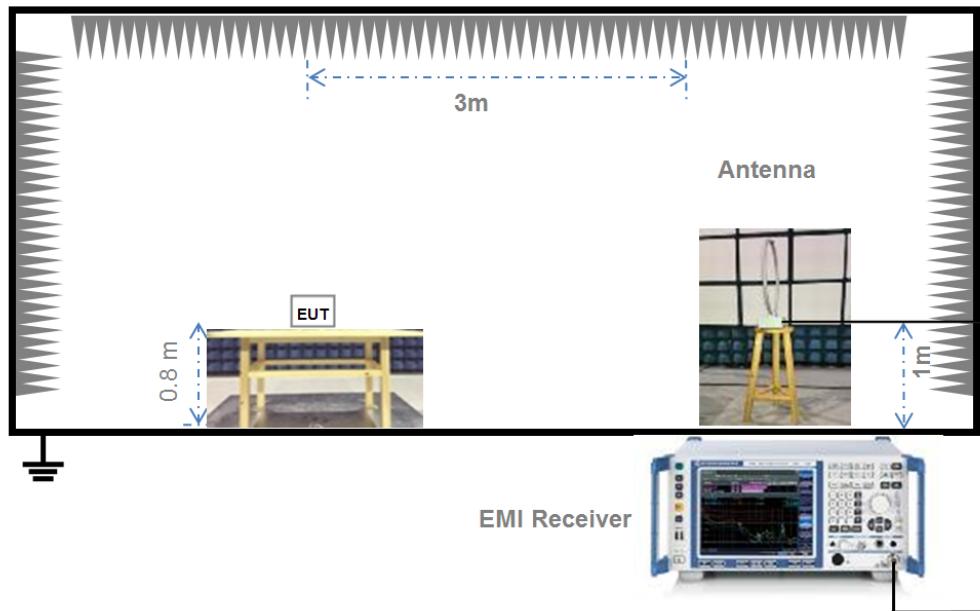

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

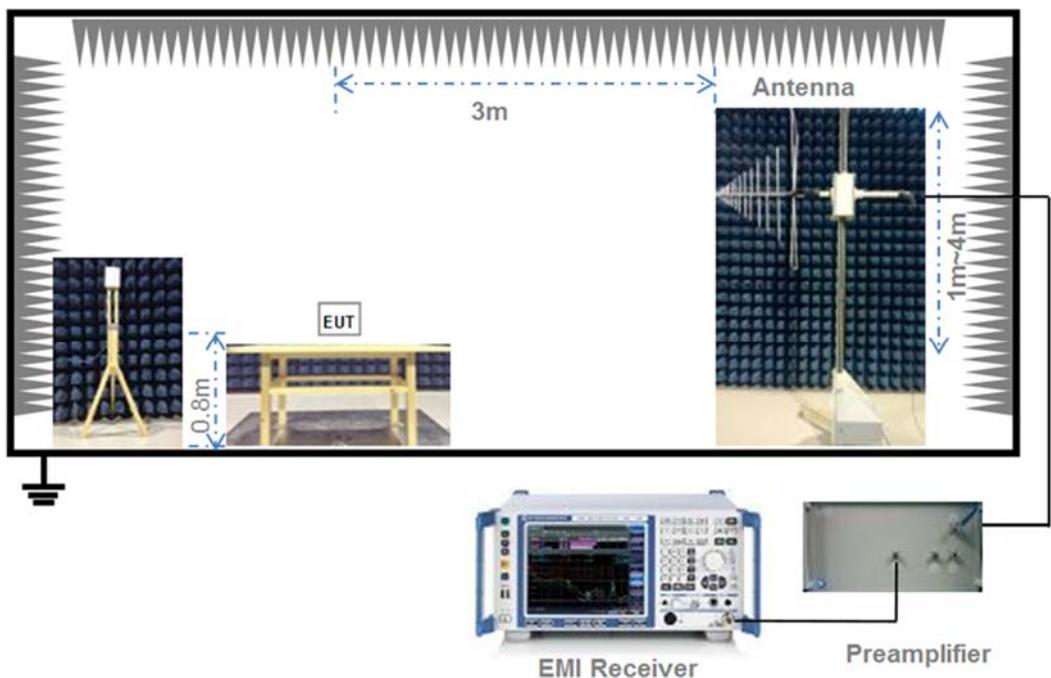
Parameters	Uncertainty
Occupied Channel Bandwidth	2.8%
RF output power, conducted	1.28 dB
Power Spectral Density, conducted	1.30 dB
Unwanted Emissions, conducted	1.84 dB
All emissions, radiated	5.36 dB
Temperature	0.82°C
Humidity	4.1%


4.4 Description of Test Setup

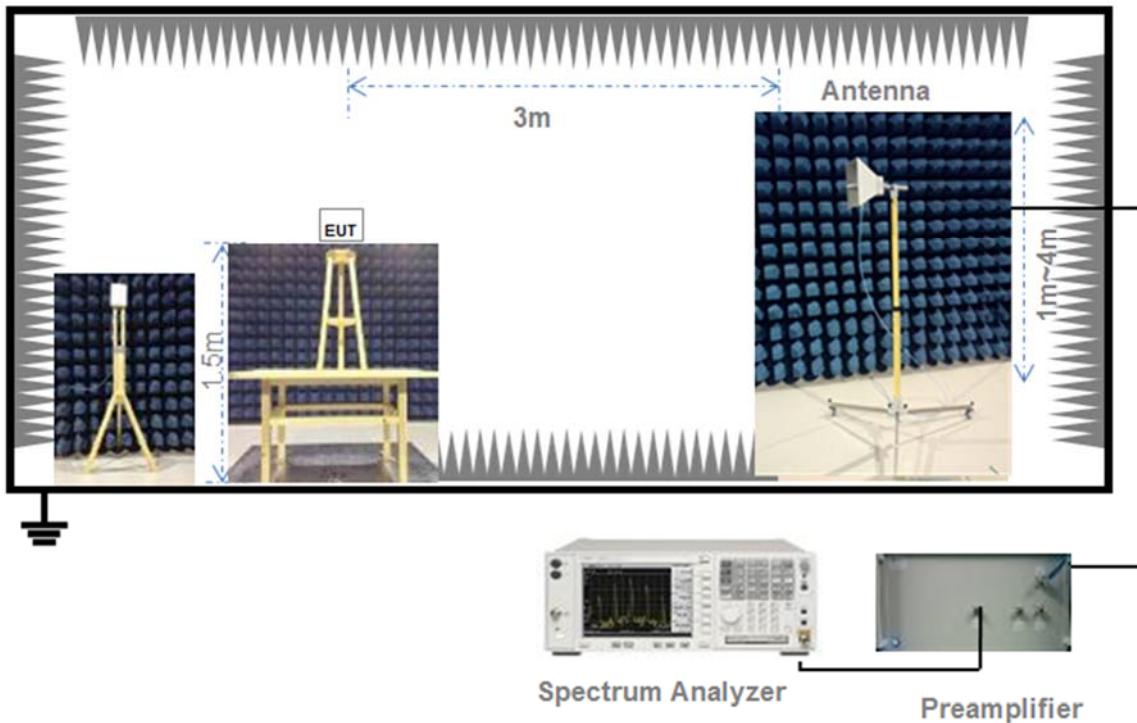
4.4.1 For Antenna Port Test


(Diagram 1)

4.4.2 For AC Power Supply Port Test


(Diagram 2)

4.4.3 For Radiated Test (Below 30 MHz)


(Diagram 3)

4.4.4 For Radiated Test (30 MHz-1 GHz)

(Diagram 4)

4.4.5 For Radiated Test (Above 1 GHz)

(Diagram 5)

5 TEST ITEMS

5.1 RF Output Power

5.1.1 Test Limit

FCC §15.407(a)

The maximum conducted output power should not exceed:

Frequency Band (MHz)	Limit
5150-5250	250 mW
5250-5350	250 mW or 11 dBm + 10log B, whichever is less.
5470-5725	250 mW or 11 dBm + 10log B, whichever is less.
5725-5850	1 W

Note: Where "B" is the 26 dB emissions bandwidth in MHz.

5.1.2 Test Setup

The section 4.4.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.1.3 Test Procedure

The maximum peak conducted output power may be measured using a broadband Average RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the emission bandwidth and utilize a fast-responding diode detector.

The E.I.R.P used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.

5.1.4 Test Result

Please refer to ANNEX A.1.

5.2 Emission Bandwidth and 6 dB Bandwidth

5.2.1 Limit

FCC §15.407(a)

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

5.2.2 Test Setup

The test setup photo please refer to 4.4.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

Emission bandwidth

1. Set RBW = approximately 1% of the emission bandwidth.
2. Set VBW \geq 3*RBW,
3. Detector = Peak.
4. Trace mode = Max hold.
5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

1. Set Span = 1.5 times to 5.0 times the OBW
2. Set RBW = 1% to 5% of the OBW.
3. Set VBW \geq 3*RBW, Detector = Peak.
4. Trace mode = Max hold.
5. Use the 99% power bandwidth function of the instrument.

6 dB bandwidth

1. Set RBW = 100 kHz, VBW = 300 kHz.
2. Detector = Peak. Trace mode = Max hold.
3. Allow the trace to stabilize.
4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.2.4 Test Result

Please refer to ANNEX A.2 and ANNEX A.3.

5.3 Power Spectral density (PSD)

5.3.1 Limit

FCC §15.407(a)

The maximum power spectral density should not exceed:

Frequency Band (MHz)	Limit
5150-5250	11 dBm/MHz
5250-5350	11 dBm/MHz
5470-5725	11 dBm/MHz
5725-5850	30 dBm/500kHz

5.3.2 Test Setup

The section 4.4.1 (Diagram 1) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth.

1. Set RBW = 510 kHz/1 MHz, VBW \geq 3*RBW, Sweep time = Auto, Detector = RMS.
2. Allow the sweeps to continue until the trace stabilizes.
3. Use the peak marker function to determine the maximum amplitude level.
4. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.

5.3.4 Test Result

Please refer to ANNEX A.4.

5.4 Conducted Emission

5.4.1 Limit

FCC §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the U-NII-150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dB μ V)	
	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
0.50 - 30	60	50

5.4.2 Test Setup

The section 4.4.2 (Diagram 2) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

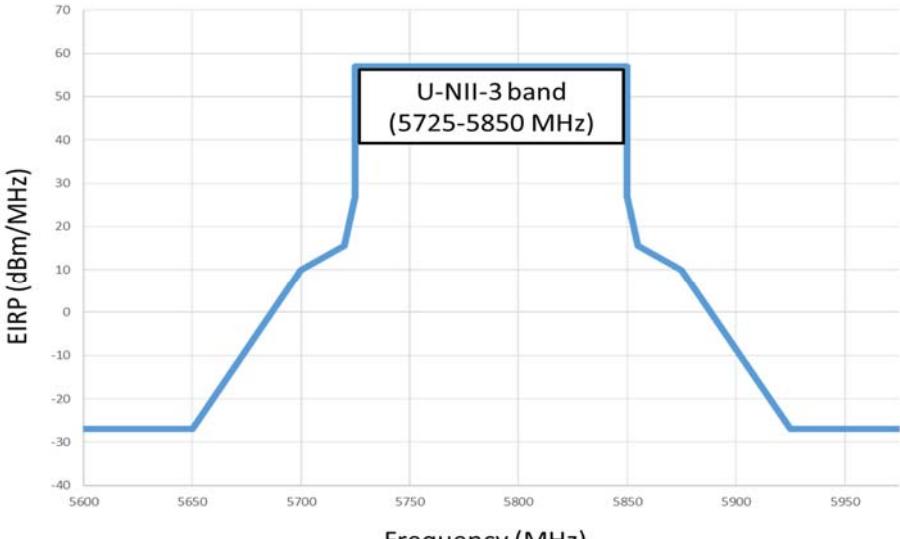
5.4.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

5.4.4 Test Result

Please refer to ANNEX A.5.

5.5 Radiated Spurious Emissions and Band Edge (Restricted-band)


5.5.1 Limit

FCC §15.209 & 15.407(b)

Frequency (MHz)	Field Strength (μ V/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note ¹: The Limit for radiated test was performed according to FCC Part 15C

Note ²: The tighter limit applies at the band edge.

Un-restricted band emissions	
Out Operating Band (MHz)	Limit
5150 - 5250	e.i.r.p. -27 dBm (68.2 dBuV/m@3m)
5250 - 5350	e.i.r.p. -27 dBm (68.2 dBuV/m@3m)
5470 - 5725	e.i.r.p. -27 dBm (68.2 dBuV/m@3m)
5725 - 5850	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength.

5.5.2 Test Setup

The section 4.4.3-4.4.5 (Diagram 3 - Diagram 5) test setup description was used for this test. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

Since the emission limits are specified in terms of radiated field strength levels, measurements performed to demonstrate compliance have traditionally relied on a radiated test configuration. Radiated measurements remain the principal method for demonstrating compliance to the specified limits; however antenna-port conducted measurements are also now acceptable to demonstrate compliance (see below for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 shall be followed.

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

General Procedure for conducted measurements in restricted bands

- a) Measure the conducted output power (in dBm) using the detector specified (see guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see guidance on determining the applicable antenna gain)
- c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies $>$ 1000 MHz).
- d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

$$E = EIRP - 20\log D + 104.8$$

where:

E = electric field strength in $\text{dB}\mu\text{V/m}$,

$EIRP$ = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

- f) Compare the resultant electric field strength level to the applicable limit.

- g) Perform radiated spurious emission test.

Quasi-Peak measurement procedure

The specifications for measurements using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International Electrotechnical Commission.

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

Peak power measurement procedure

Peak emission levels are measured by setting the instrument as follows:

- a) RBW = as specified in Table 1.
- b) VBW $\geq 3 \times$ RBW.
- c) Detector = Peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.
- f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be longer for low duty cycle applications).

Table 1—RBW as a function of frequency

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Trace averaging across on and off times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT (i.e., duty cycle ≥ 98 percent) cannot be achieved and the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent), then the following procedure shall be used:

- a) The EUT shall be configured to operate at the maximum achievable duty cycle.
- b) Measure the duty cycle, x, of the transmitter output signal as described in section 6.0.
- c) RBW = 1 MHz (unless otherwise specified).
- d) VBW $\geq 3 \times$ RBW.
- e) Detector = RMS, if span/(# of points in sweep) $\leq (RBW/2)$. Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- f) Averaging type = power (i.e., RMS).
- 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
- 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
- g) Sweep time = auto.
- h) Perform a trace average of at least 100 traces.
- i) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

- 1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step f), then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

NOTE: Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission - not on an average across on and off times of the transmitter.

Determining the applicable transmit antenna gain

A conducted power measurement will determine the maximum output power associated with a restricted band emission; however, in order to determine the associated EIRP level, the gain of the transmitting antenna (in dBi) must be added to the measured output power (in dBm).

Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

See KDB 662911 for guidance on calculating the additional array gain term when determining the effective antenna gain for a EUT with multiple outputs occupying the same or overlapping frequency ranges in the same band.

Radiated spurious emission test

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in ANSI C63.10. All detected emissions shall comply with the applicable limits.

The measurement frequency range is from 30 MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360° , and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.5.4 Test Result

Please refer to ANNEX A.6.

ANNEX A TEST RESULT

A.1 RF Output Power

Note: The Output Power test please refer to the Report. BL-EC18C0175-604 issued by Shenzhen BALUN Technology Co., Ltd. on Apr. 11, 2019., **Section A.1 Output Power**.

A.2 Emission Bandwidth & 99% Bandwidth

Note: The Emission Bandwidth & 99% Bandwidth test please refer to the Report. BL-EC18C0175-604 issued by Shenzhen BALUN Technology Co., Ltd. on Apr. 11, 2019., **Section A.2 Emission Bandwidth & 99% Bandwidth**.

A.3 6 dB Bandwidth

Note: The 6 dB Bandwidth test please refer to the Report. BL-EC18C0175-604 issued by Shenzhen BALUN Technology Co., Ltd. on Apr. 11, 2019., **Section A.3 6 dB Bandwidth**.

A.4 Power Spectral Density

Note: The Power Spectral Density test please refer to the Report. BL-EC18C0175-604 issued by Shenzhen BALUN Technology Co., Ltd. on Apr. 11, 2019., **Section A.4 Power Spectral Density**.

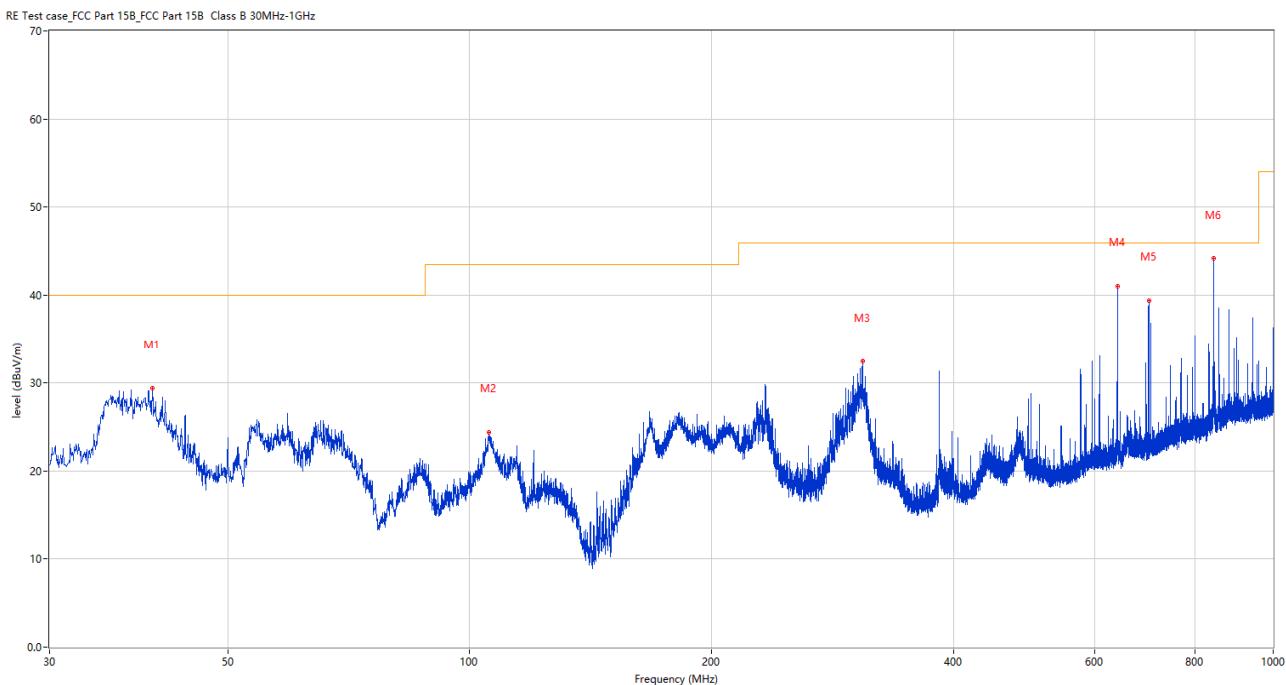
A.5 Conducted Emissions

Note: The Conducted Emissions test please refer to the Report. BL-EC18C0175-604 issued by Shenzhen BALUN Technology Co., Ltd. on Apr. 11, 2019., **Section A.5 Conducted Emissions**.

A.6 Radiated Spurious Emissions and Band Edge (Restricted-band)

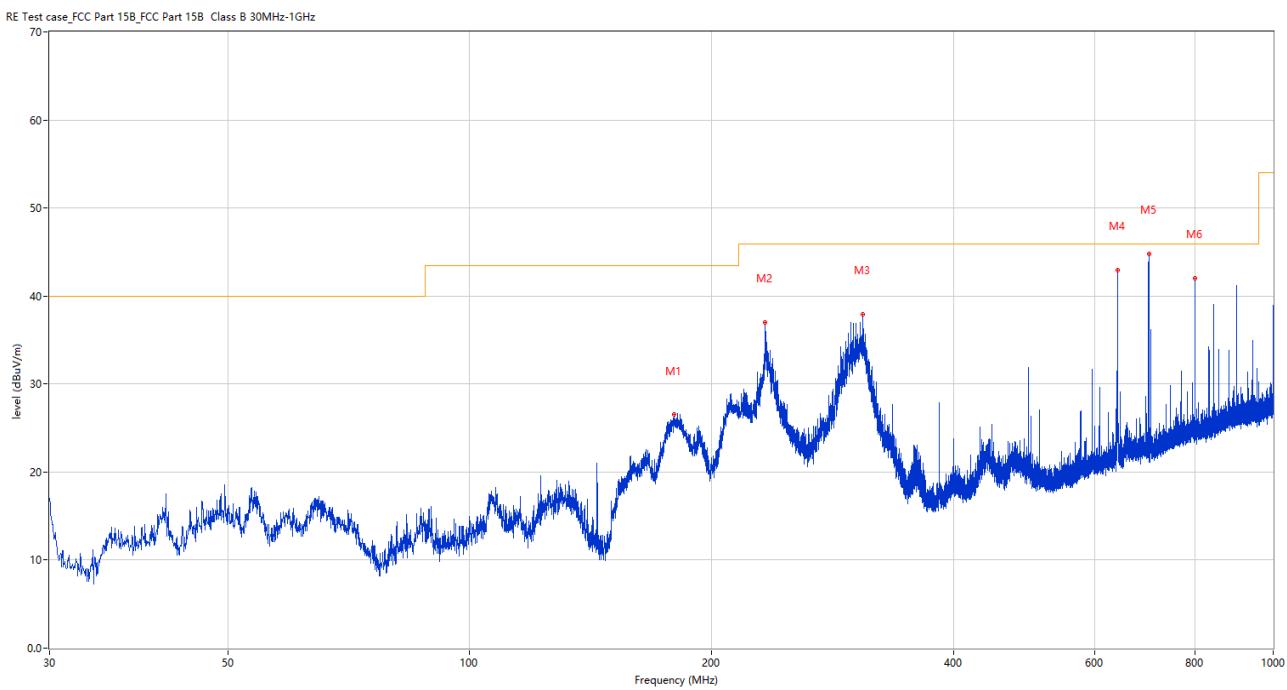
Test Data

Note ¹: The symbol of “--” in the table which means not application.


Note ²: For the test data above 1 GHz, According the ANSI C63.4, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Note ³: The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

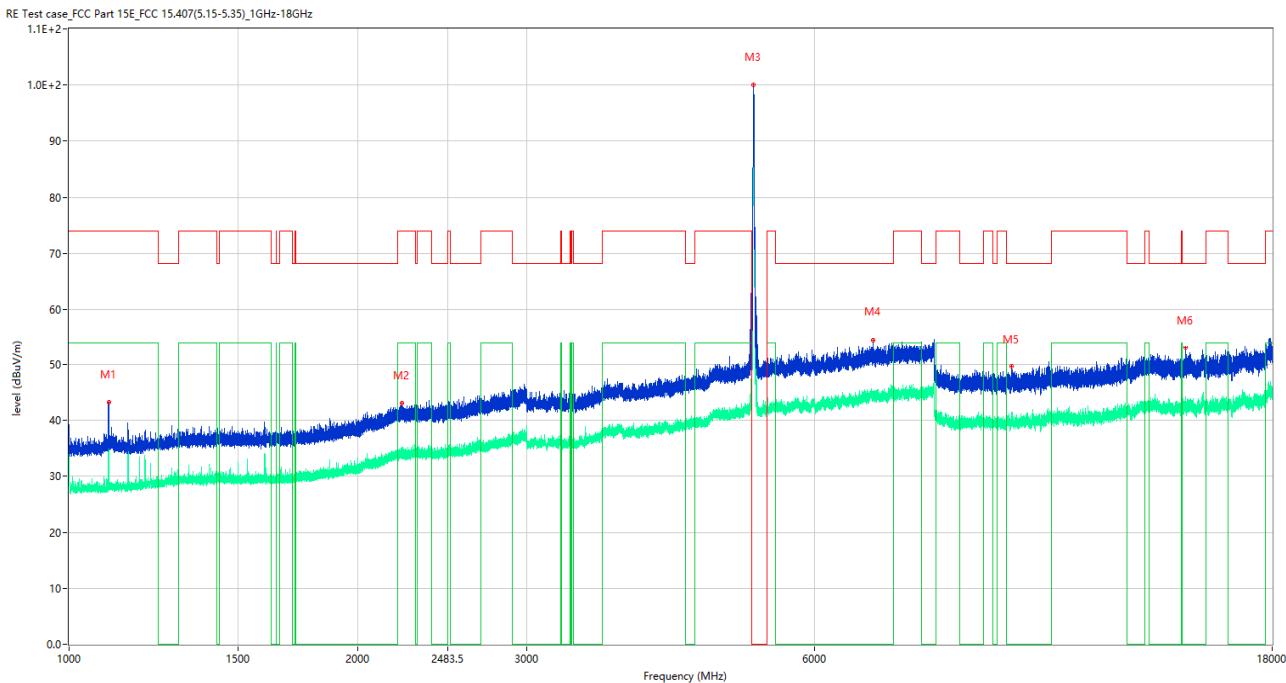
Note ⁴: The EUT is working in the Normal link mode below 1 GHz. All modes have been tested and normal link mode is worst.


Note ⁵: For Multiple transmitter output, the quantity $10 \log (NANT)$ dB is added to each spectrum value before comparing to the emission limit. When testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding $10 \log(NANT)$ if the measurements are made relative to the in-band emissions on the individual outputs.

30 MHz to 1 GHz, ANT V

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	40.233	29.34	-27.20	40.0	-10.66	Peak	292.00	100	Vertical	Pass
2	105.563	24.35	-27.83	43.5	-19.15	Peak	360.00	100	Vertical	Pass
3	308.438	32.47	-23.95	46.0	-13.53	Peak	21.00	200	Vertical	Pass
4	639.985	41.06	-16.27	46.0	-4.94	Peak	201.00	200	Vertical	Pass
5	699.979	39.38	-15.20	46.0	-6.62	Peak	223.00	100	Vertical	Pass
6	843.539	44.16	-12.68	46.0	-1.84	Peak	206.00	100	Vertical	Pass

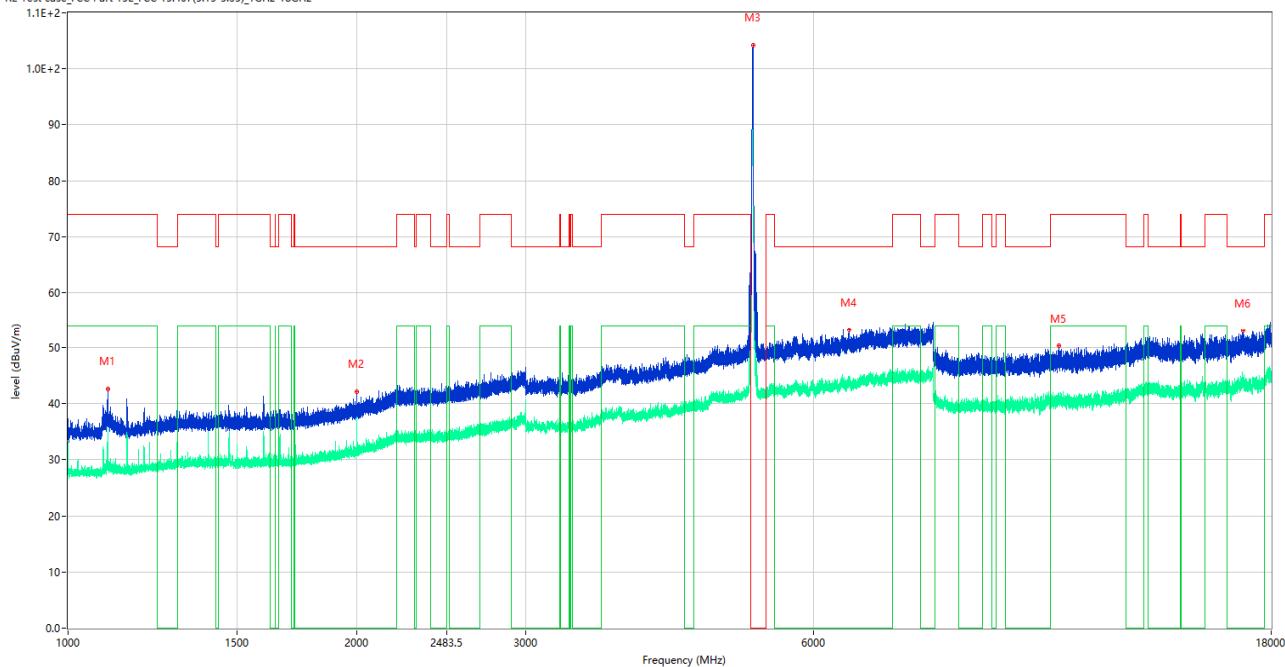
30 MHz to 1 GHz, ANT H



No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	179.865	26.46	-28.39	43.5	-17.04	Peak	171.00	100	Horizontal	Pass
2	233.312	37.03	-25.84	46.0	-8.97	Peak	92.00	100	Horizontal	Pass
3	308.390	38.01	-23.95	46.0	-7.99	Peak	170.00	100	Horizontal	Pass
4	640.081	42.96	-16.27	46.0	-3.04	Peak	110.00	200	Horizontal	Pass
5	699.979	44.80	-15.20	46.0	-1.20	Peak	244.00	100	Horizontal	Pass
6	799.986	42.03	-13.18	46.0	-3.97	Peak	142.00	100	Horizontal	Pass

Note: The spurious above 18G is noise only, do not show on the report.

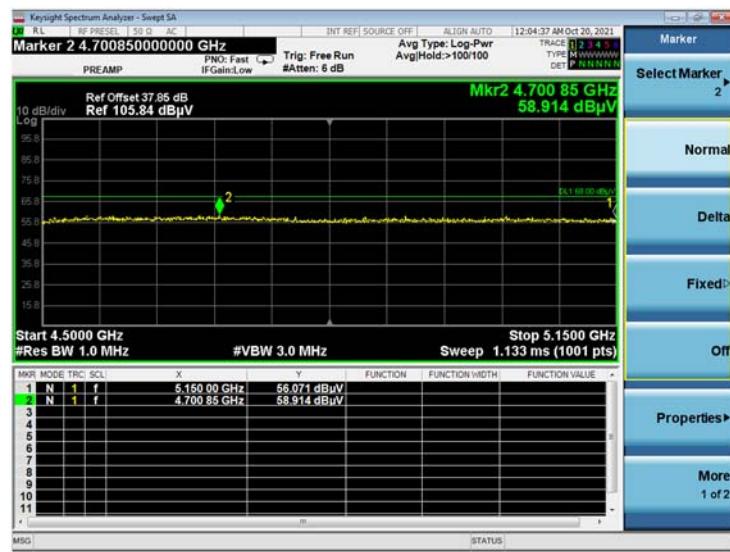
Cabinet Radiated test data


11a, U-NII-1, 1 GHz to 18 GHz, Low Channel, ANT V

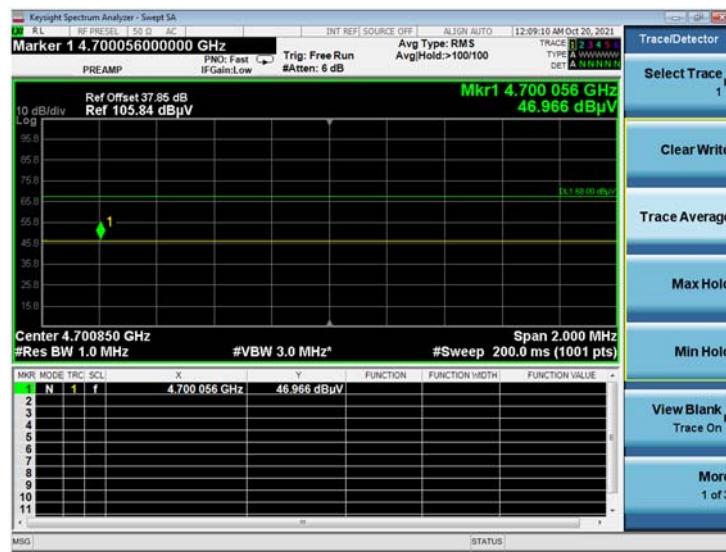
No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	1100.200	43.31	-17.92	74.0	-30.69	Peak	220.00	150	Vertical	Pass
1**	1100.200	40.66	-17.92	54.0	-13.34	AV	220.00	150	Vertical	Pass
2	2225.000	43.05	-11.71	74.0	-30.95	Peak	286.00	150	Vertical	Pass
2**	2225.000	33.25	-11.71	54.0	-20.75	AV	286.00	150	Vertical	Pass
3	5176.750	99.97	-1.42	--	-257.03	Peak	357.00	150	Vertical	Pass
3**	5176.750	93.28	-1.42	--	93.28	AV	357.00	150	Vertical	N/A
4	6900.000	54.59	0.58	68.2	-13.61	Peak	12.00	150	Vertical	Pass
4**	6900.000	43.67	0.58	--	43.67	AV	12.00	150	Vertical	N/A
5	9632.338	49.74	-3.05	68.2	-18.46	Peak	105.00	150	Vertical	Pass
5**	9632.338	40.45	-3.05	--	40.45	AV	105.00	150	Vertical	N/A
6	14613.488	53.04	0.73	68.2	-15.16	Peak	240.00	150	Vertical	Pass
6**	14613.488	42.26	0.73	--	42.26	AV	240.00	150	Vertical	N/A

11a, U-NII-1, 1 GHz to 18 GHz, Low Channel, ANT H

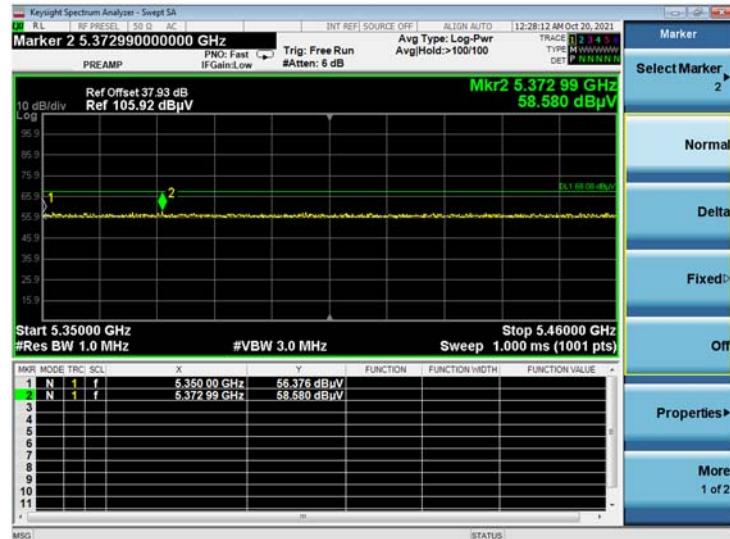
RE Test case FCC Part 15E FCC 15.407(5.15-5.35) 1GHz-18GHz

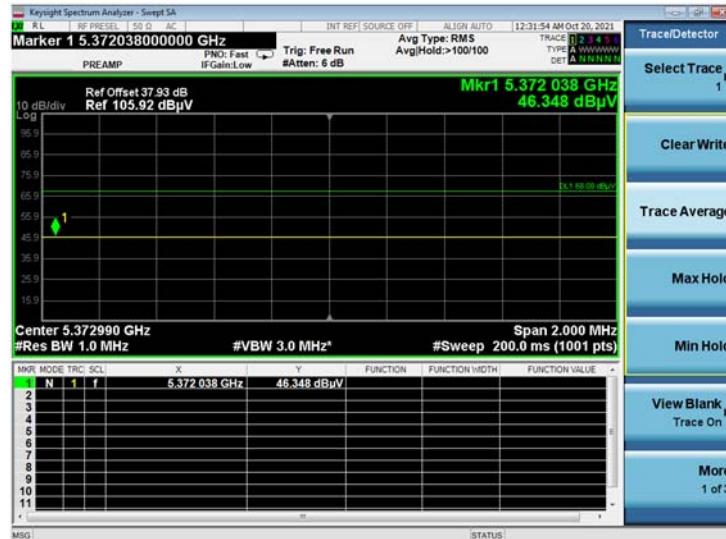

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (Degree)	Height (cm)	Antenna	Verdict
1	1100.100	42.61	-17.93	74.0	-31.39	Peak	114.00	150	Horizontal	Pass
1**	1100.100	37.12	-17.93	54.0	-16.88	AV	114.00	150	Horizontal	Pass
2	1999.900	42.08	-14.82	68.2	-26.12	Peak	148.00	150	Horizontal	Pass
2**	1999.900	37.02	-14.82	--	37.02	AV	148.00	150	Horizontal	Pass
3	5185.500	104.15	-1.32	--	-235.85	Peak	340.00	150	Horizontal	Pass
3**	5185.500	97.12	-1.32	--	97.12	AV	340.00	150	Horizontal	N/A
4	6530.250	53.19	0.23	68.2	-15.01	Peak	1.00	150	Horizontal	Pass
4**	6530.250	44.21	0.23	--	44.21	AV	1.00	150	Horizontal	N/A
5	10809.862	50.36	-2.98	74.0	-23.64	Peak	350.00	150	Horizontal	Pass
5**	10809.862	41.08	-2.98	54.0	-12.92	AV	350.00	150	Horizontal	N/A
6	16829.512	53.04	0.23	68.2	-15.16	Peak	158.00	150	Horizontal	Pass
6**	16829.512	44.16	0.23	--	44.16	AV	158.00	150	Horizontal	N/A

A.6.2 Band Edge (Restricted-band)


Test Band	Mode	Channel	Verdict
U-NII-1	802.11a	Low	Pass
		High	Pass

Test Plots


U-NII-1 11a CH36 Peak


U-NII-1 11a CH48 Peak

U-NII-1 11a CH36 AV

U-NII-1 11a CH48 AV

ANNEX B TEST SETUP PHOTOS

Please refer the document “BL-EC2190969-AR.PDF”.

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document “BL-EC2190969-AW.PDF”.

ANNEX D EUT INTERNAL PHOTOS

Please refer the document “BL-EC2190969-AI.PDF”.

--END OF REPORT--