

TEST REPORT

Product Name: ZXT-800US
FCC ID: M7N-BW8493
Trademark: N/A
Model Number: BW8493US, BW8492US, BW8494US
Prepared For: Remotec Technology Limited
Address: 9/F., Sing Shun Centre, No. 495 Castle Peak Road, Lai Chi Kok, Kowloon Hong Kong
Manufacturer: Remotec Technology Limited
Address: 9/F., Sing Shun Centre, No. 495 Castle Peak Road, Lai Chi Kok, Kowloon Hong Kong
Prepared By: Shenzhen CTB Testing Technology Co., Ltd.
Address: 1&2/F., Building A, No.26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date: Nov. 28, 2022
Sample tested Date: Nov. 28, 2022 to Dec. 14, 2022
Issue Date: Dec. 14, 2022
Report No.: CTB221202023RFX
Test Standards: FCC Part15.249
ANSI C63.10:2013
Test Results: PASS
Remark: This is 908.4MHz radio test report.
Compiled by: Chen Zheng
Reviewed by: Arron Liu
Approved by:

Chen Zheng

Arron Liu

Chen ZhengArron LiuBin Mei / Director

Note: If there is any objection to the inspection results in this report, please submit a written report to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. “*” indicates the testing items were fulfilled by subcontracted lab. “#” indicates the items are not in CNAS accreditation scope.

TABLE OF CONTENT

Test Report Declaration	Page
1. VERSION	3
2. TEST SUMMARY	4
3. MEASUREMENT UNCERTAINTY	5
4. PRODUCT INFORMATION AND TEST SETUP	6
4.1 Product Information	6
4.2 Test Setup Configuration	6
4.3 Support Equipment	6
4.4 Channel List	7
4.5 Test Mode	7
4.6 Test Environment	7
5. TEST FACILITY AND TEST INSTRUMENT USED	8
5.1 Test Facility	8
5.2 Test Instrument Used	8
6. AC POWER LINE CONDUCTED EMISSION	10
6.1 Block Diagram Of Test Setup	10
6.2 Limit	10
6.3 Test procedure	10
6.4 Test Result	12
7. RADIATED SPURIOUS EMISSION	14
7.1 Block Diagram Of Test Setup	14
7.2 Limit	14
7.3 Test procedure	15
7.4 Test Result	16
8. BAND EDGE AND RF CONDUCTED SPURIOUS EMISSIONS	19
8.1 Block Diagram Of Test Setup	19
8.2 Limit	19
8.3 Test procedure	20
8.4 Test Result	21
9. BANDWIDTH TEST	23
9.1 Block Diagram Of Test Setup	23
9.2 Limit	23
9.3 Test procedure	23
9.4 Test Result	23
10. ANTENNA REQUIREMENT	25
11. EUT TEST SETUP PHOTOGRAPHS	26

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
CTB221202023RFX	Dec. 14, 2022	Original	Valid

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.215	20dB Bandwidth	PASS	
15.249	Fundamental & Radiated Spurious Emission Measurement	PASS	
15.205	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

Test according to ANSI C63.10-2013.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty
Occupancy bandwidth	54.3kHz
Conducted output power Above 1G	0.9dB
Conducted output power below 1G	0.9dB
Power Spectral Density , Conduction	0.9dB
Conduction spurious emissions	2.0dB
Out of band emission	2.0dB
3m chamber Radiated spurious emission(9KHz-30MHz)	4.8dB
3m chamber Radiated spurious emission(30MHz-1GHz)	4.6dB
3m chamber Radiated spurious emission(1GHz-18GHz)	5.1dB
3m chamber Radiated spurious emission(18GHz-40GHz)	3.4dB
humidity uncertainty	5.5%
Temperature uncertainty	0.63°C
frequency	1x10-7
Conducted Emission (150KHz-30MHz)	3.2 dB
Radiated Emission(30MHz ~ 1000MHz)	4.8 dB
Radiated Emission(1GHz ~6GHz)	4.9 dB

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s):	BW8493US, BW8492US, BW8494US
Model Description:	Only the model name is different, the test model is BW8493US.
Hardware Version:	V0.1
Software Version:	V1.02
Operation Frequency:	908.4MHz
Type of Modulation:	FSK
Antenna installation:	PCB antenna
Antenna Gain:	1.5dBi
Ratings:	DC 5V charging from adapter DC 4.5V from battery

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	JIYIN	JY-05100C	/	/

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

CH No.	Frequency (MHz)						
1.	908.4	/	/	/	/	/	/

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	channel
Transmitting GFSK	908.4MHz

4.6 Test Environment

Humidity(%):	54
Atmospheric Pressure(kPa):	101
Normal Voltage(DC):	4.5V
Normal Temperature(°C)	23
Low Temperature(°C)	0
High Temperature(°C)	40

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

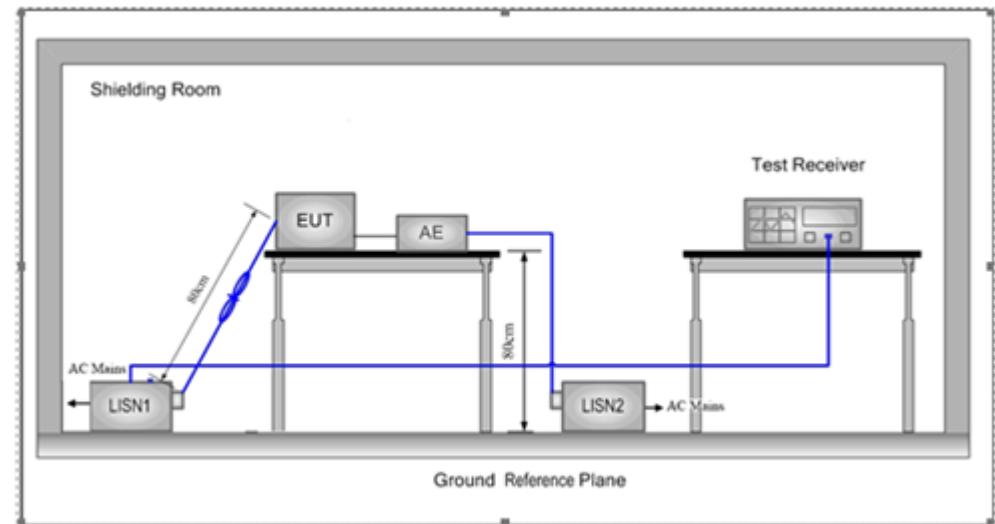
All measurement facilities used to collect the measurement data are located at 1&2F., Building A, No. 26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

Item	Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	2023.07.19
2	Power Sensor	Agilent	U2021XA	MY56120032	2023.07.19
3	Power Sensor	Agilent	U2021XA	MY56120034	2023.07.19
4	Communication test set	R&S	CMW500	108058	2023.07.19
5	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	2023.07.19
6	Signal Generator	Agilent	N5181A	MY50140365	2023.07.19
7	Vector signal generator	Agilent	N5182A	MY47420195	2023.07.19
8	Communication test set	Agilent	E5515C	MY50102567	2023.07.19
9	2.4 GHz Filter	Shenxiang	MSF2400-2483.5MS-1154	20181015001	2023.07.19
10	5 GHz Filter	Shenxiang	MSF5150-5850 MS-1155	20181015001	2023.07.19
11	Filter	Xingbo	XBLBQ-DZA120	190821-1-1	2023.07.19
12	BT&WI-FI Automatic test software	Microwave	MTS8000	Ver. 2.0.0.0	/
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	2023.10.30
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	2023.07.19
15	234G Automatic test software	Microwave	MTS8200	Ver. 2.0.0.0	/
16	966 chamber	C.R.T.	966	/	2024.08.11
17	Receiver	R&S	ESPI	100362	2023.07.19
18	Amplifier	HP	8447E	2945A02747	2023.07.19
19	Amplifier	Agilent	8449B	3008A01838	2023.07.19
20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	2023.07.22

21	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA9120D	01911	2023.07.22
22	EMI test software	Fala	EZ-EMC	FA-03A2 RE	/
23	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-224	2023.07.23
24	loop antenna	ZHINAN	ZN30900A	GTS534	/
25	40G Horn antenna	A/H/System	SAS-574	588	2024.10.30
26	Amplifier	AEROFLEX	Aeroflex	097	2024.10.30

Continuous disturbance


No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	ROHDE&SCHWARZ	ESH3-Z5	100318	2023.07.19
2	Pulse limiter	ROHDE&SCHWARZ	ESH3Z2	357881052	2023.07.19
3	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428/003	2023.07.19
4	Coaxial cable	ZDECL	Z302S-NJ-SMA J-12M	18091905	2023.07.19
5	ISN	Schwarzbeck	NTFM8158	183	2023.07.19
6	Communication test set	Agilent	E5515C	MY50102567	2023.07.19
7	Communication test set	R&S	CMW500	108058	2023.07.19
8	EZ-EMC	Frad	EMC-con3A1.1	/	/

Radiated emission

No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D	01911	2023.07.22
2	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	2023.07.22
3	Amplifier	Agilent	8449B	3008A01838	2023.07.19
4	Amplifier	HP	8447E	2945A02747	2023.07.19
5	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428/003	2023.07.19
6	Coaxial cable	ETS	RFC-SNS-100-NMS-80 NI	/	2023.07.19
7	Coaxial cable	ETS	RFC-SNS-100-NMS-20 NI	/	2023.07.19
8	Coaxial cable	ETS	RFC-SNS-100-SMS-20 NI	/	2023.07.19
9	Coaxial cable	ETS	RFC-NNS-100-NMS-300 NI	/	2023.07.19
10	Communication test set	Agilent	E5515C	MY50102567	2023.07.19
11	Communication test set	R&S	CMW500	108058	2023.07.19
12	EZ-EMC	Frad	EMC-con3A1.1	/	/

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

6.2 Limit

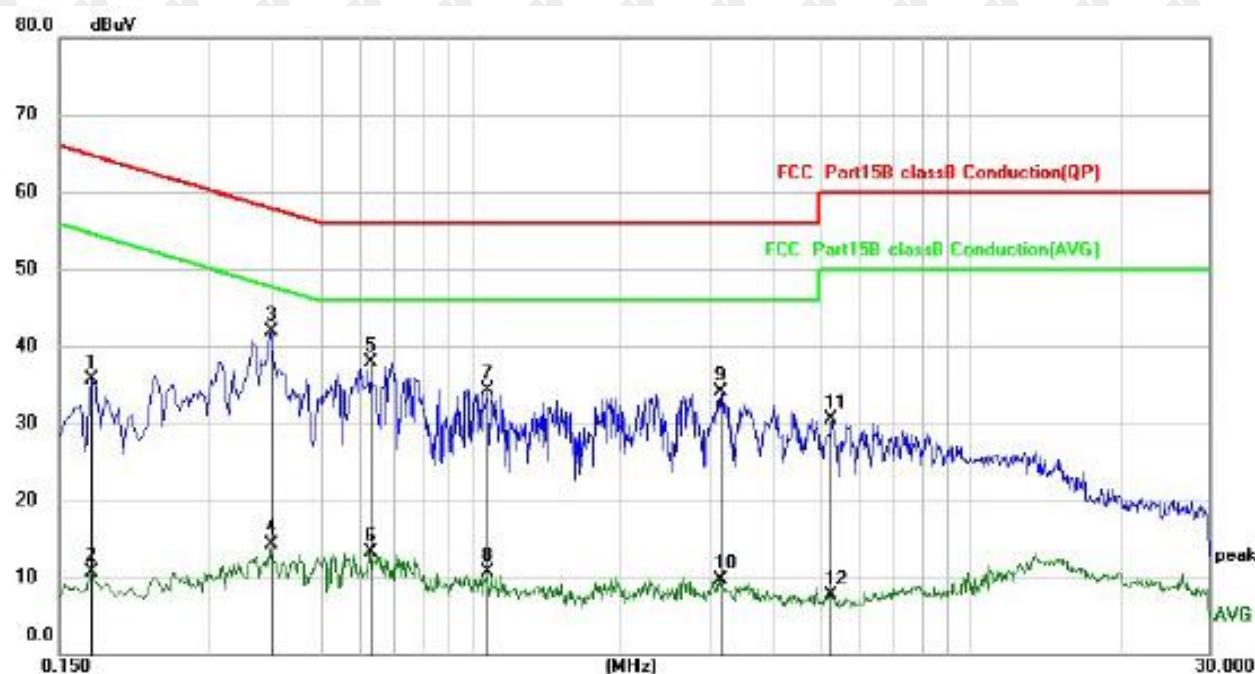
Table 4 – AC power-line conducted emissions limits

Frequency (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15 - 0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 1}
0.5 - 5	56	46
5 - 30	60	50

Note 1: The level decreases linearly with the logarithm of the frequency.

* Decreasing linearly with the logarithm of the frequency

6.3 Test procedure

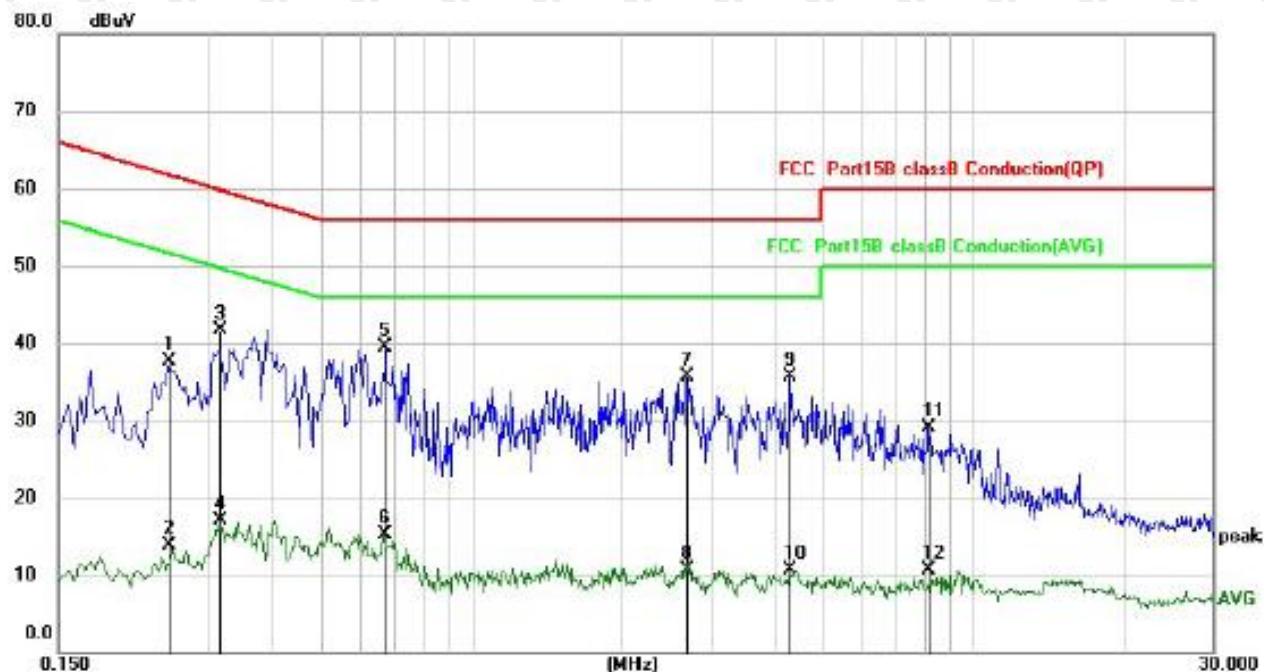

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane.

This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 6) All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
- 7) If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

6.4 Test Result

L:



No.	Mk.	Freq. MHz	Reading	Correct	Measure-	Limit	Over
			Level dBuV	Factor dB	ment dBuV		
1		0.1740	25.73	10.01	35.74	64.77	-29.03 QP
2		0.1740	0.78	10.01	10.79	54.77	-43.98 AVG
3 *		0.3980	31.93	9.98	41.91	57.90	-15.99 QP
4		0.3980	4.38	9.98	14.36	47.90	-33.54 AVG
5		0.6300	27.93	9.97	37.90	56.00	-18.10 QP
6		0.6300	3.28	9.97	13.25	46.00	-32.75 AVG
7		1.0780	24.29	9.98	34.27	56.00	-21.73 QP
8		1.0780	0.64	9.98	10.62	46.00	-35.38 AVG
9		3.1460	24.01	10.08	34.09	56.00	-21.91 QP
10		3.1460	-0.46	10.08	9.62	46.00	-36.38 AVG
11		5.2459	20.31	10.18	30.49	60.00	-29.51 QP
12		5.2459	-2.55	10.18	7.63	50.00	-42.37 AVG

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement – Limit

N:

No.	Mk.	Freq. MHz	Reading	Correct	Measure-	Limit	Over	Detector
			Level dBuV	Factor dB	ment dBuV			
1		0.2500	27.70	10.00	37.70	61.76	-24.06	QP
2		0.2500	3.96	10.00	13.96	51.76	-37.80	AVG
3		0.3149	31.71	9.99	41.70	59.84	-18.14	QP
4		0.3149	7.08	9.99	17.07	49.84	-32.77	AVG
5	*	0.6700	29.51	9.97	39.48	56.00	-16.52	QP
6		0.6700	5.36	9.97	15.33	46.00	-30.67	AVG
7		2.6780	25.69	10.06	35.75	56.00	-20.25	QP
8		2.6780	0.60	10.06	10.66	46.00	-35.34	AVG
9		4.2979	25.49	10.14	35.63	56.00	-20.37	QP
10		4.2979	0.47	10.14	10.61	46.00	-35.39	AVG
11		8.1459	18.84	10.28	29.12	60.00	-30.88	QP
12		8.1459	0.37	10.28	10.65	50.00	-39.35	AVG

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement – Limit

7. RADIATED SPURIOUS EMISSION

7.1 Block Diagram Of Test Setup

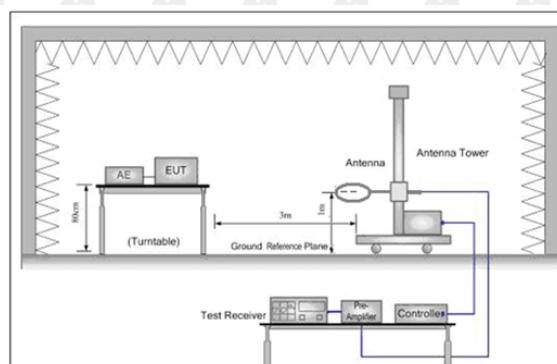


Figure 1. Below 30MHz

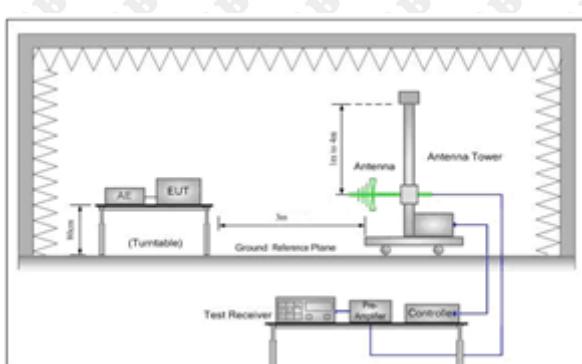
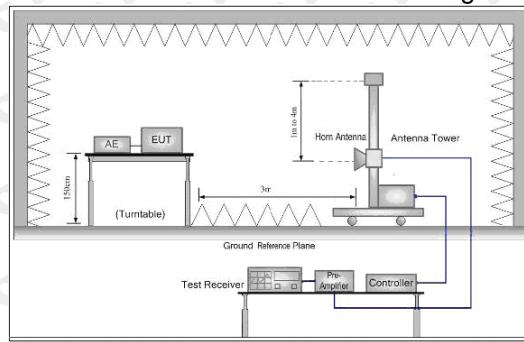



Figure 2. 30MHz to 1GHz

7.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dB μ V/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

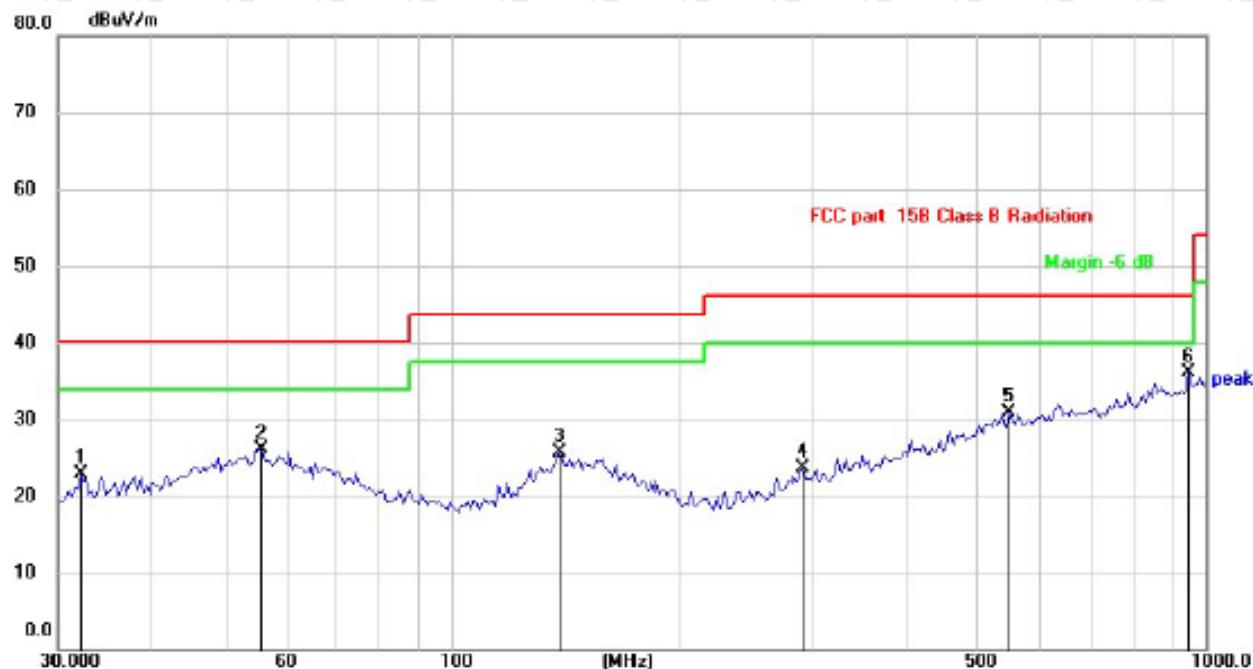
7.3 Test procedure

Below 1GHz test procedure as below:

- a.The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

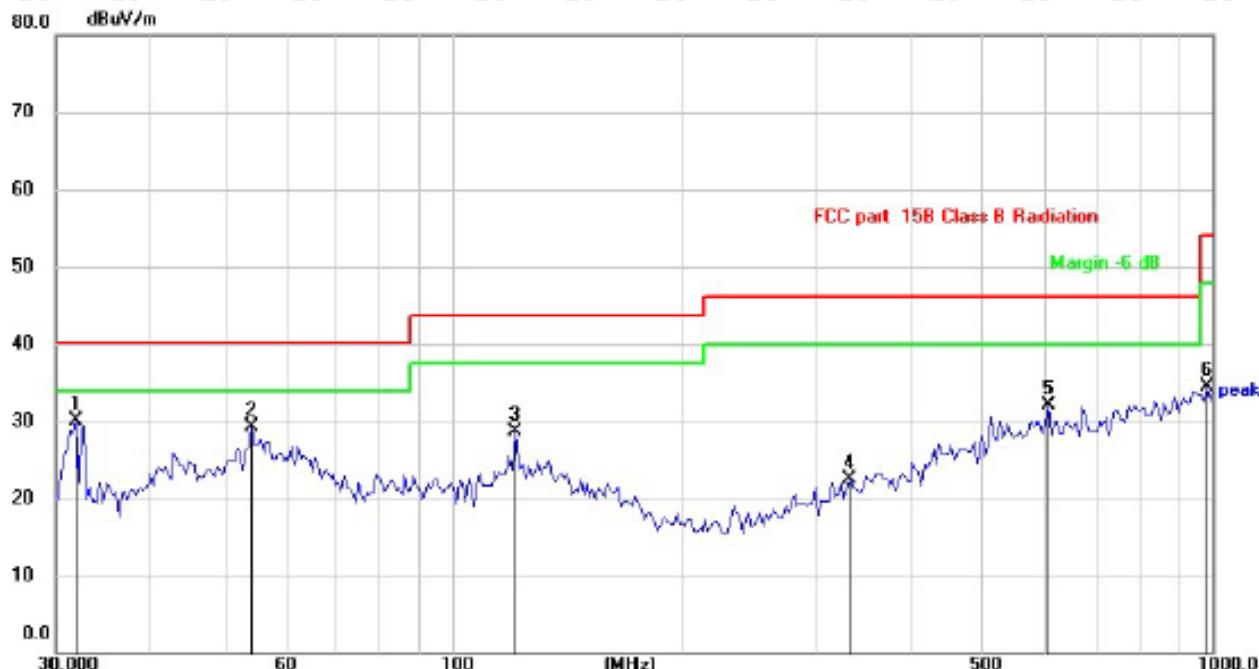
- g.Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h.Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- j.Repeat above procedures until all frequencies measured was complete.
- j. Full battery is used during test


Receiver set:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average

7.4 Test Result

Below 1GHz Test Results:


Antenna polarity: H

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over
			Level	Factor	ment		
		MHz	dBuV	dB	dBuV/m	dB/m	dB
1		32.1794	29.76	-6.79	22.97	40.00	-17.03
2		55.9025	33.35	-7.17	26.18	40.00	-13.82
3		139.1170	31.24	-5.58	25.66	43.50	-17.84
4		293.0842	29.44	-5.79	23.65	46.00	-22.35
5		550.9479	29.67	1.26	30.93	46.00	-15.07
6	*	948.7608	28.45	7.63	36.08	46.00	-9.92

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement – Limit

Antenna polarity: V

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	
			Level	Factor	ment			
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	31.8985	36.91	-6.81	30.10	40.00	-9.90	QP
2		54.4515	36.42	-7.03	29.39	40.00	-10.61	QP
3		120.9108	36.56	-7.79	28.77	43.50	-14.73	QP
4		334.2722	26.95	-4.50	22.45	46.00	-23.55	QP
5		606.7219	29.54	2.54	32.08	46.00	-13.92	QP
6		982.6200	26.48	8.03	34.51	54.00	-19.49	QP

Remark: Factor = Cable loss + Antenna factor - Pre-amplifier; Margin = Measurement – Limit

CH (908.4MHz)

Horizontal:

Frequency (MHz)	Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
908.4	107.84	-5.71	102.13	114	-11.87	peak
908.4	92.21	-5.71	86.50	94	-7.50	Avg
1816.8	56.07	-3.51	52.56	74	-21.44	peak
1816.8	46.81	-3.51	43.30	54	-10.70	Avg
2725.2	56.32	-0.82	55.50	74	-18.50	peak
2725.2	46.13	-0.82	45.31	54	-8.69	Avg

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

Vertical:

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
908.4	107.25	-5.71	101.54	114	-12.46	peak
908.4	92.68	-5.71	86.97	94	-7.03	Avg
1816.8	55.74	-3.51	52.23	74	-21.77	peak
1816.8	46.34	-3.51	42.83	54	-11.17	Avg
2725.2	57.46	-0.82	56.64	74	-17.36	peak
2725.2	46.71	-0.82	45.89	54	-8.11	Avg

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

Remark:

- (1) Measuring frequencies from 9KHz to the 25 GHz.
- (2). By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- (3). Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.

8. BAND EDGE AND RF CONDUCTED SPURIOUS EMISSIONS

8.1 Block Diagram Of Test Setup

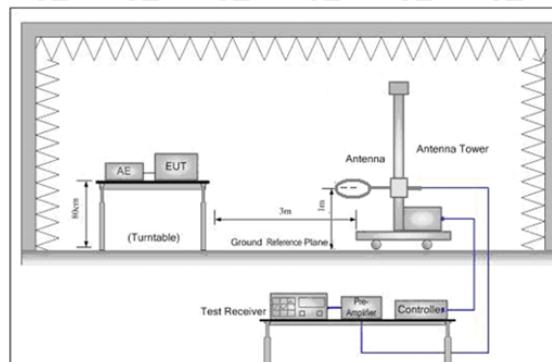


Figure 1. Below 30MHz

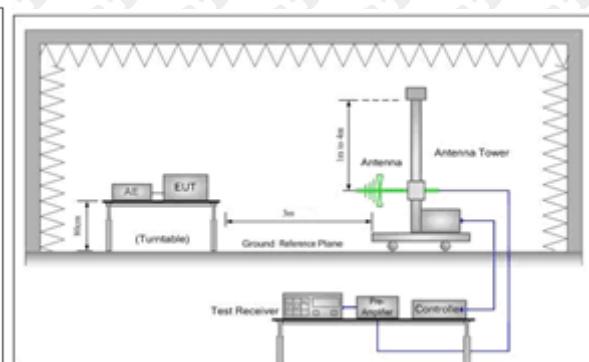
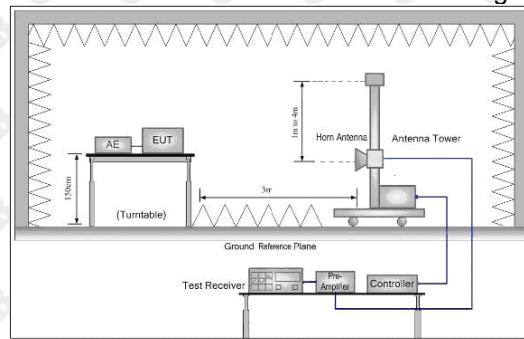



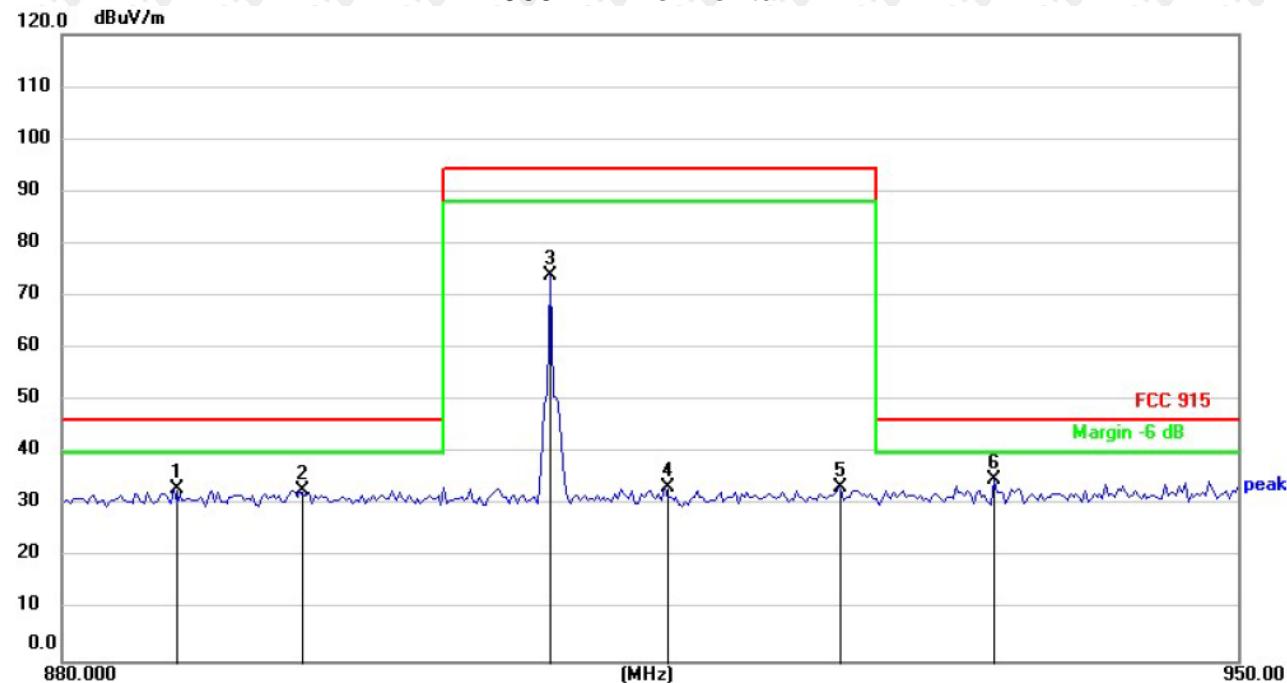
Figure 2. 30MHz to 1GHz

8.2 Limit

Spurious Emissions:

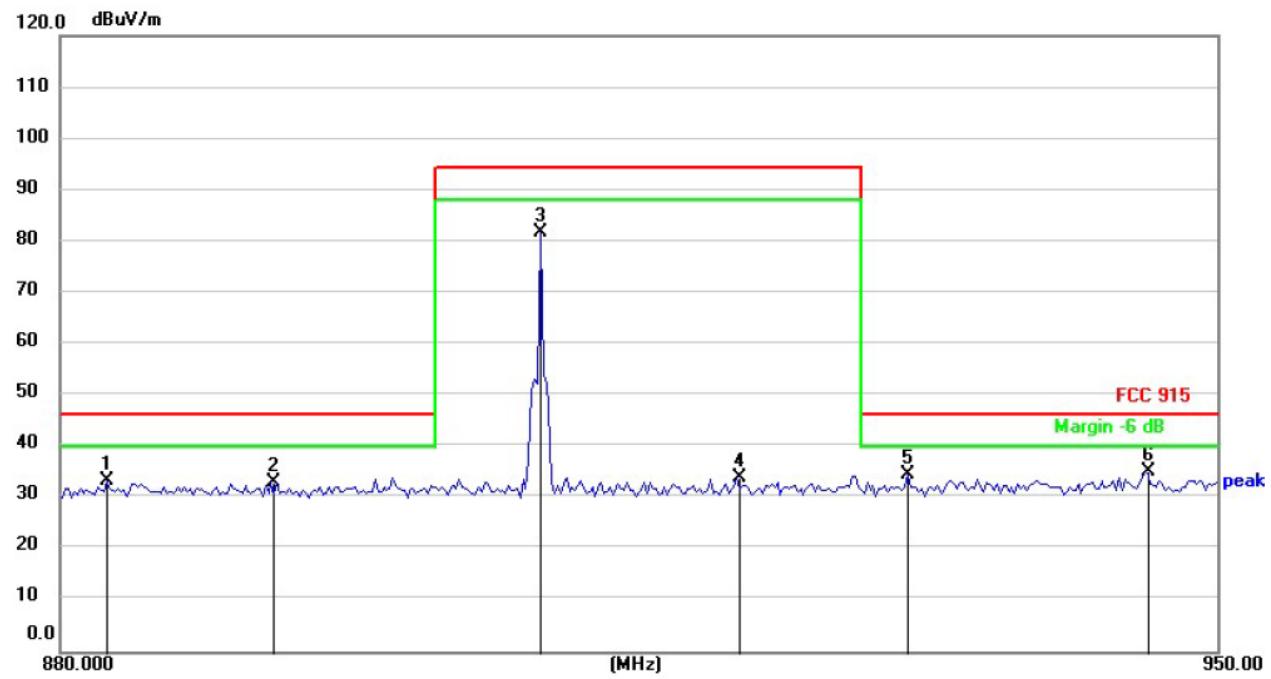
Frequency	Field strength (microvolt/meter)	Limit (dB μ V/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.


8.3 Test procedure

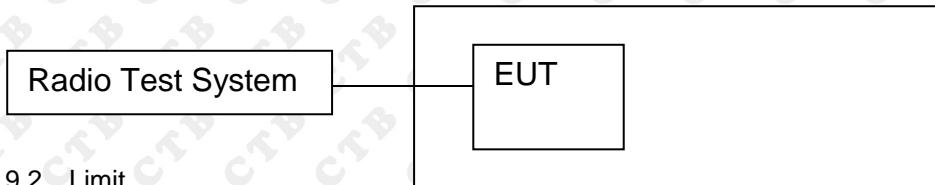
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Frequency	Detector	RBW	VBW	Remark
880MHz-950MHz	peak	120KHz	300KHz	peak


8.4 Test Result

908MHz Horizontal

No.	Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dB/m	Over dB	Over Detector
1		886.4221	26.19	6.89	33.08	46.00	-12.92	peak
2		893.7457	25.91	6.98	32.89	46.00	-13.11	peak
3		908.4011	66.79	7.16	73.95	94.00	-20.05	peak
4		915.2056	26.11	7.24	33.35	94.00	-60.65	peak
5		925.5965	25.99	7.36	33.35	94.00	-60.65	peak
6	*	935.0312	27.56	7.47	35.03	46.00	-10.97	peak


908MHz Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	Detector
		MHz	dBuV	dB	dBuV/m	dB/m	dB	
1		882.6983	26.61	6.84	33.45	46.00	-12.55	peak
2		892.3786	26.27	6.96	33.23	46.00	-12.77	peak
3		908.4011	74.47	7.16	81.63	94.00	-12.37	peak
4		920.2983	26.69	7.30	33.99	94.00	-60.01	peak
5		930.7470	27.38	7.42	34.80	46.00	-11.20	peak
6	*	945.4663	27.77	7.59	35.36	46.00	-10.64	peak

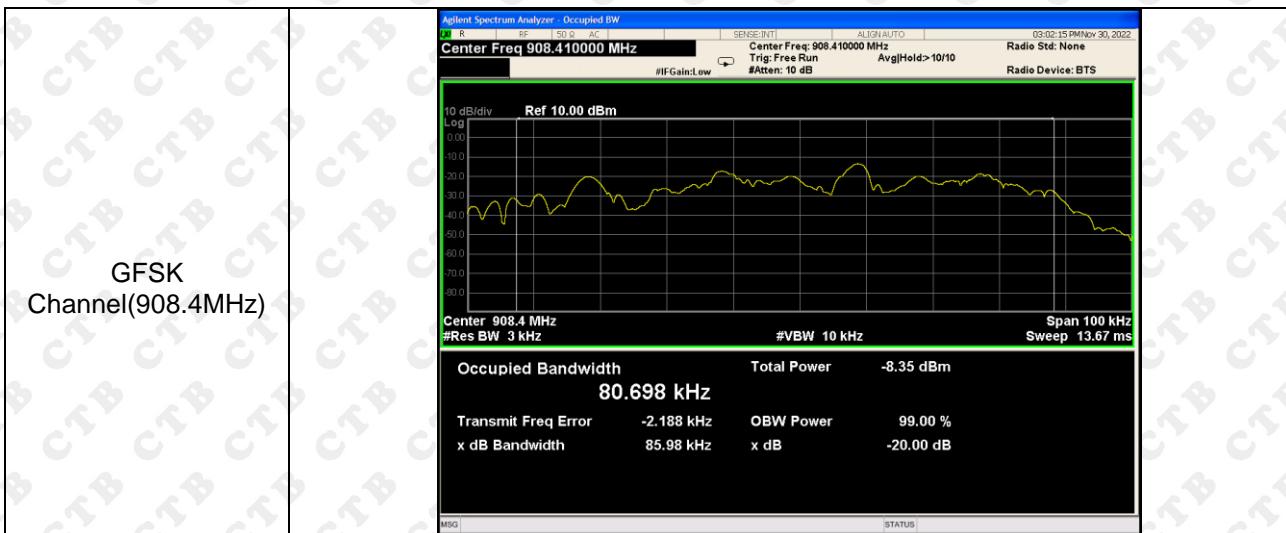
9. BANDWIDTH TEST

9.1 Block Diagram Of Test Setup

9.2 Limit

FCC Part15 (15.249) , Subpart C			
Section	Test Item	Frequency Range (MHz)	Result
15.249	Bandwidth	902-928	PASS

9.3 Test procedure


1. Set resolution bandwidth (RBW) = 1-5% or DTS BW, not to exceed 100 kHz.
2. Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

9.4 Test Result

Test Mode	Frequency (MHz)	20dB Bandwidth (MHz)	Result
GFSK	Channel(908.4)	0.08598	PASS

Note: All modes of operation were Pre-scan and the worst-case emissions are reported.

Test Graph:

10. ANTENNA REQUIREMENT

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Interna antenna. The best case gain of the antenna is 1.5dBi.

11. EUT TEST SETUP PHOTOGRAPHS

Radiated Emissions

Conducted emissions

***** END OF REPORT *****