APPLICATION FOR CERTIFICATION

On Behalf of

Long Range Systems, Inc

PRONTO

Model Number: TX-PRONTO-6-PS;TX-PRONTO-1-PS; TX-PRONTO-6; TX-PRONTO-1

FCC ID: M74PRONTO

Prepared for: Long Range Syatem, Inc

Address : 4550 Excel Pkwy, Suite 200 Addison, TX 75001

Prepared By: EST Technology Co., Ltd.

Address : Santun(guantai Road), Houjie Town, DongGuan City, GuangDong,

China

Tel: +86-769-83081888 Fax: +86-769-83081878

Report Number : ESTE-R1202001 Date of Test : Jan.1~Jan.17, 2012

Date of Report : Feb.1, 2012

TABLE OF CONTENTS

Test Re	port Declaration	Page
1. GE	NERAL PRODUCT INFORMATION	4
1.1.	Product Function	4
1.2.	Description of Device (EUT)	4
1.3.	Difference between Model Numbers	4
1.4.	Independent Operation Modes	4
2. TE	ST SITES	5
2.1.	Description of Standards and Results	5
2.2.	List of Test and Measurement Instruments	6
3. TE	ST SET-UP AND OPERATION MODES	7
3.1.	Principle of Configuration Selection	7
3.2.	Block Diagram of Test Set-up	7
3.3.	Test Operation Mode and Test Software	7
3.4.	Special Accessories and Auxiliary Equipment	
3.5.	Countermeasures to Achieve EMC Compliance	7
4. EM	IISSION TEST RESULTS	8
4.1.	Conducted Emissions	8
4.2.	Radiated emissions	9
4.3.	20dB Occupied Bandwidth	16
4.4.	Deactivation time	18
5. D U	TY CYCLE CORRECTION FACTOR	20
6. PH	OTOGRAPHS OF TEST SET-UP	21
7. PH	OTOGRAPHS OF THE EUT	22

EST Technology Co., Ltd.

Applicant: Long Range System, Inc

Address: 4550 Excel Pkwy, Suite 200 Addison, TX 75001

Manufacturer: Seveco Global Limited

Address: 1 Jianxiang Street, Hanxishui, Chashan Town, Dongguan, Guangdong, China

E.U.T: PRONTO

TX-PRONTO-6-PS;TX-PRONTO-1-PS;

Model Number: TX-PRONTO-6; TX-PRONTO-1

Note: The products different is that have 1 button or 6 button, with or without

DC jack. But the PCB boards inside are identical.

Power Supply: DC 3V or DC 5V For Supply

Test Voltage: DC 3V

Trade Name: ---- Operating Frequency: 467.75MHz

Date of Receipt: Jan.1, 2012 **Date of Test:** Jan.1 ~Jan.17, 2012

Test Specification: FCC Part 15 Subpart C: July. 10, 2008

ANSI C63.4:2009

Test Result: The equipment under test was found to be compliance with the requirements of

the standards applied.

Issue Date: Feb. 1, 2012

Tested by: Reviewed by: Approved by:

tom

Ada / Assistant Tony / Engineer Iceman Hu / Manager

Other Aspects:

None.

Abbreviations: OK/P=passed fail/F=failed n.a/N=not applicable E.U.T=equipment under tested

This test report is based on a single evaluation of one sample of above mentioned products, It is not permitted to be duplicated in extracts without written approval of EST Technology Co., Ltd.

1. GENERAL PRODUCT INFORMATION

1.1. Product Function

The EUT is used to transmit control command only. The operation frequency is 315MHz. Press the button on remote transmitter. Please refer to the user's manual for the details.

1.2. Description of Device (EUT)

E.U.T. : PRONTO

Model No. : TX-PRONTO-6-PS

Operating Frequency : 467.75 MHz Number of Channels : 1 Channels

Type of Modulation : FSK

Antenna and Gain : Loop antenna, 0 dBi Gain.

System Input Voltage : Nominal Voltage: DC 3V(Battery)

Temperature Range(Operating) : $-0 \sim +55^{\circ}$ C

1.3. Difference between Model Numbers

None

1.4. Independent Operation Modes

The basic operation modes are: TX mode

2. TEST SITES

2.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

No.	Item	Specification	Results
1	Conducted emissions	FCC Part15.207	N/A
2	Radiated emissions	FCC Part 15.231(b)	PASS
3	20dB Occupied Bandwidth	FCC Part 15.231(c)	PASS
4	Deactivate time	FCC Part 15.231(a)	PASS

2.2. List of Test and Measurement Instruments

2.2.1. For radiated emission test

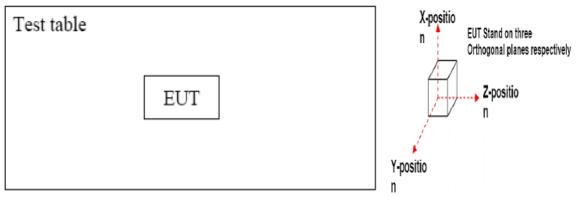
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde & Schwarz	ESVS10	100004	Mar,19,11	1 Year
Spectrum Analyzer	Agilent	E4411B	MY50140697	Mar,19,11	1 Year
Bilog Antenna	Teseq	CBL 6111D	25872	Dec.08,11	1.5 Year
Signal Amplifier	Agilent	310N	187037	Sep,20,11	1 Year
Horn Antenna	EMCO	3115	00064654	May 02,11	1 Year
Amplifier	BURGEON	PEC-38-30M	B001	May 02,11	1 Year
		18G-12-SEF			

2.2.2. For 20dB Occupied Bandwidth test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Agilent	E4411B	MY50140697	Mar,19,11	1 Year
Bilog Antenna	Teseq	CBL 6111D	25872	Dec.08,11	1.5 Year

2.2.3. For Deactivate time test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Agilent	E4411B	MY50140697	Mar,19,11	1 Year
Bilog Antenna	Teseq	CBL 6111D	25872	Dec.08,11	1.5 Year



3. TEST SET-UP AND OPERATION MODES

3.1. Principle of Configuration Selection

The equipment under test (EUT) was configured to measure its highest possible radiated level. The test modes were adapted accordingly in reference to the Operating Instructions.

3.2. Block Diagram of Test Set-up

(EUT: Wireless Remote Control)

Note: We test X-axis, Y-axis, and Z-axis,. The Y-axis is the worst mode, so only the worst mode test data was included in the report.

3.3. Test Operation Mode and Test Software

Refer to clause 1.4

3.4. Special Accessories and Auxiliary Equipment None.

3.5. Countermeasures to Achieve EMC Compliance None.

4. EMISSION TEST RESULTS

4.1. Conducted Emissions

According to paragraph(f) of FCC Part 15 Section 15.207, measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation, and which do not operate from the AC power lines or contain provision for operation while connected to the AC power.

4.2. Radiated emissions

4.2.1. Applied Standard

According to 15.231(b), the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequencies (MHz)	Field strength of Fundamental (uV/meter at 3m)	Unwanted emissions (uV/meter at 3m)
40.66-40.70	2250	225
70-130	1250(470nW)	125
130-174	1250 to 3750**	125 to 375**
174-260	3750(4.2uW)	375
260-470	3750 to 12500**	375 to 1250**
Above470	12500(47uW)	1250

^{**}Linear interpolation with frequency F in MHz

For the band 130-174MHz: Field strength=56.81818(F)-6136.3636

For the band 260-470MHz: Field strength=41.6667(F)-7083.3333

The maximum permitted unwanted emissions level is 20dB below the maximum permitted fundamental level

The field strength of spurious emissions which appear outside of this band shall not exceed the general radiated emission limits in Section 15.209 as following:

Frequencies	Field strength	Measurement distance
(MHz)	uV/meter	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

According to 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition for modulation.

4.2.2. Test procedure

The EUT was placed on a turn table which was 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on a antenna tower. At the frequency band of 30MHz to 1GHz, The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 to 4 m for horizontal and vertical polarizations. The broadband antenna (calibrated by dipole antenna) was used as a receiving antenna. At the frequency band of 1GHz to 5GHz, The measuring antenna moved from 1 to 4 m for horizontal and vertical polarization. The horn antenna was used as a receiving antenna.

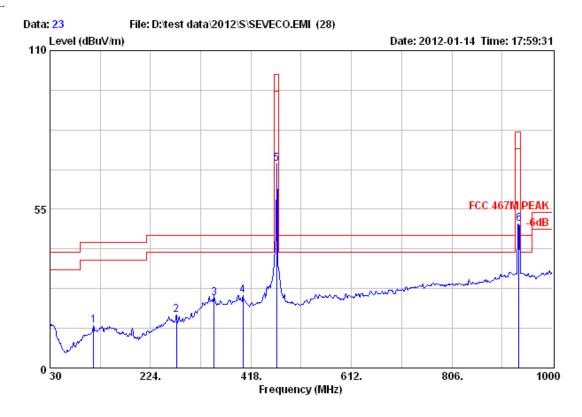
The resolution bandwidth and video bandwidth of the test receiver was 120 KHz and 300KHz for Quasi-peak detection at frequency below 1GHz.

The resolution bandwidth and video bandwidth of the test receiver was 1MHz and 1MHz for Peak detection at frequency above 1GHz.

The EUT position(X.-axis, Y-axis, Z-axis) were checked and worse case was happened in Y-axis position. So Y-axis position was chose for find measurement.

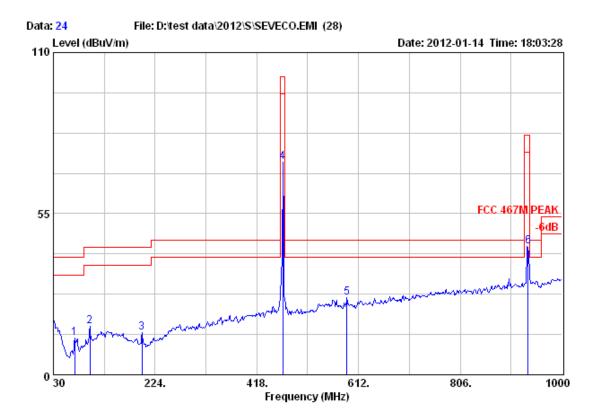
The EUT was tested in Chamber Site.

The signal bandwidth was measured and less then 100KHz RBW so PDCF factor is not required to correct the fundamental signal peak result


4.2.3. Test result

Pass.

Test Data (worst mode: Y-axis)


EUT	:	PRONTO	Temperature:	25.4℃
Model No.	:	TX-PRONTO-6-PS	Humidity :	55%
Test Mode	:	TX mode	Test Engineer:	Tony

HORIZONTAL

VERTICAL

For Frequency range: 30MHz-1000MHz

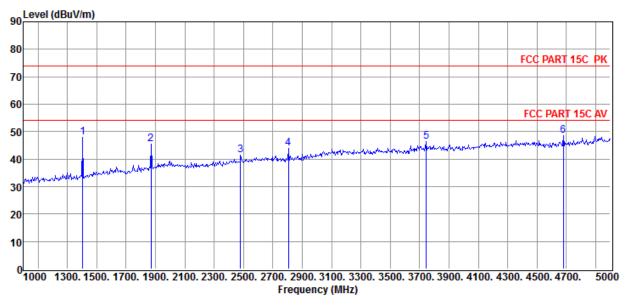
Frequency	Antenna	Cable	Meter	Emission	Over	Limits	Polarity	Detector
	Factor	Loss	Reading	Level	Limits	@3m		
MHz	dB	dB	$dB\mu V$	$dB\mu V/m$	dB	$dB\mu V/m \\$		
114.39	10.85	3.26	0.70	14.81	-28.69	43.50	Н	QP
274.44	12.39	5.05	0.89	18.33	-27.67	46.00	Н	QP
347.19	14.38	5.67	4.10	24.15	-21.85	46.00	Н	QP
402.68	16.12	6.01	2.88	25.01	-20.99	46.00	Н	QP
467.75	17.11	6.53	47.11	70.75	-31.12	101.87	Н	Peak
935.50	24.56	9.37	16.03	49.96	-31.91	81.87	Н	Peak
70.74	5.82	2.69	4.08	12.59	-27.41	40.00	V	QP
99.84	9.45	3.04	4.15	16.64	-26.86	43.50	V	QP
198.78	7.71	4.24	2.39	14.34	-29.16	43.50	V	QP
467.75	17.11	6.53	48.93	72.57	-29.30	101.87	V	Peak
589.69	19.43	7.29	0.50	27.22	-18.78	46.00	V	QP
935.50	24.56	9.37	9.80	43.73	-38.14	81.87	V	Peak

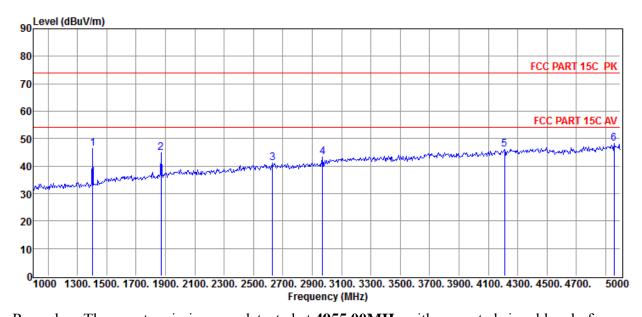
	Fun	damental and Har	monics Aver	age Result		
Frequency	Peak Level	Duty Factor	Average	Limit	Over	Polarity
MHz	$(dB\mu V/m)$	$(dB\mu V/m)$	Level	$(dB\mu V/m)$	Limits	
		(see Section 5)	$(dB\mu V/m)$	(average)	dB	
467.75	70.75	-0.737	70.01	81.87	-11.86	H
935.50	49.96	-0.737	49.22	61.87	-12.65	Н
467.75	72.57	-0.737	71.83	81.87	-10.04	V
935.50	43.73	-0.737	42.99	61.87	-18.88	V

Remark: The worst emission was detected at 467.75MHz with corrected signal level of $70.01dB\mu V/m$ (Limit is $81.87~dB\mu V/m$) when the antenna was at Horizontal polarization and at 1.15m high and the turn table was at 250°

Remark: The worst emission was detected at 467.75MHz with corrected signal level of $71.83dB\mu V/m$ (Limit is $81.87dB\mu V/m$) when the antenna was at **Vertical** polarization and at 2.0m high and the turn table was at 255° .

Remark:


- 1. Emission Level = Antenna Factor + Cable Loss + Meter Reading
- 2. Peak Limit=Average Limit+20dB
- 3. Test uncertainty: ±3.62dB at a level of confidence of 95%.


Test Data (worst mode: Y-axis)

EUT	:	PRONTO	Temperature:	25.4℃
Model No.	:	TX-PRONTO-6-PS	Humidity :	55%
Test Mode	:	TX mode	Test Engineer:	Tony

VERTICAL

HORIZONTAL

Remark: The worst emission was detected at 4955.00MHz with corrected signal level of $48.45\mu V/m$ (Limit is $54.00~dB\mu V/m$) when the antenna was at Horizontal polarization and at 3.2m high and the turn table was at 165°

Remark: The worst emission was detected at 4680.00MHz with corrected signal level of $48.25dB\mu V/m$ (Limit is $54.00~dB\mu V/m$) when the antenna was at Vertical polarization and at 1.2m high and the turn table was at 41° .

For Frequency range: 1000MHz-5000MHz

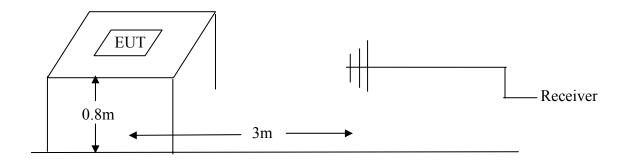
Frequency	Antenna	Cable	Meter	Emission	Over	Limits	Polarity	Detector
	Factor	Loss	Reading	Level	Limits	@3m		
MHz	dB	dB	$dB\mu V$	$dB\mu V/m$	dB	$dB\mu V/m$		
1403.25	24.80	5.19	15.27	45.26	-36.61	81.87	Н	Peak
1871.00	27.28	6.07	14.44	47.79	-34.08	81.87	Н	Peak
2630.00	30.96	7.84	3.64	42.44	-31.56	74.0	Н	Peak
2970.00	33.14	9.26	2.88	45.48	-28.52	74.0	Н	Peak
4210.00	34.02	10.12	4.60	48.74	-25.26	74.0	Н	Peak
4955.00	34.51	11.02	3.66	49.19	-24.81	74.0	Н	Peak
1403.25	24.80	5.19	15.94	45.93	-35.94	81.87	V	Peak
1871.00	27.28	6.07	14.14	47.49	-34.38	81.87	V	Peak
2480.00	29.51	7.45	6.08	43.04	-30.96	74.0	V	Peak
2805.00	32.57	8.72	5.20	46.49	-27.51	74.0	V	Peak
3745.00	33.54	9.74	5.42	48.70	-25.30	74.0	V	Peak
4680.00	33.84	10.14	5.01	48.99	-25.01	74.0	V	Peak

Fundamental and Harmonics Average Result						
Frequency	Peak Level	Duty Factor	Average	Limit	Over	Polarity
MHz	$(dB\mu V/m)$	$(dB\mu V/m)$	Level	$(dB\mu V/m)$	Limits	
		(see Section 5)	$(dB\mu V/m)$	(average)	dB	
1403.25	45.26	-0.737	44.52	61.87	-17.35	Н
1871.00	47.79	-0.737	47.05	61.87	-14.82	Н
2630.00	42.44	-0.737	41.70	54.0	-12.30	Н
2970.00	45.48	-0.737	44.74	54.0	-9.26	Н
4210.00	48.74	-0.737	48.00	54.0	-6.00	Н
4955.00	49.19	-0.737	48.45	54.0	-5.55	H
1403.25	45.93	-0.737	45.19	61.87	-16.68	V
1871.00	47.49	-0.737	46.75	61.87	-15.12	V
2480.00	43.04	-0.737	42.30	54.0	-11.7	V
2805.00	46.49	-0.737	45.75	54.0	-8.25	V
3745.00	48.70	-0.737	47.96	54.0	-6.04	V
4680.00	48.99	-0.737	48.25	54.0	-5.75	V

Remark

- 1. Emission Level = Antenna Factor + Cable Loss + Meter Reading
- 2. Peak Limit=Average Limit+20dB
- 3. Test uncertainty: ±4.76dB at a level of confidence of 95%.

4.3. 20dB Occupied Bandwidth


4.3.1. Applied Standard

According to 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

4.3.2. Test procedure

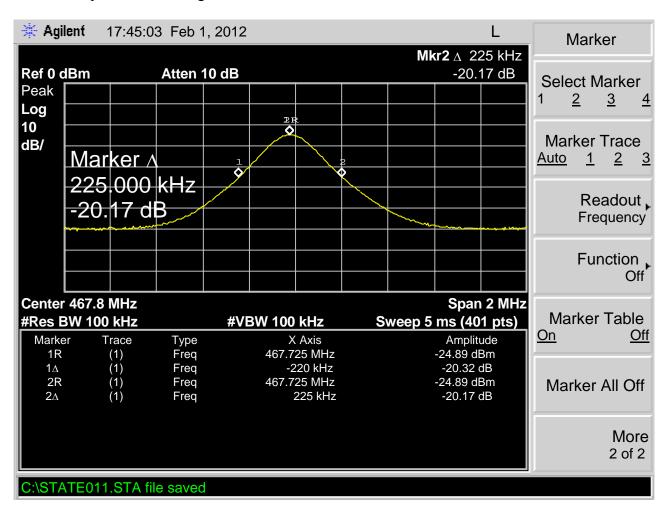
- Step 1: The EUT was placed on a table which is 0.8m above ground plane.
- Step 2: EUT was set to transmit continuously.
- Step 3: Set SA Center Frequency = fundamental frequency, RBW=100kHz, VBW=300kHz
- Step 4:. Set SA trace max hold, then view.

4.3.3. Test Setup Diagram

4.3.4. Test Result

Pass.

Test Data


EUT	:	PRONTO	Temperature:	25.4℃
Model No.	:	TX-PRONTO-6-PS	Humidity :	55%
Test Mode	:	TX mode	Test Engineer:	Tony

Fundamental frequency (MHz)	Bandwidth Measurement (kHz)	Limit (kHz)	Result
467.75MHz	445.0kHz	1169.375 kHz	PASS

Note: Limit= Fundamental frequency \times 0.25%=467.75 \times 0.25%=1169.375kHz

The test plots as following:

4.4. Deactivation time

4.4.1. Applied Standard

According to 15.231(a), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. A transmitter activated automatically shall cease transmission within 5 seconds after activation.

4.4.2. Test procedure

- Step 1: The EUT was placed on a table which is 0.8m above ground plane.
- Step 2: Set EUT as normal operation.
- Step 3: Set SA Center Frequency = fundamental frequency, RBW=100kHz, VBW=300kHz
- Step 4:. Set SA trace max hold, then view.

4.4.3. Test Setup Diagram

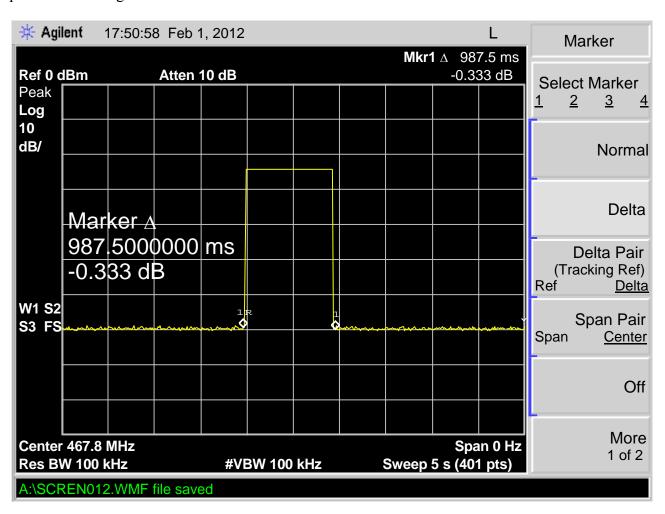
Refer to clause 4.3.3

4.4.4. Test Result

Pass.

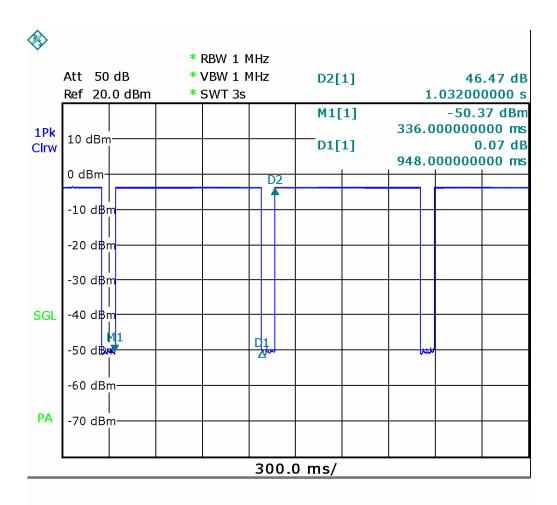
Test Data

EUT	:	PRONTO	Temperature:	25.4℃	
Model No.	:	TX-PRONTO-6-PS	Humidity :	55%	
Test Mode	:	TX mode	Test Engineer :	Tony	


Set the spectrum to zero span, activated the EUT by manually, And then, we could see the transmitting wave in the spectrum, when the time marker went to "1", released the EUT,

After 237.5ms, we could see the EUT stop transmitting.

Fundamental frequency (MHz)	Transmission time (ms)	Limit (s)	Result
467.75MHz	987.5ms	5s	PASS



The test plots as following:

5. DUTY CYCLE CORRECTION FACTOR

Duty cycle= T ontime / T period=948ms / 1032ms=0.9186 Duty cycle factor=20*log(Duty cycle)=20*log(0.9186)=-0.737

6. PHOTOGRAPHS OF TEST SET-UP

Figure 1
Set-up for radiated measurements (30MHz to 1000MHz)

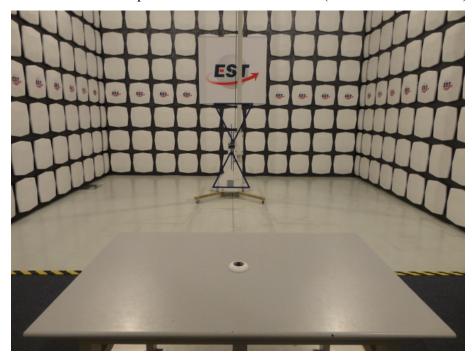
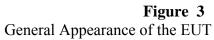


Figure 2 Set-up for radiated measurements (1000MHz to 5000MHz)

7. PHOTOGRAPHS OF THE EUT


Figure 1 General Appearance of the EUT

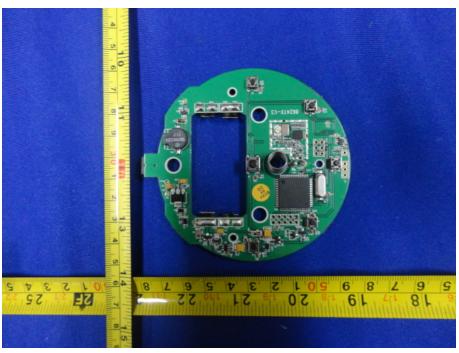


Figure 2 General Appearance of the EUT

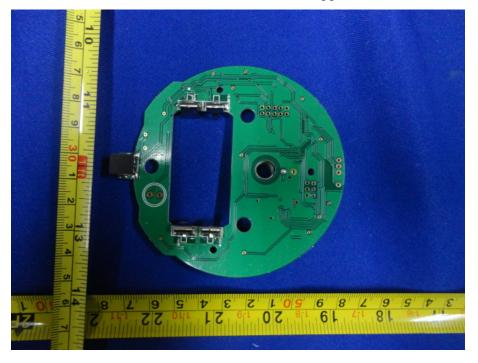


Figure 4 General Appearance of the PCB

