

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 101 of 186

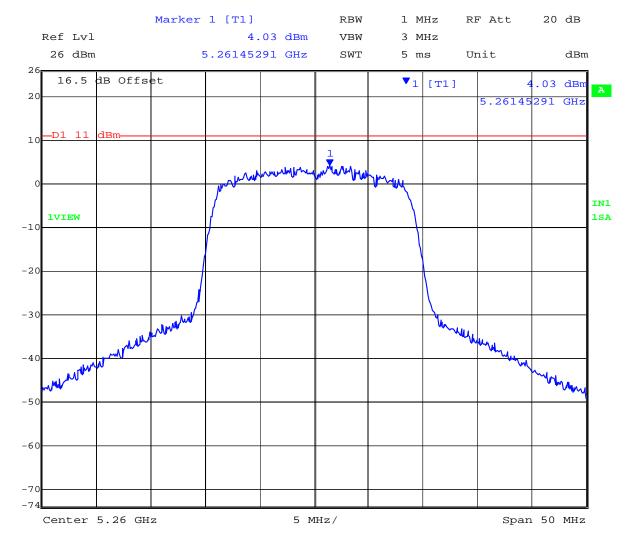
TABLE OF RESULTS - 802.11n HT-20

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				Total Power (dBm)		Limit	Margin
Frequency		RF Port (dBm)			()		9
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5260	4.03				4.03		11.00	-6.97
5280	4.20				4.20		11.00	-6.80
5320	4.06				4.06		11.00	-6.94

Measurement uncertainty:	±1.33 dB	
-		

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

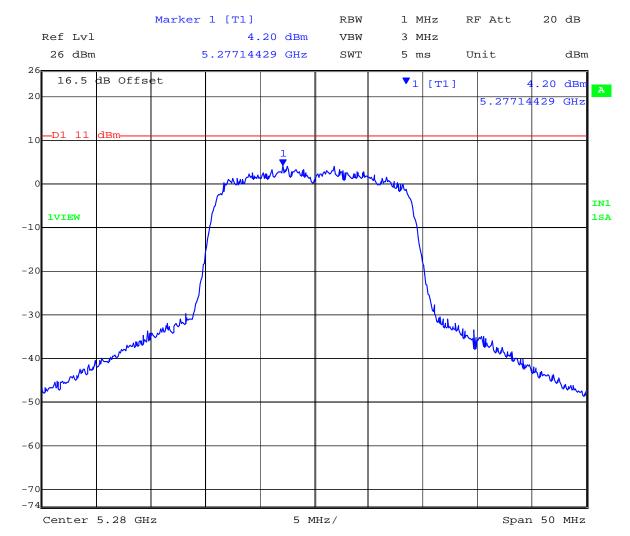
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 102 of 186

Power Density Ambient 5260MHz 4.20V 15.26dBm

Date: 7.JAN.2011 14:39:01


with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

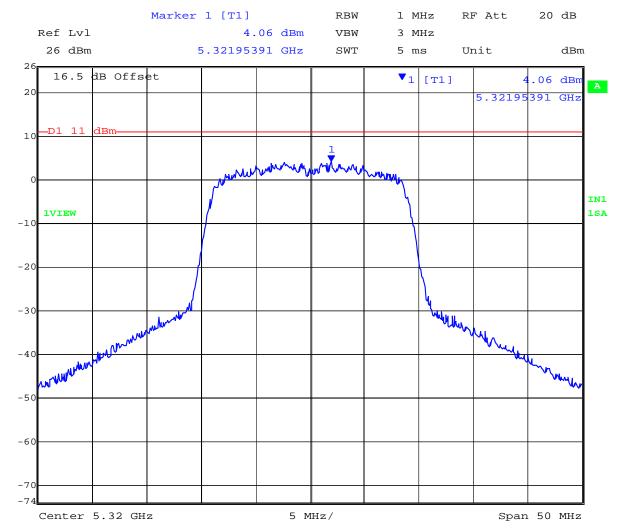
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 103 of 186

Power Density Ambient 5280MHz 4.20V 15.18dBm

Date: 7.JAN.2011 14:56:38

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 104 of 186

Power Density Ambient 5320MHz 4.20V 15.36dBm

Date: 7.JAN.2011 15:11:26

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 105 of 186

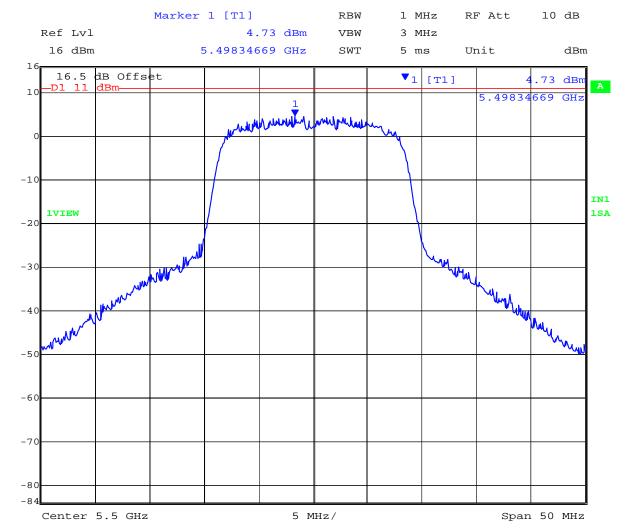
7.4.3 5470 MHz - 5725 MHz; Peak Power Spectral Density

TABLE OF RESULTS - 802.11a

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	N	leasured P	eak Power		- Total Pow	ver (dBm)	Limit	Margin
Frequency		RF Port	(dBm)		Total Fox	or (abiii)	Liiii	, margini
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5500	4.73				4.73		11.00	-6.27
5580	4.48				4.48		11.00	-6.52
5700	3.99				3.99		11.00	-7.01

Measurement uncertainty: ±1.33 dB


with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

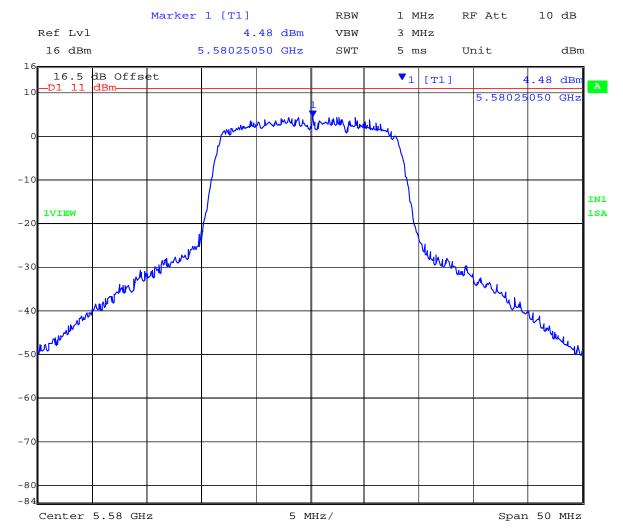
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 106 of 186

Power Density Ambient 5500MHz 4.20V 16.04dBm

Date: 7.JAN.2011 15:31:43

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

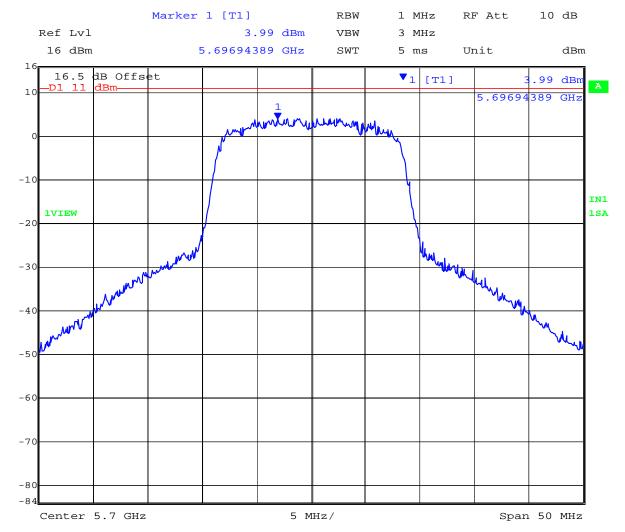
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 107 of 186

Power Density Ambient 5580MHz 4.20V 16.03dBm

Date: 7.JAN.2011 15:44:53


with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 108 of 186

Power Density Ambient 5700MHz 4.20V 16.42dBm

Date: 7.JAN.2011 15:59:21

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

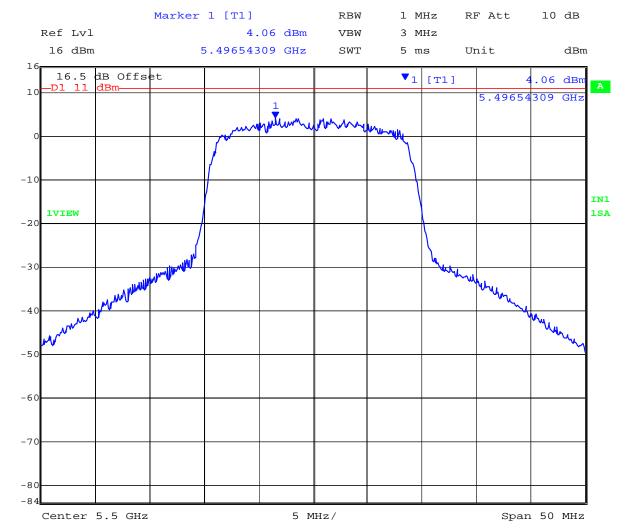
Page: Page 109 of 186

TABLE OF RESULTS - 802.11n HT-20

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	5.51	dBi	
Applied Voltage:	4.2 Vdc				
Notes 1:					
Notes 2:					

Test	Me	easured Pe	ak Power		Total Pow	ver (dBm)	Limit	Margin
Frequency		RF Port (dBm)		101411011	(a.z)		
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5500	4.06				4.06		11.00	-6.94
5580	4.40				4.40		11.00	-6.60
5700	4.08				4.08		11.00	-6.92

Measurement uncertainty:	±1.33 dB
--------------------------	----------


with Bluetooth

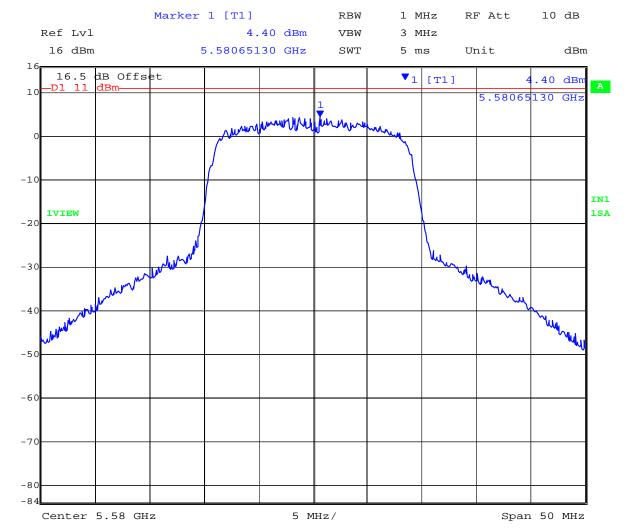
To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 110 of 186

Power Density Ambient 5500MHz 4.20V 15.94dBm

Date: 7.JAN.2011 16:16:05


with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

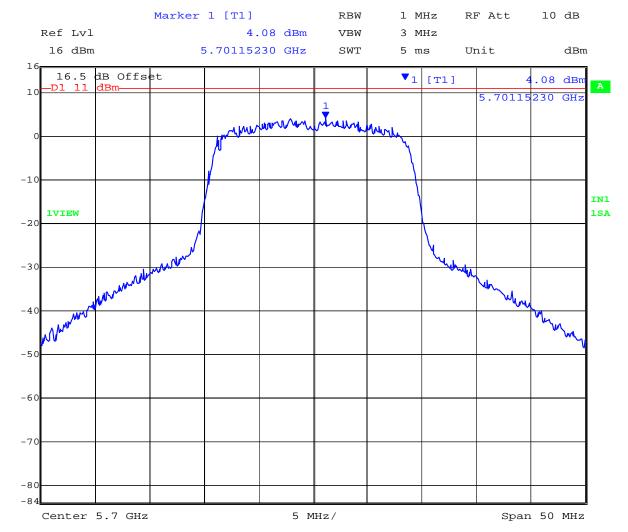
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 111 of 186

Power Density Ambient 5580MHz 4.20V 15.90dBm

Date: 7.JAN.2011 16:31:46

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 112 of 186

Power Density Ambient 5700MHz 4.20V 16.30dBm

Date: 7.JAN.2011 16:45:59

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 113 of 186

7.5 Frequency Stability

FCC, Part 15 Subpart E §15.407(g) Industry Canada RSS-Gen §7.2.6

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ±20 ppm stability. This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

 ± 20 ppm at 5.250 GHz translates to a maximum frequency shift of ± 105 KHz. As the edge of the channels is at least one MHz from either of the band edges, ± 105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

FCC §15.407 (g)

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

Industry Canada RSS-Gen §7.2.6

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 114 of 186

7.6 <u>Maximum Permissible Exposure</u>

FCC §1.1310

Industry Canada RSS-Gen §5.6

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm2) = EIRP/ $(4\pi d2)$

EIRP = P * G

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10 ^ (G (dBi)/10)$

The Peak Power in mW is the highest transmitter power measured and summed across all transmitters. Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm2

	Freq. Band	Antenna Gain	Peak Output Power	Antenna Gain	EIRP	Distance @ 1mW/cm2	Minimum Separation Distance
	(MHz)	(dBi)	(dBm)	(numeric)	(mW)	Limit(cm)	(cm)
-	5150 - 5725	5.51	16.42	3.56	155.96	3.52	20

Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

FCC §1.1310

Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.6

Exposure of Humans to RF Fields: Category I and Category II equipment shall comply with the applicable requirements of RSS-102.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty ±1.33 dB

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 115 of 186

7.7 <u>Dynamic Frequency Selection (DFS)</u>

7.7.1 <u>Test Procedure and Setup</u>

FCC, Part 15 Subpart C §15.407(h) FCC 06-96 Memorandum Opinion and Order Industry Canada RSS-210 §A9.3

7.7.1.1 Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value		
	(see note)		
≥ 200 milliwatt	-64 dBm		
< 200 milliwatt	-62 dBm		
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna			

7.7.1.2 DFS Response requirement values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds
	over remaining 10 second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 80% of the 99% power bandwidth See
	Note 3.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 116 of 186

7.7.1.3 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (R	adar Types 1-4)	80%	120		

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse radar test signal. If more than 30 waveforms are used for the Long Pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 117 of 186

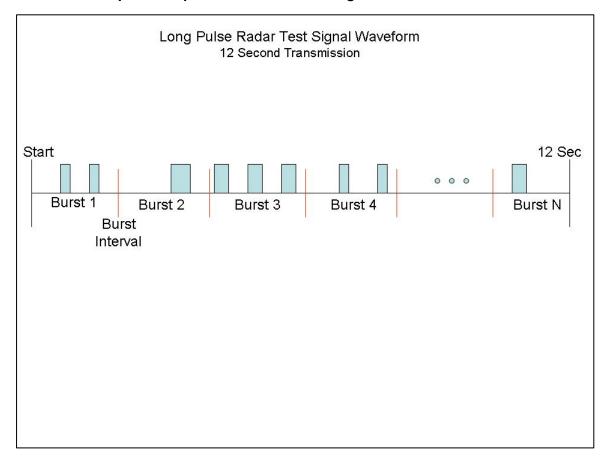
Each waveform is defined as follows:

1) The transmission period for the Long Pulse Radar test signal is 12 seconds.

- 2) There are a total of 8 to 20 *Bursts* in the 12 second period, with the number of *Bursts* being randomly chosen. This number is *Burst Count*.
- 3) Each *Burst* consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each *Burst* within the 12 second sequence may have a different number of pulses.
- 4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a *Burst* will have the same pulse width. Pulses in different *Bursts* may have different pulse widths.
- 5) Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a *Burst* will have the same chirp width. Pulses in different *Bursts* may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
- 6) If more than one pulse is present in a *Burst*, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a *Burst*, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- 7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to <code>Burst_Count</code>. Each interval is of length (12,000,000 / <code>Burst_Count</code>) microseconds. Each interval contains one <code>Burst</code>. The start time for the <code>Burst</code>, relative to the beginning of the interval, is between 1 and [(12,000,000 / <code>Burst_Count</code>) (Total <code>Burst_Length</code>) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each <code>Burst</code> is chosen independently.

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9


Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 118 of 186

A representative example of a Long Pulse radar test waveform:

- 1) The total test signal length is 12 seconds.
- 2) 8 Bursts are randomly generated for the Burst_Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.
- 7) Each *Burst* is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, *Burst* 1 is randomly generated (1 to 1,500,000 minus the total *Burst* 1 length + 1 random PRI interval) at the 325,001 microsecond step. *Bursts* 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. *Burst* 2 falls in the 1,500,001 3,000,000 microsecond range).

Graphical Representation of the Long Pulse Radar Test Waveform

with Bluetooth

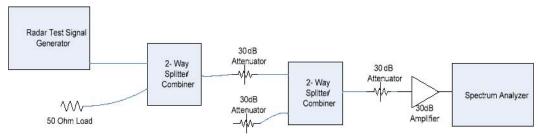
To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 119 of 186

7.7.1.4 Frequency Hopping Radar Test Waveform

Frequency Hopping Radar Test Waveform


Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	.333	300	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

7.7.1.5 Radar Waveform Calibration

The following equipment setup was used to calibrate the conducted Radar Waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) mode at the frequency of the Radar Waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz.

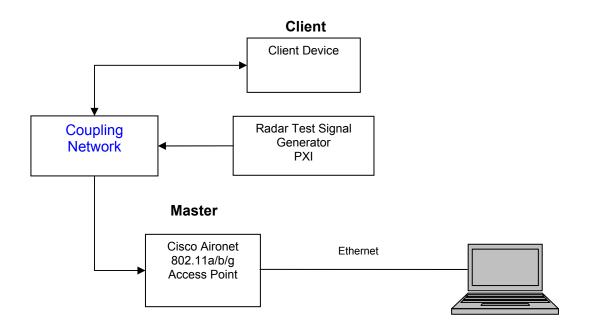
The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -61dBm (Ref Section 5.1). The 30dB amplifier gain was entered as amplitude offset on the spectrum analyzer.

Conducted Calibration Setup

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A


Issue Date: 6th June 2011
Page: Page 120 of 186

7.7.1.6 Test Setup

Block Diagram(s) of Test Setup

Setup for Conducted Measurements where the EUT is the Client with injection of Radar Test:

Support Equipment Configuration

Measurement Uncertainty Time/Power

Measurement uncertainty	Time - 4% Power - 1.33dB

Traceability

Test Equipment Used

 $0072,\,0083,\,0098,\,0116,\,0132,\,0158,\,0313,\,0314,\,0193,\,0223,\,0252,\,0253,\,0251,\,0256,\,0328,\,0329$

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 121 of 186

The EUT is a Client Device without radar detection.

Applicability of DFS Requirements Prior to Use of a Channel (Ref Table 1 of FCC 06-96)

Requirement	Operation	onal Mode	
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
Uniform Spreading	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Applicability of DFS requirements during normal operation (Ref Table 2 of FCC 06-96)

Requirement	Operational Mode			
	Master	Client Without Radar Detection	Client With Radar Detection	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	Yes	

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 122 of 186

Declared minimum antenna gain 0 dBi.

Radar receive signal level = -62 dBm + minimum antenna gain + 1 dB = -61 dBm

= -62 + 0 + 1

Radar receive signal level = -61 dBm

Measurement Results - Dynamic Frequency Selection (DFS)

Radio parameters.

Test methodology: Conducted

Device Type: Client device without radar detection.

Transmit Power: Maximum

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 123 of 186

7.7.2 <u>In-Service Monitoring for Channel Move Time, Channel Closing Transmission</u> <u>Time and Non-Occupancy Period</u>

FCC §15.407(h)(2)(iii)

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the EUT (Master). The requisite MPEG video file ("TestFile.mpg" available on the NTIA website at the following link http://ntiacsd.ntia.doc.gov/dfs/) is streamed from the master device (AP) to the client.

Channel Closing Transmission Time - Measurement

A Type 1 waveform was introduced to the EUT, from which a 12 second transmission record was digitally captured, collecting nearly 250M samples of data, which included in excess of 600 ms of pre-trigger data. This Type 1 waveform had an integral marker built into its construction, marking the start of the radar waveform play, which directly triggered the PXI digitizer's data capture via the PXI backplane trigger bus.

The test system was set-up to capture all transmission data for access point events above a threshold level of -50 dBm. The test equipment time stamps all captured events with respect to T0 (zero time indicating the start of the measurements sequence) starting the 612.1 ms pre-trigger period followed by the radar type 1 burst period.

Radar (Type 1) Pre-trigger period =612.1 ms Type 1 burst period =25.7 ms

Channel Closing Transmission Time starts immediately after the last radar pulse is transmitted i.e. 637.8 ms after the start of the trace capture period.

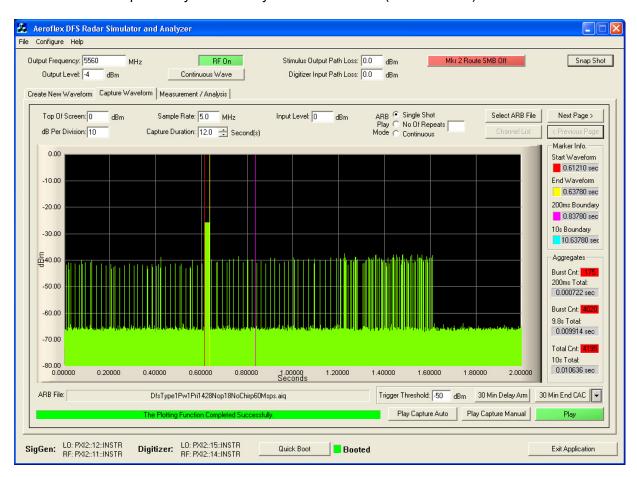
with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 124 of 186

Therefore, pulses seen after this 637.8 ms boundary are identified and totaled to provide an aggregate total of transmissions in order to determine whether the EUT is compliant with the Channel Closing Transmission Time requirements as described in MO&O FCC 06-96. In this case, it was found that an aggregate total of 10.636 ms of transmission time accrued. This value is found at the right hand side at the foot of the following plot (10s Total).


Channel Closing Transmission Time

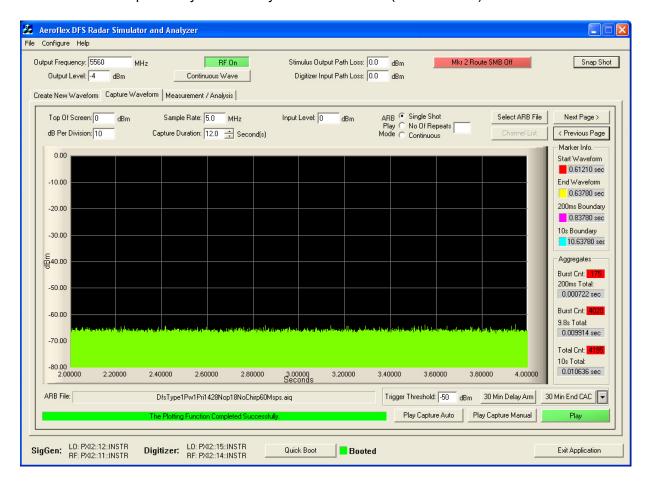
= 10.636 mSecs (limit 260 mSecs)

Channel Move Time

= 0.9822 Secs (limit 10 Secs)

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 1 of 6 (0-2 Seconds) Ch 112

From the plot above it can be seen that the transmission activity within the 200 mS window is 0.722 mS (see 200 mS Total). From the following plots which shows all additional activity within the remained of the 10 sec measurement window it can be determined that the aggregate transmission within this period is 9.914 mS. This is less than the 60 mS limit.

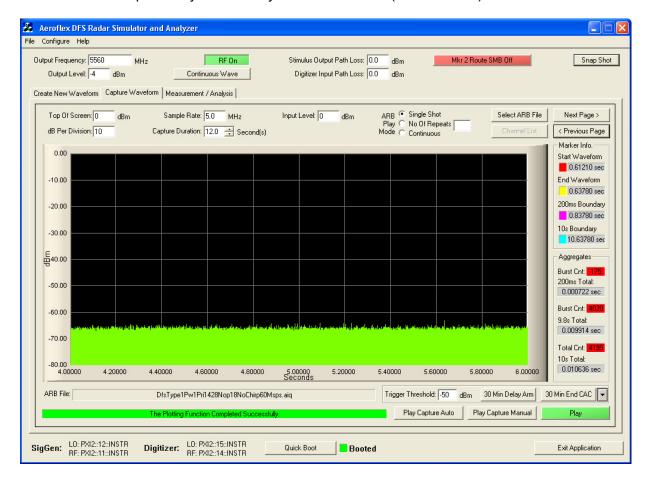

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 125 of 186

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 2 of 6 (2-4 Seconds) Ch 112

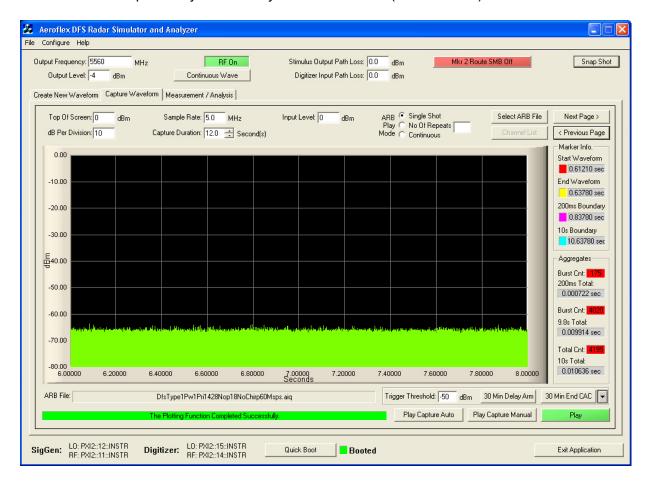

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 126 of 186

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 3 of 6 (4-6 Seconds) Ch 112

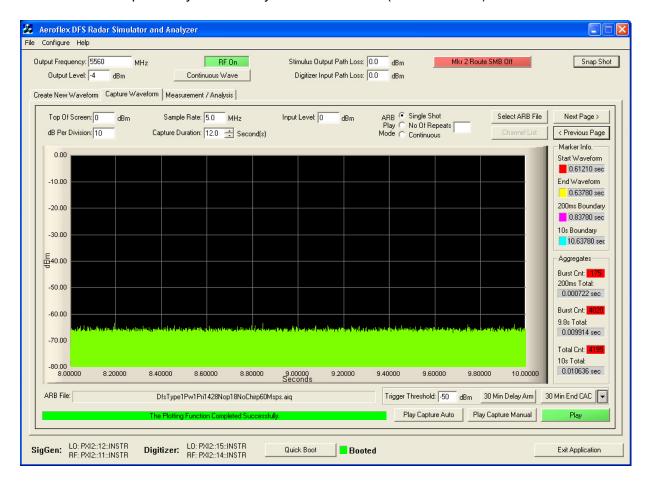

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 127 of 186

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 4 of 6 (6-8 Seconds) Ch 112

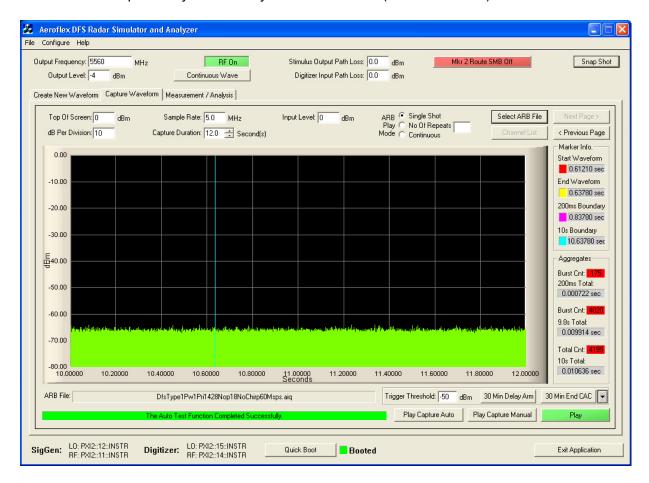

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 128 of 186

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 5 of 6 (8-10 Seconds) Ch 112


with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

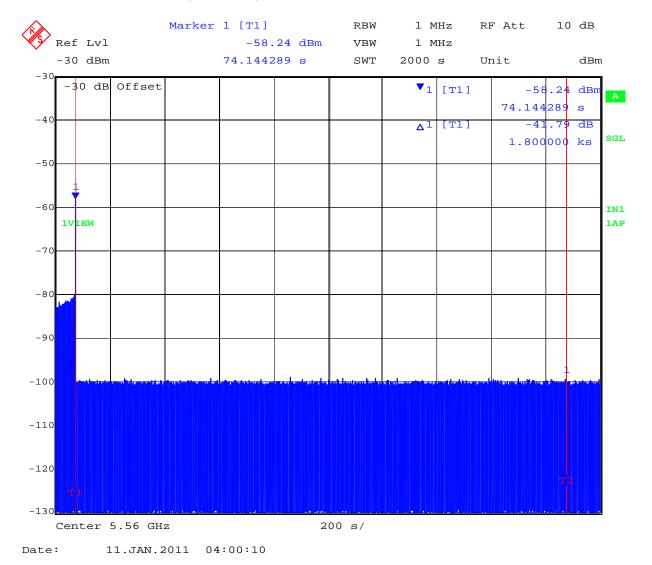
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 129 of 186

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - Plot 6 of 6 (10-12 Seconds) Ch 112

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9


Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 130 of 186

7.7.3 30 Minute Non-Occupancy Period

The EUT is monitored for more than 30 minutes following the channel close/move time to verify no transmissions resume on this Channel.

30 Minute Non-Occupancy Period Type 1 Radar Ch 112 - 5,560 MHz

Labs personnel. Any changes will be noted in the Document History section of the report.

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

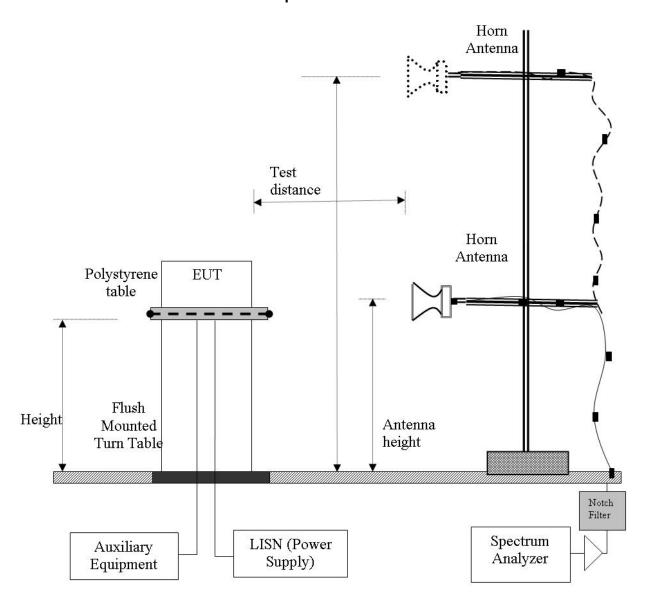
Issue Date: 6th June 2011
Page: Page 131 of 186

7.8 Radiated Spurious Emissions

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

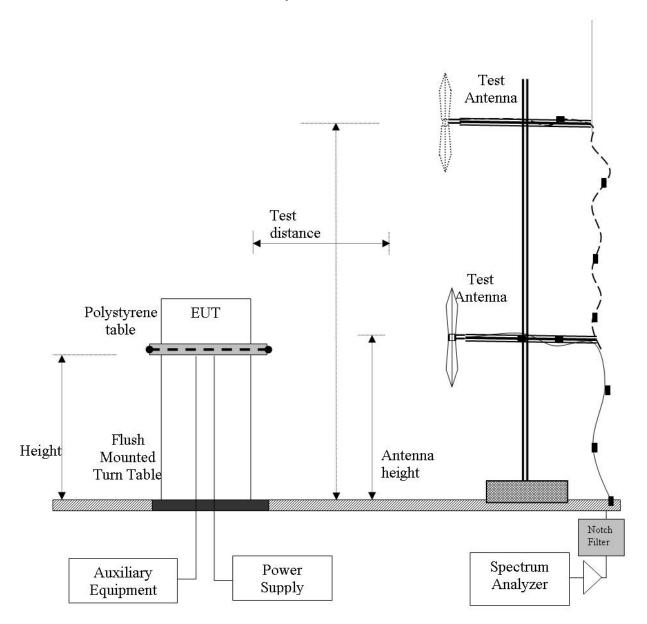

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 132 of 186

Radiated Emission Measurement Setup - Above 1 GHz


with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 133 of 186

Radiated Emission Measurement Setup – Below 1 GHz

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 134 of 186

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

FO = Distance Falloff Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$

 $48 \text{ dB}_{\mu}\text{V/m} = 250 \text{ }_{\mu}\text{V/m}$

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 135 of 186

Specification for FCC Part 15 Radiated Spurious Emissions

Limits

§15.407 (b)(2)

All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of -27dBm/MHz.

§15.205 (a)

Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a)

Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §A9.3(2)

For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

RSS-Gen §6

Receiver Spurious Emission Standard

If a radiated measurement is made, all spurious emissions shall comply with the limits of the following Table. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz and 1.0 MHz for measurements above 1.0 GHz

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 136 of 186

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 137 of 186

Specification for Industry Canada Receiver Spurious Emissions

RSS-Gen §4.8,

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

RSS-Gen §6

The following receiver spurious emission limits shall be complied with;

(a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1.

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

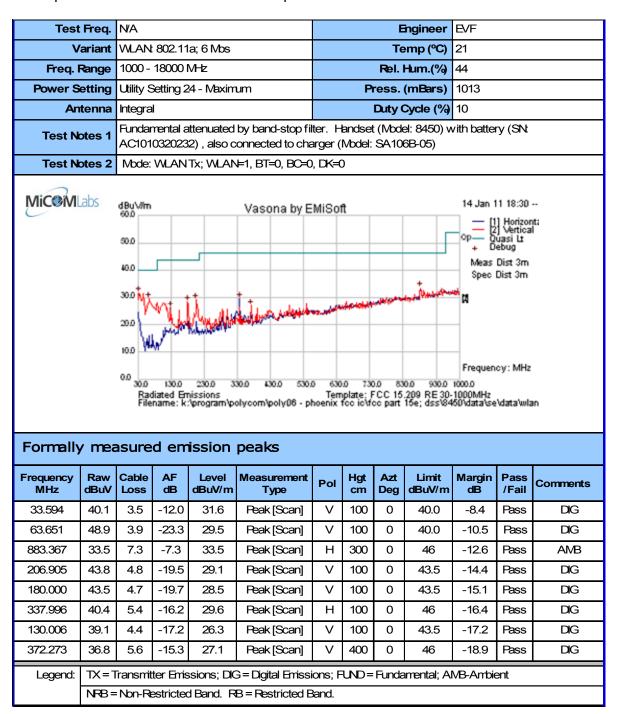
Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty	+5.6/ -4.5 dB

Traceability:

Method	Test Equipment Used						
Work instruction WI-03	0287, 0193, 0342, 0158, 0303, 0304, 0134,						
	0310, 0312						

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

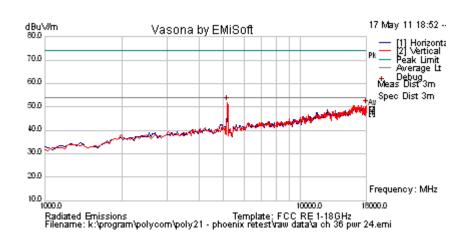
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 138 of 186

7.8.1 Transmitter Radiated Spurious Emissions

All frequencies and modes were checked per section 15.407 for radio emissions below 1GHz.

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 139 of 186

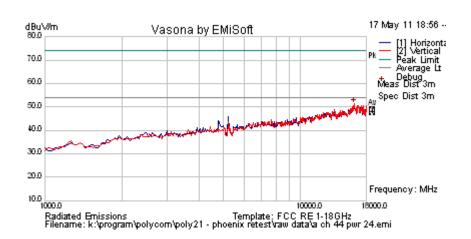
Test Freq.	5180 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5156.313	56.3	4.6	-9.0	52.0	Peak [Scan]	>	100	0	54.0	-2.1	Pass	FUND
18000	41.1	8.8	1.0	50.9	Peak [Scan]	V	100	0	54.0	-3.1	Pass	Noise

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9


Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 140 of 186

Test Freq.	5200 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16126.253	41.3	9.0	1.0	51.3	Peak [Scan]	>	100	0	54.0	-2.8	Pass	Noise

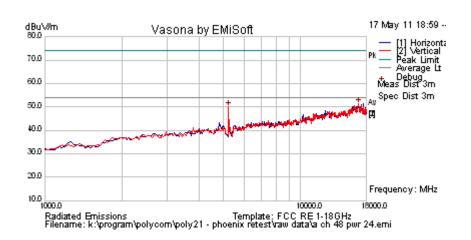
Legend:

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9


Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

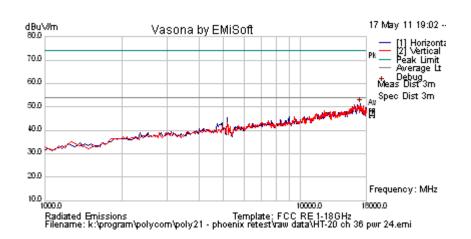
Page: Page 141 of 186

Test Freq.	5240 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16841.683	41.1	8.6	1.8	51.4	Peak [Scan]	٧	100	0	54.0	-2.6	Pass	Noise
5224.4489	54.8	4.6	-9.4	50.0	Peak [Scan]	V	100	0	54.0	-4.0	Pass	FUND

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011 **Page:** Page 142 of 186

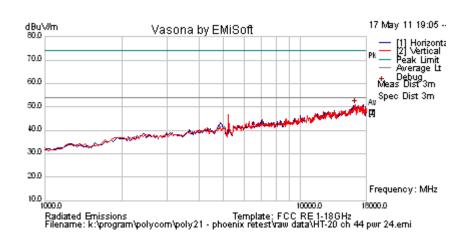
Test Freq.	5180 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
17114.228	42.0	8.5	0.8	51.3	Peak [Scan]	Н	100	0	54.0	-2.7	Pass	Noise

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9


Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 143 of 186

Test Freq.	5200 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna		Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

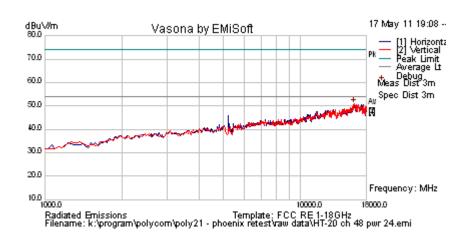
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16296.593	41.3	8.9	0.7	50.9	Peak [Scan]	٧	100	0	54.0	-3.1	Pass	Noise

Legend:

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 144 of 186

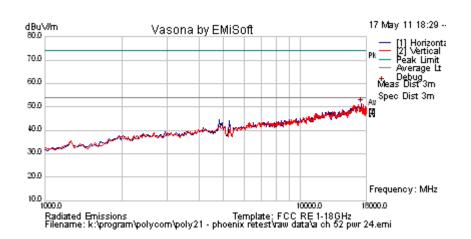
Test Freq.	5240 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna		Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16194.389	40.7	8.9	1.3	51.0	Peak [Scan]	>	100	0	54.0	-3.0	Pass	Noise

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9


Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

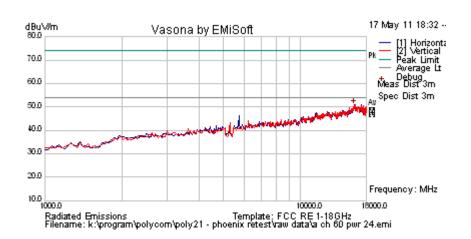
Page: Page 145 of 186

Test Freq.	5260 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
17250.501	41.0	8.6	1.6	51.2	Peak [Scan]	Ι	100	0	54.0	-2.8	Pass	Noise

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

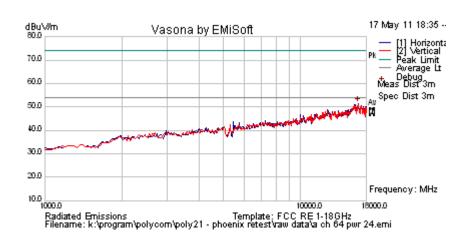
Issue Date: 6th June 2011
Page: Page 146 of 186

Test Freq.	5300 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16228.457	40.9	8.9	1.1	50.9	Peak [Scan]	Ι	100	0	54.0	-3.1	Pass	Noise

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

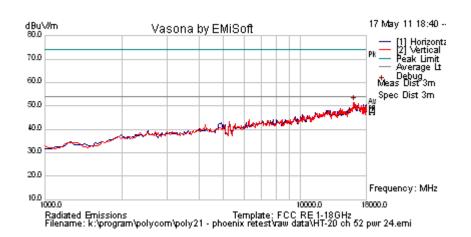
Issue Date: 6th June 2011
Page: Page 147 of 186

Test Freq.	5320 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16739.479	41.4	8.7	1.5	51.5	Peak [Scan]	Η	100	0	54.0	-2.5	Pass	Noise

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 148 of 186

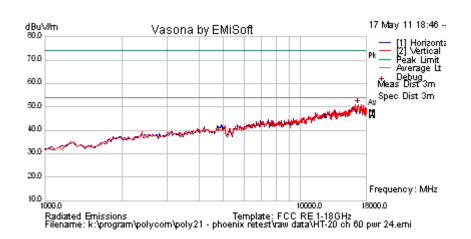
Test Freq.	5260 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16194.389	41.2	8.9	1.3	51.5	Peak [Scan]	>	100	0	54.0	-2.6	Pass	Noise

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9


Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 149 of 186

Test Freq.	5300 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna		Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

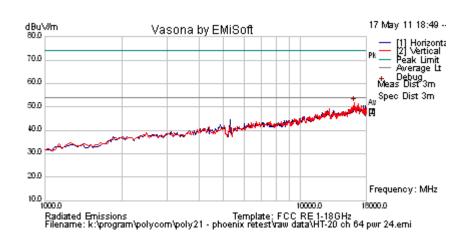
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16773.547	40.5	8.6	1.7	50.9	Peak [Scan]	Η	100	0	54.0	-3.1	Pass	Noise

Legend:

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 150 of 186

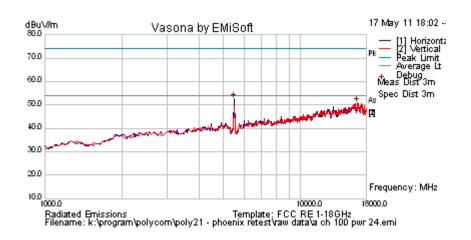
Test Freq.	5320 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna		Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16126.253	41.7	9.0	1.0	51.6	Peak [Scan]	>	100	0	54.0	-2.4	Pass	Noise

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9


Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 151 of 186

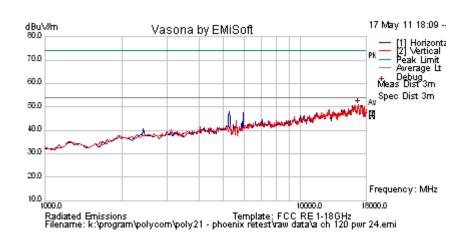
Test Freq.	5500 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5496.994	56.7	4.6	-8.7	52.6	Peak [Scan]	Ι	100	0	54.0	-1.5	Pass	FUND
16671.343	40.4	8.7	1.7	50.8	Peak [Scan]	V	100	0	54.0	-3.2	Pass	Noise

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9


Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 152 of 186

Test Freq.	5600 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

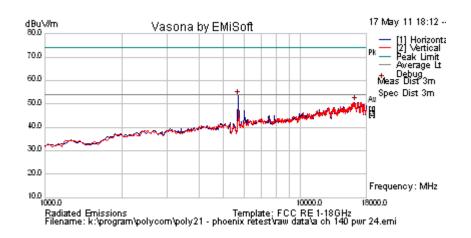
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16807.615	40.6	8.6	1.6	50.9	Peak [Scan]	Ι	100	0	54.0	-3.1	Pass	Noise

Legend:

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

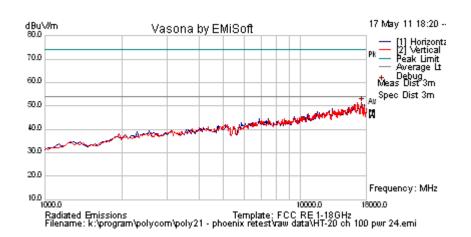
Issue Date: 6th June 2011
Page: Page 153 of 186

Test Freq.	5700 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5701.403	56.9	4.7	-8.1	53.5	Peak [Scan]	Ι	100	0	54.0	-0.5	Pass	FUND
16262.525	40.8	8.9	1.0	50.7	Peak [Scan]	Н	100	0	54.0	-3.3	Pass	Noise

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

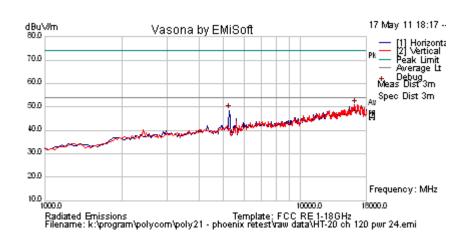
Issue Date: 6th June 2011
Page: Page 154 of 186

Test Freq.	5500 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
17318.637	41.0	8.7	1.7	51.4	Peak [Scan]	Н	100	0	54.0	-2.7	Pass	Noise

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

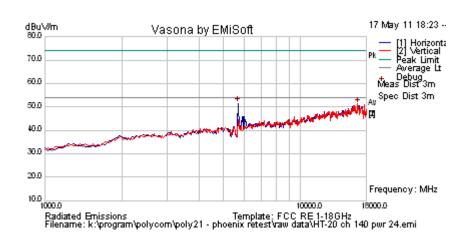
Issue Date: 6th June 2011
Page: Page 155 of 186

Test Freq.	5600 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16262.525	41.1	8.9	1.0	51.0	Peak [Scan]	Н	100	0	54.0	-3.0	Pass	Noise
5258.51703	53.4	4.6	-9.5	48.5	Peak [Scan]	Н	100	0	54.0	-5.5	Pass	FUND

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

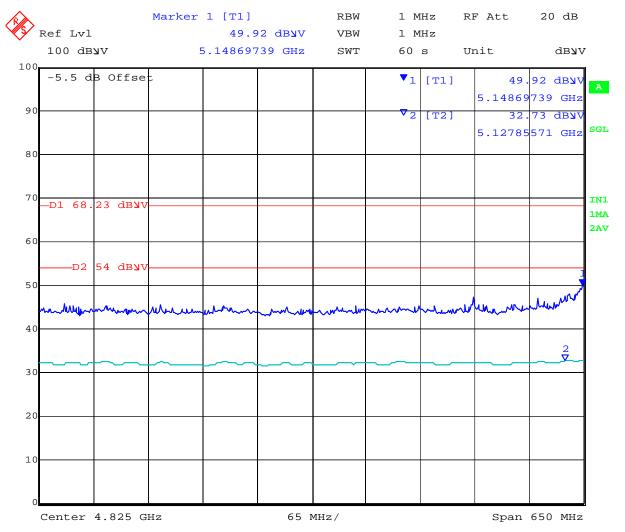
Issue Date: 6th June 2011
Page: Page 156 of 186

Test Freq.	5700 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	24	Press. (mBars)	995
Antenna	Integral	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5701.403	54.9	4.7	-8.1	51.5	Peak [Scan]	Η	100	0	54.0	-2.5	Pass	FUND
16705.411	41.3	8.7	1.4	51.3	Peak [Scan]	V	100	0	54.0	-2.7	Pass	Noise

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

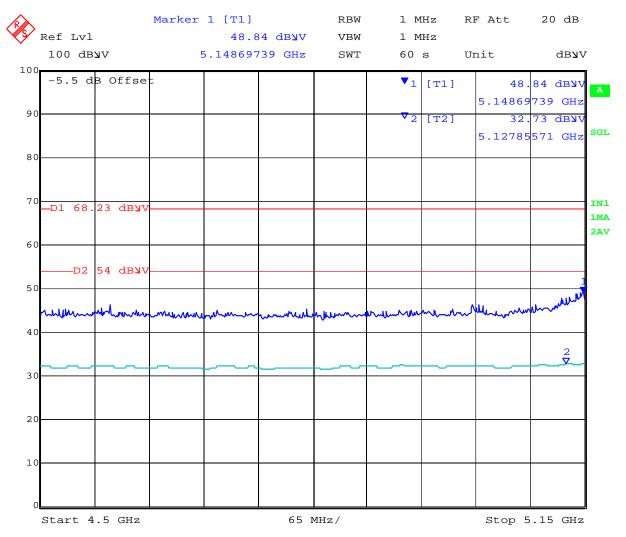
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 157 of 186

7.8.2 <u>Band-Edge Measurements</u>

8450 Band Edge Channel 36 - 5180 MHz 802.11a 4500-5150 MHz Pwr=14 Hor Hght=98 Ang=-10

Date: 20.JAN.2011 11:04:06


with Bluetooth

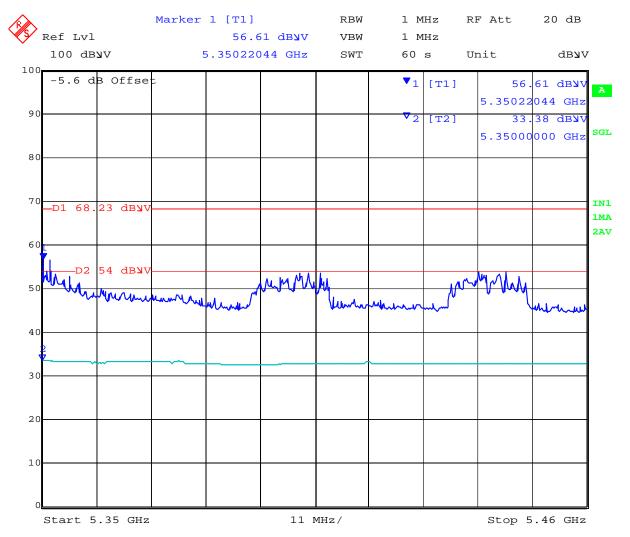
To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 158 of 186

8450 Band Edge Channel 36 - 5180 MHz 802.11n HT-20 4500-5150 MHz Pwr=14 Hor Hght=98 Ang=-10

Date: 20.JAN.2011 11:40:38


with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

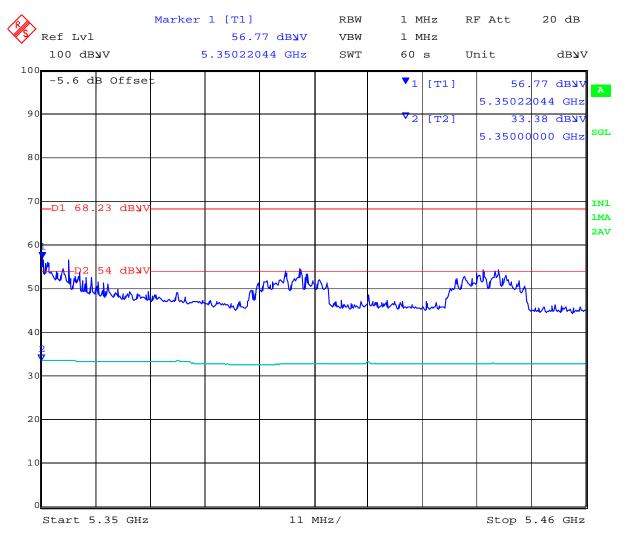
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 159 of 186

8450 Band Edge Channel 64 - 5320 MHz 802.11a 5350-5460 MHz Pwr=16 Hor Hght=98 Ang=194

Date: 20.JAN.2011 12:17:47

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

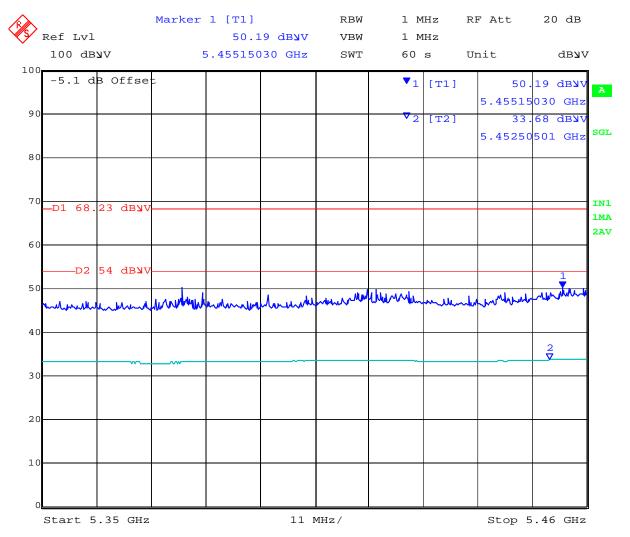
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 160 of 186

8450 Band Edge Channel 64 - 5320 MHz 802.11n HT-20 5350-5460 MHz Pwr=16 Hor Hght=148 Ang=325

Date: 20.JAN.2011 12:27:56


with Bluetooth

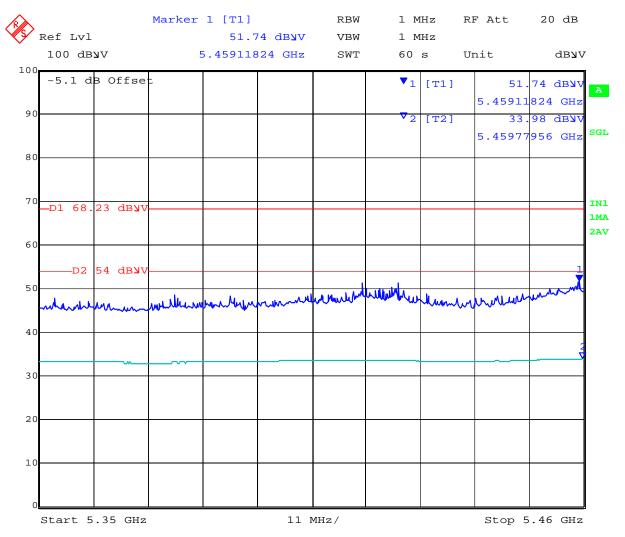
To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 161 of 186

8450 Band Edge Channel 100 - 5500 MHz 802.11a 5350-5460 MHz Pwr=16 Hor Hght=117 Ang=366

Date: 20.JAN.2011 12:43:16


with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

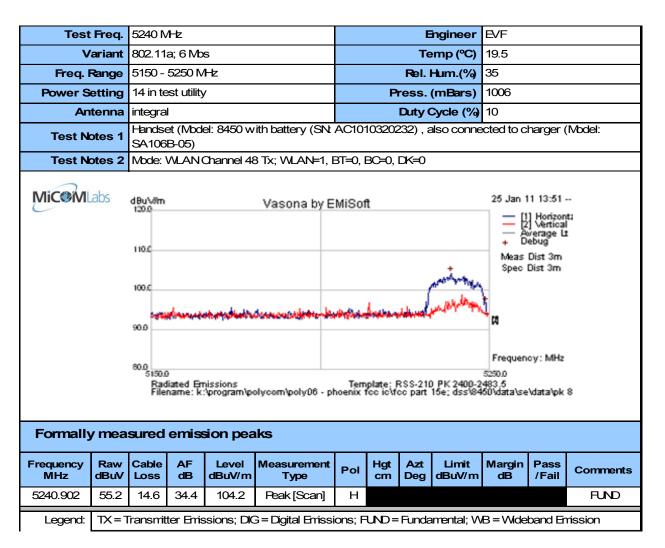
Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 162 of 186

8450 Band Edge Channel 100 - 5500 MHz 802.11n HT-20 5350-5460 MHz Pwr=16 Hor Hght=144 Ang=346

Date: 20.JAN.2011 12:52:45

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 163 of 186

7.8.3 Peak Emissions

Peak Emissions are measured only on frequencies with the most output power (channel: L, M or H).

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 164 of 186

Test Fre	q. 5200 l	√Hz					E	ngineer	EVF		
Varia	101 802.1	In; HT-2	0; 6.5 MC	3			Te	mp (°C)	18		
Freq. Ran	ge 5150 -	5250 N	1 - <u> </u>				Rel.	Hum.(%)	39		
Power Setti	ng 14 in t	est utility	/			P	ress.	(mBars)	1006		
Anten	na integra	al					Duty (Cycle (%)	10		
Test Notes	. 1	et (Mbd 6B-05)	el: 8450) v	vith battery (Sh	V AC10	10320)232),	also conn	ected to	charger	(Model:
Test Notes	Mode:	WLAN	Channel 40	Tx; WLAN=1,	BT=0,	BC = 0,	DK=0				
Mic®iM Labs	110.0 100.0 90.0 5 150 88 87 I	o diated En		Vasona by l	Mary Mary Control	4d4hu	RSS-210) PK 2400-2 15e; dss'84	Meas Spec	11 14:03 -] Horizon] Vertical Vertica	ta I t
Formally m	easured	sured emission peaks									
Frequency Ra		AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5203.467 54	14.6	34.4	103.8	Peak [Scan]	Н						FUND
Legend: TX	(= Transm	tter Emis	ssions; DK	3 = Digital Emiss	sions; F	UND=	Funda	nmental; V	/B=Wide	band Er	mission

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 165 of 186

Test Fre	eq. 5280	MHz					E	ngineer	EVF		
Varia	ant 802.1	1a; 6.5 N	/bs				Te	mp (°C)	18		
Freq. Ran	ge 5250	- 5350 N	Hz				Rel.	Hum.(%)	39		
Power Setti	i ng 16 in	test utility	/			Pi	ress.	(mBars)	1006		
Anten	nna integ	al					Duty (Cycle (%)	10		
Test Notes	S 1 I	set (Mbd 6B-05)	el: 8450) v	vith battery (SN	: AC10	10320	232),	also conn	ected to	charger	(Model:
Test Notes	s 2 Mode	: WLAN	Channel 56	6 Tx; WLAN=1, I	3T = 0, I	3C = 0,	DK=0				
MiC@iMLabs	110.0 100.0 90.0	0.0 ediated En ename: k		Vasona by E	dis	d anoh	RSS-216 po part) PK 2400-2 15e; dss\84	Meas Spec	I 14:17 Horizon Vertical Vertical	ta I t
Formally m	neasure	sured emission peaks									
	aw Cable		Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5282.906 55	5.8 14.6	34.5	104.9	Peak [Scan]	Ι						FUND
Legend: TX	K=Transr	ansmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission									

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 166 of 186

Test F	req.	5320 N	Hz					E	ngineer	EVF		
Var	riant	802.11	n; HT-2	0; 6.5 MC	3			Te	emp (°C)	18		
Freq. Ra	nge	5250 -	5350 N	Hz				Rel. I	Hum.(%)	39		
Power Set	ting	16 in te	st utility	/			Pı	ress.	(mBars)	1006		
Ante	nna	integral						Duty (Cycle (%)	10		
Test Note	es 1	Hands	et (Mbc	lel: 8450) v	with battery (SN	LAC10	010320	0232),	also conr	nected to	charger	(Model: SA10
Test Note	es 2	Mode: WLAN Channel 64 Tx; WLAN=1, BT=0, BC=0, DK=0										
_	meas	dBu\/lm Vasona by EMiSoft 25 Jan 11 14:30 [1] Horizonta [2] Vertical [3] Prequency: Meas Dist 3m [4] Spec Dist 3m [5] Spec Dist 3m [6] Spec Dist 3m [7] Frequency: MHz [8] Spec Dist 3m [8] Spec Dist 3m [8] Spec Dist 3m [9] Spec Dist 3m [9] Spec Dist 3m [9] Spec Dist 3m [9] Frequency: MHz [9] Spec Dist 3m [9] Spec Dis										tta :
	Raw IBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5318.136	55.0	14.6	34.5	104.1	Peak [Scan]	Ι	100	0	54.0	50.1	Fail	FUND
Legend: 7	TX=T	K = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission										

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 167 of 186

T4	-	5700 N	4 -						la adua a a u	EVF		
	Freq.								ngineer			
V	ariant	802.11	a; 6 Mb	S				Te	mp (°C)	18		
Freq. F	Range	5470 -	5725 N	Hz				Rel.	Hum.(%)	39		
Power Se	etting	16 in te	st utility	′			Pi	ress.	(mBars)	1006		
An	tenna	integra	l					Duty (Cycle (%)	10		
Test No	otes 1	Handset (Model: 8440) with battery (SN: AC1010320232), also conr SA106B-05)								ected to	charger	(Model:
Test No	otes 2	Mode: \	ode: WLAN Channel 140 Tx; WLAN=1, BT=0, BC=0, DK=0									
Micom	abs	dBuV/m 120.0 110.0 100.0 90.0 90.0 80.0 Filer	IBuV/m Vasona by EMiSoft 25 Jan 11 15:11 [1] Horizont: [2] Vertical Average Lt Debug Meas Dist 3m Spec Dist 3m									ta :
Formally	/ mea	sured emission peaks										
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5700.050	57.9	14.7	4.7 35.0 107.6 Peak [Scan] H 100 0 54.0 53.6 Fail FUND									
Legend:	TX=T	ransmit	ter Emis	sions; DK	G=Digital Emissi	ons; F	UND=	Funda	mental; W	B=Wide	band Er	rission

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

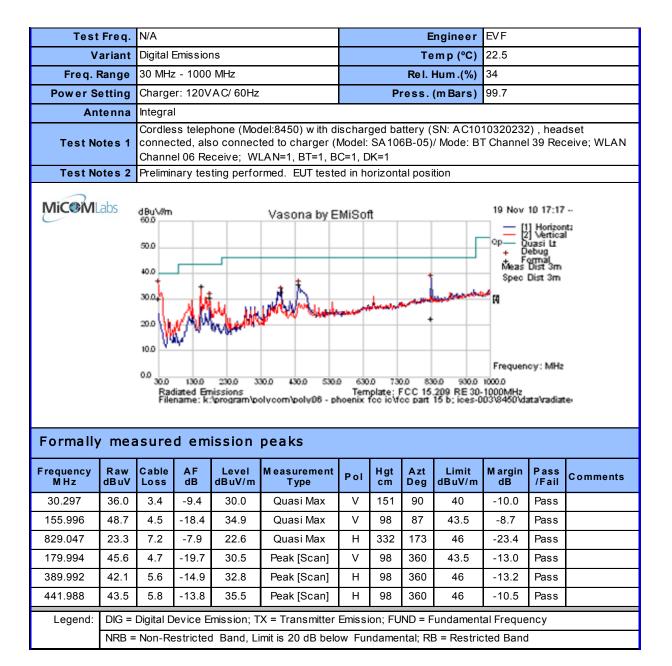
Issue Date: 6th June 2011

Page: Page 168 of 186

Test I	Freq.	5700 N	Ήz					E	ngineer	EVF		
Va	ariant	802.11	n HT-20); 6.5 MCS	•			Te	mp (°C)	18		
Freq. R	ange	5470 -	5725 N	Hz				Rel.	Hum.(%)	39		
Power Se	etting	16 in te	est utility	,			Pı	ress.	(mBars)	1006		
Anto	enna	integra	integral Duty Cycle (%						Cycle (%)	10		
Test No	tes 1	Handset (Model: 8440) with battery (SN: AC1010320232), also conne SA106B-05)						ected to	charger	(Model:		
Test No	tes 2	,										
Micom		File Sured	diated Enname: k:	ion pea	Vasona by E	العياد الماميان العامل الماميان العامل الماميان العامل العامل العامل العامل العامل العامل العامل العامل العامل	plate: F	RSS-210		Frequents 5725.0	Horizon Horizon Vertical Vertical Verage Li ebug Dist 3m Dist 3m Oy: MHz	tta I
	Raw dBuV								Limit dBuV/m	Margin dB	Pass /Fail	Comments
5700.962	58.5	14.7	35.0	108.2	Peak [Scan]	Н	100	0	54.0	54.2	Fail	FUND

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 169 of 186

7.8.4 Receiver Radiated Emissions

Stand alone Charger (SA106B-05) - Measurement Results for Radiated Spurious Emissions – Receiver

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 170 of 186

Test F	req.	5200 N	Hz					Е	ngineer	EVF		
Var	riant	Receive	e in Tes	st Utility				Te	mp (°C)	22		
Freq. Ra	ange	1000 N	Hz - 18	8000 MHz				Rel. I	Hum.(%)	35		
Power Set	tting	Not App	olicable	in Receiv	e Mode		P	ress.	(mBars)	993		
Ante	enna	integral										
Test Not	es 1				by band-stop fil onnected to cha			`	,	vith batte	ry (SN:	
Test Not	es 2	Mbde: \	MLAN	Channel 40	Receive; WLA	N=1, I	BT = 0, I	3C=0, I	DK=0			
MiceiMLa	bs	d Bu√/lm 80.0 70.0 60.0 50.0 40.0 20.0 10.0 Rad Filer	iated En	nissions 'program'po	Vasona by E	Terr	plate:	1000 FCC RE	1-18GHz	Pk ph A Meas Spec	10 16:38] Horizor] Vertica eak Limit overage L ebug Dist 3m Dist 3m cy: MHz	ta I
Formally	mea	sure	sured emission peaks									
	Raw BuV	Cable Loss	Polling									
No Receiver En	nission	ns Within	n 6dB c	f limit.								
Legend: F	₹B = R	estricted	d Band	NRB=No	on-Restricted Ba	nd; Fl	ND=I	undar	mental Fre	q.		
E	BE=Er	nission i	ission in Restricted Band Nearest Transmission Band Edge;									
												-

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 171 of 186

	_											
Test	Freq.	5280 N	Hz					E	ngineer	EVF		
Va	ariant	Receive	e in Tes	t Utility				Те	mp (°C)	22		
Freq. F	Range	1000 N	1Hz - 18	000 MHz				Rel. I	Hum.(%)	35		
Power Se	etting	Not Ap	olicable	in Receiv	e Mode		Pi	ress.	(mBars)	993		
Ant	tenna	integral										
Test No	otes 1				by band-stop fil onnected to cha			•		ith batte	y (SN:	
Test No	otes 2	Mode: \	MLAN	Channel 56	6 Receive; WLA	N=1, E	3T = 0, [3C=0, [OK=0			
MiceM	abs		70.0 70.0									ta
Formally	/ mea	sured	sured emission peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
No Receiver E	mission	ns Withir	n 6dBo	f limit.								
Legend:	RB=R	estricte	estricted Band; NRB = Non-Restricted Band; FUND = Fundamental Freq.									
	BE=E	mission	in Restr	icted Ban	d Nearest Trans	missic	n Ban	d Edge	·			
		= Emission in Restricted Band Nearest Transmission Band Edge;										

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 172 of 186

To a 4 F		ECCOO N								D./E		
Test F	•	5600 N							ngineer	EVF		
Vai		Receive						Te	mp (°C)	22		
Freq. Ra	ange	1000 M	H z - 18	8000 MHz				Rel. I	Hum.(%)	35		
Power Set	tting	Not App	olicable	in Receiv	e Mode		Pi	ress.	(mBars)	993		
Ante	enna	integral										
Test Not	es 1				by band-stop fil connected to cha			`	,	ith batte	y (SN:	
Test Not	es 2	Mode: \	MLANC	Channel 12	20 Receive; WL	AN=1,	BT=0,	BC=0,	DK=0			
MiC®M La	bs	dBu\/m 20.0 70.0 60.0 90.0 40.0 20.0 10.0 Rad Filer	70.0 70.0									
Formally	mea	sured	ured emission peaks									
	Raw BuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
No Receiver En	rissior	ns Withir	n 6dB o	f limit.								
Legend: F	7B=R	estricted	estricted Band; NRB = Non-Restricted Band; FUND = Fundamental Freq.									
_												
		Emission in Restricted Band Nearest Transmission Band Edge;										

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011
Page: Page 173 of 186

7.9 Conducted Disturbance at Mains Terminal (150 kHz – 30 MHz)

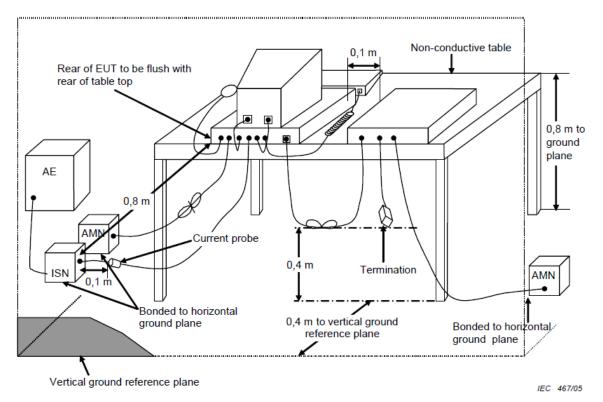
Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

with Bluetooth


To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011

Page: Page 174 of 186

Test Measurement Setup

Measurement setup for Conducted Disturbance at Mains Terminals

with Bluetooth

To: FCC 47 CFR Part 15.407 & RSS-210 A9

Serial #: POLY21-U2b Rev A

Issue Date: 6th June 2011 **Page:** Page 175 of 186

Specification for Conducted Disturbance at Mains Terminal

§15.407 (b)(6)

Any U-NII devices using an AC power line are required to comply also with the limits set forth in Section 15.207.

§15.207 (a)

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

Limits

Frequency of Emission (MHz)	Conduc	ted Limit (dBμV)
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency

Traceability

Laboratory Measurement Uncertainty for Conducted Emissions

I	Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Work instruction WI-EMC-01	0158, 0184, 0193, 0190, 0293, 0307