Company: Polycom Inc..

Test of: RealPresence Trio 8500

To: FCC Part 15.247 (DTS) & IC RSS-247

Report No.: POLY35-U2 Rev A BLE

COMPLETE TEST REPORT

TEST REPORT

Test of: Polycom Inc. RealPresence Trio 8500

to

To: FCC CFR 47 Part 15 Subpart C 15.247 (DTS) & IC RSS-247

Test Report Serial No.: POLY35-U2 Rev A BLE

This report supersedes: NONE

Applicant: Polycom Inc.

6001 America Center Dr. San Jose, California 95002

USA

Product Function: Conference Phone/Video Conference

Issue Date: 20th July 2017

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title: Polycom Inc. RealPresence Trio 8500

To: FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017

Page: 3 of 66

Table of Contents

1.	ACCREDITATION, LISTINGS & RECOGNITION	4
	1.1. TESTING ACCREDITATION	4
	1.2. RECOGNITION	
	1.3. PRODUCT CERTIFICATION	
2.	DOCUMENT HISTORY	7
3.	TEST RESULT CERTIFICATE	8
4.	REFERENCES AND MEASUREMENT UNCERTAINTY	
	4.1. Normative References	
	4.2. Test and Uncertainty Procedure	.10
5.	PRODUCT DETAILS AND TEST CONFIGURATIONS	
	5.1. Technical Details	
	5.2. Scope Of Test Program	
	5.3. Equipment Model(s) and Serial Number(s)	
	5.4. Power Over Ethernet (POE) Power Adaptor	
	5.5. Antenna Details	
	5.6. Cabling and I/O Ports	
	5.7. Test Configurations	
	5.8. Equipment Modifications	.14
	5.9. Deviations from the Test Standard	
6.	TEST SUMMARY	.15
7.	TEST EQUIPMENT CONFIGURATION(S)	
	7.1. RF Conducted	
	7.2. Radiated Emissions - 3m Chamber	
	7.3. AC Wireline Emissions	
	MEASUREMENT AND PRESENTATION OF TEST DATA	
9.	TEST RESULTS	
	9.1. 6 dB & 99% Bandwidth	
	9.2. Conducted Output Power	
	9.3. Power Spectral Density	
	9.4. Emissions	
	9.4.1. Conducted Emissions	
	9.4.1.1. Conducted Spurious Emissions	
	9.4.1.2. Conducted Band-Edge Emissions	
	9.4.2. Radiated Emissions	
	9.4.2.3. TX Spurious & Restricted Band Emissions	.37
	9.4.2.4. Restricted Edge & Band-Edge Emissions	.40
	9.4.3. Digital Emissions (0.03 - 1 GHz)	
_	9.4.4. AC Wireline Emissions	
A.	APPENDIX - GRAPHICAL IMAGES	
	A 1 6 dB 2 00% Bandwidth	
	A.1. 6 dB & 99% Bandwidth	
	A.2. Power Spectral Density	.53
	A.2. Power Spectral Density	.53 .59
	A.2. Power Spectral Density	.53 .59 <i>.5</i> 9
	A.2. Power Spectral Density A.3. Emissions A.3.1. Conducted Emissions A.3.1.1. Conducted Spurious Emissions	.53 .59 <i>.59</i> .59
	A.2. Power Spectral Density	.53 .59 . <i>59</i> .59 .62

Title: Polycom Inc. RealPresence Trio 8500

To: FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

20th July 2017 Issue Date:

> 4 of 66 Page:

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 4th day of February 2016.

Senior Director of Quality & Communications For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2017

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 Page: 5 of 66

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA - European Union Mutual Recognition Agreement.

NB - Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

Title: Polycom Inc. RealPresence Trio 8500

To: FCC Part 15.247 (DTS) & IC RSS-247 al #: POLY35-U2 Rev A BLE

Serial #: POLY35-U2 Rev Issue Date: 20th July 2017

Page: 6 of 66

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 4th day of February 2016.

Senior Director of Quality & Communications

For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2017

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017

Page: 7 of 66

2. **DOCUMENT HISTORY**

Document History						
Revision	Date	Comments				
Draft	11 th July 2017	Draft report for client review.				
Rev A	20 th July 2017	Initial release.				

In the above table the latest report revision will replace all earlier versions.

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017

Page: 8 of 66

3. TEST RESULT CERTIFICATE

Manufacturer: Polycom Inc. Tested By: MiCOM Labs, Inc.

6001 America Center Dr. 575 Boulder Court San Jose Pleasanton

California 95002 USA California 94566 USA

Model: RealPresence Trio 8500 Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Type Of Equipment: Conference Phone/Video Conference

S/N's: 64617F1D0306

Test Date(s): 26th June 2017 Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC Part 15.247 (DTS) & IC RSS-247

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

ACCREDITED
TESTING CERT #2381.01

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurst

President & CEO MiCOM Labs, Inc.

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017

Page: 9 of 66

4. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	FCC 47 CFR Part 15.247	2016	Radio Frequency Devices; Subpart C – Intentional Radiators
II	FCC Public Notice DA 00-705	March 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
III	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 32	2012	Electromagnetic compatibility of multimedia equipment - Emission requirements
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15, Subpart B	2014	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES, SubPart B; Unintentional Radiators
IX	ICES-003	Issue 6 Jan 2016	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
Х	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
ΧI	RSS-Gen Issue 4	November 2014	General Requirements and Information for the Certification of Radiocommunication Equipment
XII	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.
XIII	A2LA	June 2015	R105 - Requirement's When Making Reference to A2LA Accreditation Status

Serial #: POLY35-U2 Rev A BLÉ

Issue Date: 20th July 2017 **Page:** 10 of 66

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Serial #: POLY35-U2 Rev A BLÉ

Issue Date: 20th July 2017 Page: 11 of 66

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

	Description
Purpose:	Test of the Polycom Inc. RealPresence Trio 8500 to FCC Part
	15.247 (DTS) and IC RSS-247 tested in BLE mode.
Applicant:	Polycom Inc.
	6001 America Center Drive
	San Jose California 95002 USA
Manufacturer:	•
Laboratory performing the tests:	
	575 Boulder Court
Took von out vofovon on vouch ove	Pleasanton California 94566 USA
Test report reference number: Date EUT received:	
	FCC Part 15.247 (DTS) & IC RSS-247
Dates of test (from - to):	
No of Units Tested:	
	RealPresence Trio 8500
	RealPresence Trio 8500
Location for use:	
Declared Frequency Range(s):	
Type of Modulation:	
EUT Modes of Operation:	BLE, DH1 and DH5
Declared Nominal Output Power (dBm):	8.5 dBm
Transmit/Receive Operation:	1
Rated Input Voltage and Current:	POE (POE adaptor sold with unit) 56Vdc
Operating Temperature Range:	Declared Range 0°C to 40°C
ITU Emission Designator:	1M1G1D
Equipment Dimensions:	
Weight:	1kg
Firmware Version	5.5.2.9007
Software Version:	5.5.2.9007
Hardware Version:	Rev. 1

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 12 of 66

5.2. Scope Of Test Program

Polycom Inc. RealPresence Trio 8500

The scope of the test program was to test the Polycom Inc. RealPresence Trio 8500, configurations in the frequency ranges 2400 - 2483.5 MHz; in BLE mode for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C – Intentional Radiators

Industry Canada RSS-247

Digital Transmission Systems (DTS), Frequency Hopping Systems (FHSS) and License-Exempt Local Area Network (LE-LEN) Devices.

Polycom Inc. RealPresence Trio 8500

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 13 of 66

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Manufacturer	Model No.	Serial No.
EUT	EUT - Conducted Unit	Polycom Inc.	RealPresence Trio 8500	00:04:F2:FC:FD:3A

5.4. Power Over Ethernet (POE) Power Adaptor

The following POE model is an optional item and can be ordered and supplied if required.

PO	E	AC	Ad	ap	tor
. •			,	чr	

Phihong

Model; POE29U-1AT(PL)

100 - 240 Vac 0.8A MAX, 50-60 Hz

+56 Vdc 0.536A

5.5. Antenna Details

Туре	Manufacturer	Model	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
Integral	Unictron	110110 4144114 00400			000		0.400 0.500
Chip	l echnologies	H2U84W1H1S0100	1.4	NA	360	No	2400 - 2500
Antenna	Corporation						

BF Gain - Beamforming Gain Dir BW - Directional BeamWidth X-Pol - Cross Polarization

5.6. Cabling and I/O Ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
4-Wire Microphone	15ft	2	No	RJ-11	Analogue
Ethernet	100m (POE In)	1	Yes	RJ-45	Packet Data
USB	15m	1	Yes	USB	Digital
USB (Micro Port)	15m	1	Yes	USB	Digital

Title: Polycom Inc. RealPresence Trio 8500 To:

FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 14 of 66 Page:

5.7. Test Configurations

Results for the following configurations are provided in this report:

Operational	Data Rate with Highest Power		Channel Frequency (MHz)				
Mode(s)	MBit/s	Low	Mid	High			
	2400 - 2483.5 MHz						
BLE	1.00	2,402.00	2,440.00	2,480.00			

5.8. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

5.9. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 15 of 66

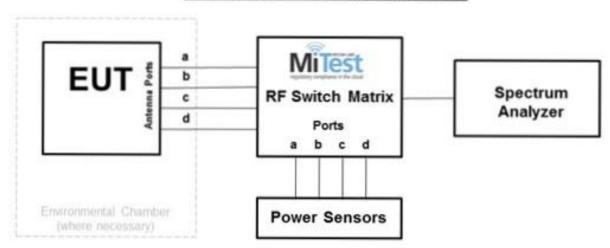
6. TEST SUMMARY

List of Measurements

List of Measurements		
Test Header	Result	Data Link
6 dB & 99% Bandwidth	Complies	View Data
Conducted Output Power	Complies	View Data
Power Spectral Density	Complies	View Data
Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data
(ii) Restricted Edge & Band-Edge Emissions	Complies	View Data
(3) Digital Emissions (0.03 - 1 GHz)	Complies	View Data
(4) AC Wireline Emissions	Complies	View Data

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 16 of 66


7. TEST EQUIPMENT CONFIGURATION(S)

7.1. RF Conducted

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. 6 dB & 99% Bandwidth
- 2. Conducted Output Power
- 3. Power Spectral Density
- 4. Spurious Emissions
- 5. Band-Edge Emissions

MiCOM Labs Automated Test System

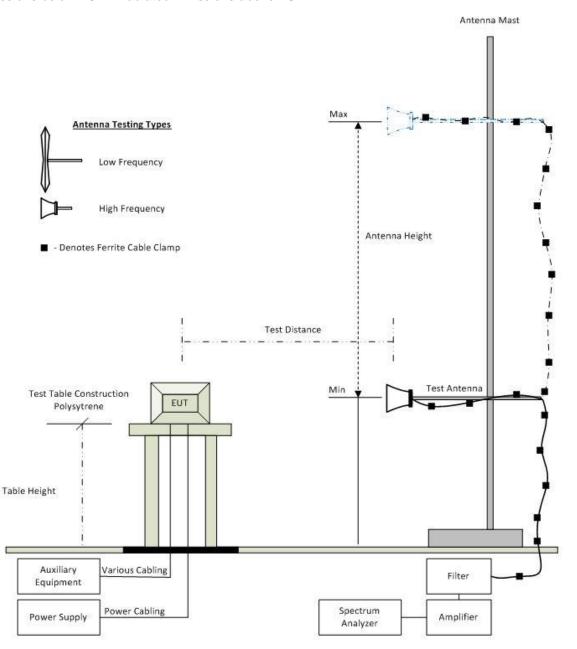
Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 17 of 66

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	2 Oct 2017
#3P1	EUT to MiTest box port	Fairview Microwave	SCA1814- 0101-72	#3P1	2 Oct 2017
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	2 Oct 2017
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	2 Oct 2017
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	2 Oct 2017
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	23 Oct 2017
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2018
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	4 Aug 2017
390	USB Power Head 50MHz - 24GHz -60 to +20dBm	Agilent	U2002A	MY50000103	17 Oct 2017
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8730	31 Jul 2017
436	USB Wideband Power Sensor	Boonton	55006	8731	14 Sep 2017
441	USB Wideband Power Sensor	Boonton	55006	9179	25 Sep 2017
443	4x4 RF Switch Box	MiCOM Labs	MiTest 4X4 RF Switch Box	MIC003	2 Oct 2017
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	13 Aug 2017
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Nov 2017



Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 18 of 66

7.2. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below.Radiated emissions below 1GHz.Radiated Emissions above 1GHz.

Radiated Emission Test Setup

Serial #: POLY35-U2 Rev A BLE

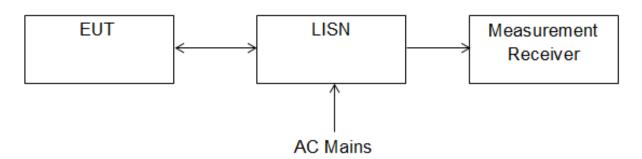
Issue Date: 20th July 2017 **Page:** 19 of 66

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2018
301	5470 to 5725 MHz Notch Filter	Microtronics	RBC50704	001	16 Aug 2017
302	5150 to 5350 MHz Notch Filter	Microtronics	BRC50703	002	16 Aug 2017
303	5725 to 5875 MHz Notch filter	Microtronics	BRC50705	003	16 Aug 2017
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	26 Sep 2017
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	15 Aug 2017
341	900MHz Notch Filter	EWT	EWT-14-0199	H1	16 Aug 2017
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	16 Aug 2017
343	5.15 GHz Notch Filter	EWT	EWT-14-0200	H1	16 Aug 2017
344	5.35 GHz Notch Filter	EWT	EWT-14-0201	H1	16 Aug 2017
345	5.46 GHz Notch Filter	EWT	EWT-14-0202	H1	16 Aug 2017
346	1.6 TO 10GHz High Pass Filter	EWT	EWT-57-0112	H1	16 Aug 2017
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	26 Oct 2017
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	16 Aug 2017
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	4 Aug 2017
393	DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	16 Aug 2017
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	16 Aug 2017
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	9 Oct 2017
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Oct 2017
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	9 Oct 2017
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable	Sunol Sciences	SC98V	060199-1D	Not Required

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 20 of 66


	Controller				
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	16 Aug 2017
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	16 Aug 2017
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	16 Aug 2017
465	Low Pass Filter DC- 1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	16 Aug 2017
466	Low Pass Filter DC- 1500 MHz	Mini-Circuits	NLP-1750+	VUU10401438	16 Aug 2017
467	2495 to 2650 MHz notch filter	MicroTronics	BRM50709	011	16 Aug 2017
468	Low pass filter	Mini Circuits	SLP-550	None	16 Aug 2017
469	Low pass filter	Mini Circuit	SLP-1000	None	16 Aug 2017
470	High Pass filter	Mini Circuits	SHP-700	None	16 Aug 2017
476	Low Pass dc-2200MHz filter	Mini Circuits	15542 NLP- 2400+	VUU13801345	16 Aug 2017
480	Cable - Bulkhead to Amp	SRC Haverhill	157-157- 3050360	480	16 Aug 2017
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-151- 3050787	481	16 Aug 2017
482	Cable - Amp to Antenna	SRC Haverhill	157-157- 3051574	482	16 Aug 2017
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used
VLF-1700	Low pass filter DC-1700 MHz	Mini Circuits	VLF-1700	None	16 Aug 2017

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 21 of 66

7.3. AC Wireline Emissions

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	6 Oct 2017
190	LISN (two-line V-network)	Rhode & Schwarz	ESH3Z5	836679/006	29 Oct 2017
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2018
307	BNC-CABLE	Megaphase	1689 1GVT4	15F50B002	6 Oct 2017
316	Dell desktop computer workstation	Dell	Desktop	WS04	Not Required
372	AC Variable PS	California Instruments	1251P	L06951	Cal when used
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	4 Aug 2017
388	LISN (3 Phase) 9kHz - 30MHz	Rohde & Schwarz	ESH2-Z5	892107/022	30 Oct 2017
496	MiTest Conducted Emissions test software.	MiCOM	Conducted Emissions Test Software Version 1.0	496	Not Required

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 22 of 66

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

Title: Polycom Inc. RealPresence Trio 8500

To: FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 23 of 66

9. TEST RESULTS

9.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth						
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1001			
Reference Document(s):	See Normative References					

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Serial #: POLY35-U2 Rev À BLÉ

Issue Date: 20th July 2017 **Page:** 24 of 66

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	GFSK	Duty Cycle (%):	63
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Test	Measured 6 dB Bandwidth (MHz)			6 dB Bandwidth (MHz)		Limit	Lowest	
Frequency		Port(s)		width (Willz)	Lillin	Margin		
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2402.0	<u>0.737</u>				0.737	0.737	≥500.0	-0.24
2440.0	<u>0.737</u>				0.737	0.737	≥500.0	-0.24
2480.0	<u>0.737</u>				0.737	0.737	≥500.0	-0.24

Test		Measured 99% E	Bandwidth (MHz)	Maximum		
Frequency		Port(s)			99% Bandwidth	
MHz	а	b	С	d	(MHz)	
2402.0	<u>1.082</u>				1.082	
2440.0	<u>1.090</u>				1.090	
2480.0	<u>1.086</u>				1.086	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Title: Polycom Inc. RealPresence Trio 8500 To:

FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 25 of 66 Page:

9.2. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power						
Standard:	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (b) & (c) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Fundamental Emission Output Power Measurement

In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power [$10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$]

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:

- (3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.
 - (1) Fixed point-to-point operation:
 - (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-tomultipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 26 of 66

instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

- (i) Different information must be transmitted to each receiver.
- (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
 - (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
 - (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
- (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.
- (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Serial #: POLY35-U2 Rev À BLÉ

Issue Date: 20th July 2017 **Page:** 27 of 66

Equipment Configuration for Peak Output Power

Variant:	GFSK	Duty Cycle (%):	62.8
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.40
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Test	Measured Output Power (dBm)				Calculated	Limit	Manain	
Frequency	Port(s)			Total Power Σ Port(s)	Limit	Margin	EUT Power Setting	
MHz	а	b	С	d	dBm	dBm	dB	
2402.0	1.13				1.13	30.00	-28.87	Max
2440.0	0.61				0.61	30.00	-29.39	Max
2480.0	0.57				0.57	30.00	-29.43	Max

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Title: Polycom Inc. RealPresence Trio 8500 To:

FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 28 of 66 Page:

9.3. Power Spectral Density

Conducted Test Conditions for Power Spectral Density						
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	Power Spectral Density	Power Spectral Density Rel. Humidity (%): 32 - 45				
Standard Section(s):	15.247 (e)	5.247 (e) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References					

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE:

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = $A + 10 \log (1/x) dBm$ A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 29 of 66

Equipment Configuration for Power Spectral Density - Peak

Variant:	GFSK	Duty Cycle (%):	62.8
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	1.40
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results								
Test Measured Power Spectral Density Amplitude							Morain	
Frequency		Port(s) (d	Bm/3KHz)		Summation	Limit	Margin	
MHz	a b c d				dBm/3KHz	dBm/3KHz	dB	
2402.0	<u>-10.244</u>				<u>-10.244</u>	8.0	-18.2	
2440.0	<u>-10.834</u>				<u>-10.834</u>	8.0	-18.8	
2480.0	<u>-10.978</u>				<u>-10.978</u>	8.0	-19.0	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Title: Polycom Inc. RealPresence Trio 8500

To: FCC Part 15.247 (DTS) & IC RSS-247 al #: POLY35-U2 Rev A BLE

Serial #: POLY35-U2 Rev **Issue Date:** 20th July 2017

Page: 30 of 66

9.4. Emissions

9.4.1. Conducted Emissions

9.4.1.1. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions							
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Max Unwanted Emission Levels Rel. Humidity (%): 32 - 45						
Standard Section(s):	15.247 (d)	5.247 (d) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References						

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

: FCC Part 15.247 (DTS) & IC RS: : POLY35-U2 Rev A BLE

Serial #: POLY35-U2 R Issue Date: 20th July 2017

Page: 31 of 66

Equipment Configuration for Conducted Spurious Emissions - Peak

Variant:	GFSK	Duty Cycle (%):	63
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	GFSK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Test	Frequency		Conducted Spurious Emissions - Peak (dBm)						Conducted Spurious Emissions - Peak (dBm)				
Frequency	Range	P	ort a	Po	rt b	Po	rt c	Po	rt d				
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit				
2402.0	30.0 - 26000.0	<u>-40.215</u>	-17.05										
2440.0	30.0 - 26000.0	<u>-41.308</u>	-18.59										
2480.0	30.0 - 26000.0	<u>-40.563</u>	-18.75										

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 Page: 32 of 66

9.4.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak

Variant:	GFSK	Duty Cycle (%):	62.8
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Channel	2402.0 MHz					
Frequency:	2402.0 1011 12					
Band-Edge	2400.0 MHz					
Frequency:	2400.0 WII 12					
Test Frequency	2350.0 - 2405.0 M	⊔ ₇				
Range:	2330.0 - 2403.0 IVI	1 12				
	Band-	Edge Markers and	Limit	Revise	d Limit	Margin
Port(s)	M1 Amplitude (dBm)	' Plot Imit (dKm) ' ' ' ' ' (MHZ)				
а	<u>-47.02</u>	-16.45	2401.40			-1.400

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Title: Polycom Inc. RealPresence Trio 8500 To:

FCC Part 15.247 (DTS) & IC RSS-247

POLY35-U2 Rev A BLE Serial #: 20th July 2017 Issue Date:

Page: 33 of 66

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

Variant:	GFSK	Duty Cycle (%):	62.8
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	GFSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	CC
Engineering Test Notes:	None		

Test Measurement Results

Channel	2480.0 MHz					
Frequency:	2400.0 WII 12					
Band-Edge	2483.5 MHz					
Frequency:						
Test Frequency	2475.0 - 2524.0 MHz					
Range:	24/5.0 - 2524.0 MIDZ					
Port(s)	Band-Edge Markers and Limit			Revised Limit		Margin
	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-47.14</u>	-17.19	2480.60			-2.900

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS		
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB		

Title: Polycom Inc. RealPresence Trio 8500 To:

FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 Page: 34 of 66

9.4.2. Radiated Emissions

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions				
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	20.0 - 24.5	
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45	
Standard Section(s):	15.407 (b), 15.205, 15.209	Pressure (mBars):	999 - 1001	
Reference Document(s):	See Normative References			

Test Procedure for Radiated Spurious and Band-Edge Emissions

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Undesirable Measurement were per the Radiated Test Set-up specified in this document. 15.407 (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of −17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Limits for Restricted Bands (15.205, 15.209) Peak emission: 74 dBuV/m Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where:

Serial #: POLY35-U2 Rev A BLE

20th July 2017 Issue Date: 35 of 66 Page:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss

Example:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength (dBµV/m);

$$E = \frac{10000000 \times \sqrt{30P}}{3} \mu \text{V/m}$$

where P is the EIRP in Watts

Therefore: -27 dBm/MHz equates to 68.23 dBuV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows:

Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Frequency Band					
MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4		
6.31175-6.31225	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	Above 38.6		

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 Page: 36 of 66

13.36-13.41			
-------------	--	--	--

- (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.
- (d) The following devices are exempt from the requirements of this section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
 - (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
 - (3) Cable locating equipment operated pursuant to §15.213.
 - (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.
 - (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
 - (6) Transmitters operating under the provisions of subparts D or F of this part.
 - (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.
 - (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).
 - (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).
- (e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 37 of 66

9.4.2.3. TX Spurious & Restricted Band Emissions

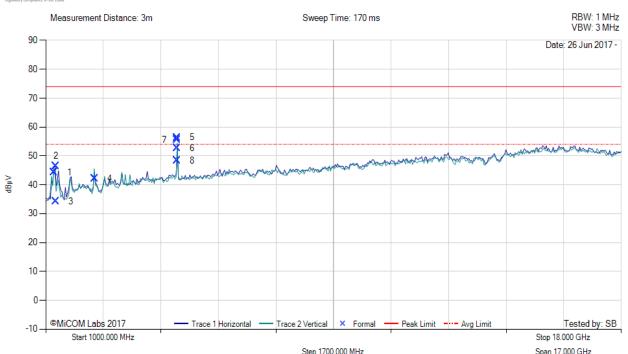
Equipment Configuration for Restricted Band Spurious Emissions									
Antenna:	Integral	Variant:	GFSK						
Antenna Gain (dBi):	1.40	Modulation:	GFSK						
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99						
Channel Frequency (MHz):	2402.00	Data Rate:	1 mbit/s						
Power Setting:	Power Setting: Max Tested By: SB								
Test Measurement Results									

Variant: GFSK, Test Freq: 2402.00 MHz, Power Setting: Max, Duty Cycle (%): 99

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1748.97	48.13	2.43	-14.61	35.95	Peak (NRB)	Vertical	100	0		1	Pass
2	3203.34	51.43	3.00	-11.28	43.15	Peak (NRB)	Vertical	100	0		1	Pass
3	3987.29	50.31	3.25	-10.81	42.75	Max Peak	Vertical	127	354	74.0	-31.3	Pass
4	3987.29	36.74	3.25	-10.81	29.18	Max Avg	Vertical	127	354	54.0	-24.8	Pass
5	4804.10	52.92	3.51	-11.12	45.31	Peak (Scan)	Horizontal	100	0	74.0	-28.7	Pass
6	4804.29	64.49	3.51	-11.12	56.88	Max Peak	Horizontal	101	75	74.0	-17.1	Pass
7	4804.29	59.74	3.51	-11.12	52.13	Max Avg	Horizontal	101	75	54.0	-1.9	Pass
8	4804.54	64.88	3.51	-11.12	57.27	Max Peak	Vertical	124	311	74.0	-16.7	Pass
9	4804.54	58.18	3.51	-11.12	50.57	Max Avg	Vertical	124	311	54.0	-3.4	Pass
10	16418.96	44.96	6.14	1.65	52.75	Peak (NRB)	Vertical	100	0			Pass

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 38 of 66


Equipment Configuration for Restricted Band Spurious Emissions

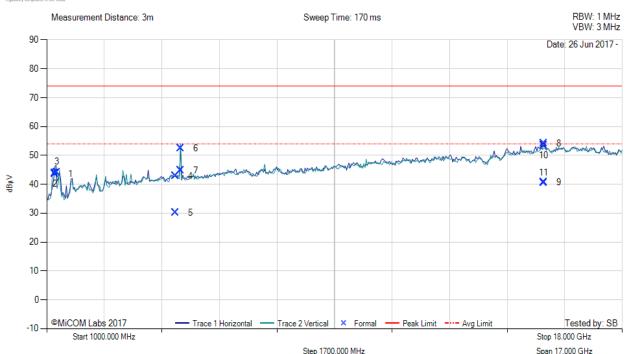
Antenna:	Integral	Variant:	GFSK
Antenna Gain (dBi):	1.40	Modulation:	GFSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2440.00	Data Rate:	1 mbit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

Variant: GFSK, Test Freq: 2440.00 MHz, Power Setting: Max, Duty Cycle (%): 99

	Step 1700.000 MIT2								Эр	an 17.000 GHZ		
	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1247.93	57.63	2.19	-15.48	44.34	Peak (NRB)	Horizontal	100	7			Pass
2	1300.35	58.96	2.21	-14.75	46.42	Max Peak	Vertical	101	274	74.0	-27.6	Pass
3	1300.35	46.79	2.21	-14.75	34.25	Max Avg	Vertical	101	274	54.0	-19.8	Pass
4	2441.11	51.16	2.72	-11.71	42.17	Peak (NRB)	Vertical	100	7			Pass
5	4881.86	63.99	3.62	-11.26	56.35	Max Peak	Vertical	107	313	74.0	-17.7	Pass
6	4881.86	60.29	3.62	-11.26	52.65	Max Avg	Vertical	107	313	54.0	-1.4	Pass
7	4882.57	63.21	3.63	-11.26	55.58	Max Peak	Vertical	108	312	74.0	-18.4	Pass
8	4882.57	55.95	3.63	-11.26	48.32	Max Avg	Vertical	108	312	54.0	-5.7	Pass

Serial #: POLY35-U2 Rev A BLE


Issue Date: 20th July 2017 **Page:** 39 of 66

Equipment Configuration for Restricted Band Spurious Emissions

Antenna:	Integral	Variant:	GFSK
Antenna Gain (dBi):	1.40	Modulation:	GFSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2480.00	Data Rate:	1 mbit/s
Power Setting:	Max	Tested By:	SB
Test Measurement Results			

Variant: GFSK, Test Freq: 2480.00 MHz, Power Setting: Max, Duty Cycle (%): 99

					1000	.00 - 18000.00 M					an 17.000 GHZ	
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1247.94	56.92	2.19	-15.48	43.63	Peak (NRB)	Horizontal	100	19			Pass
2	1247.94	57.09	2.19	-15.48	43.80	Peak (NRB)	Vertical	100	19			Pass
3	1299.78	56.70	2.21	-14.74	44.17	Peak (NRB)	Vertical	100	19			Pass
4	4806.07	50.48	3.50	-11.13	42.85	Max Peak	Vertical	140	356	74.0	-31.2	Pass
5	4806.07	37.77	3.50	-11.13	30.14	Max Avg	Vertical	140	356	54.0	-23.9	Pass
6	4959.55	60.36	3.57	-11.48	52.45	Max Peak	Horizontal	100	72	74.0	-21.6	Pass
7	4959.55	52.62	3.57	-11.48	44.71	Max Avg	Horizontal	100	72	54.0	-9.3	Pass
8	15674.00	48.08	5.92	0.15	54.15	Max Peak	Horizontal	121	291	74.0	-19.9	Pass
9	15674.00	34.61	5.92	0.15	40.68	Max Avg	Horizontal	121	291	54.0	-13.3	Pass
10	15680.12	47.38	5.93	0.16	53.47	Max Peak	Vertical	193	122	74.0	-20.5	Pass
11	15680.12	34.37	5.93	0.16	40.46	Max Avg	Vertical	193	122	54.0	-13.5	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

To: FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 40 of 66

9.4.2.4. Restricted Edge & Band-Edge Emissions

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

2390 - 2483.5 MHz

HPE Met	tal Sheet	Band-Edge Freq	Limit 74.0dBµV/m	Limit 54.0dBµV/m	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBμV/m	dBμV/m	Power Setting	
BLE	2402.00	2390.00	<u>59.22</u>	<u>46.16</u>	Max	
BLE	2480.00	2483.50	69.89	<u>46.54</u>	Max	

Click on the links to view the data.

To: FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 41 of 66

Equipment Configuration for 2390 MHz Radiated Band-Edge Emissions

Antenna:	Integral	Variant:	GFSK
Antenna Gain (dBi):	1.40	Modulation:	GFSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2402	Data Rate:	1 mbit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	2310.00 - 2420.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2389.78	24.49	2.69	32.04	59.22	Max Peak	Horizontal	152	14	74.0	-14.8	Pass
#2	2390.00	11.43	2.69	32.04	46.16	Max Avg	Horizontal	152	14	54.0	-7.8	Pass
#3	2390.00					Restricted- Band						

To: FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 42 of 66

Equipment Configuration for 2483.5 MHz Radiated Band-Edge Emissions

Antenna:	Integral	Variant:	GFSK
Antenna Gain (dBi):	1.40	Modulation:	GFSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2402	Data Rate:	1 mbit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	2402.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2483.50	11.44	2.73	32.37	46.54	Max Avg	Horizontal	106	313	54.0	-7.5	Pass
#3	2498.40	25.76	2.74	32.39	60.89	Max Peak	Horizontal	106	313	74.0	-13.1	Pass
#2	2483.50					Restricted- Band						

Serial #: POLY35-U2 Rev À BLÉ

Issue Date: 20th July 2017 **Page:** 43 of 66

9.4.3. <u>Digital Emissions (0.03 - 1 GHz)</u>

Rac	liated Test Conditions for Radia	ted Digital Emissions (0.03 – 1 G	GHz)						
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C): 20.0 - 24.5							
Test Heading:	Digital Emissions	gital Emissions Rel. Humidity (%): 32 - 45							
Standard Section(s):	15.209	Pressure (mBars):	999 - 1001						
Reference Document(s):	See Normative References								

Test Procedure for Radiated Digital Emissions (0.03 - 1 GHz)

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength
R = Measured Receiver Input Amplitude
AF = Antenna Factor
CORR = Correction Factor = CL – AG + NFL
CL = Cabelling

AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dBmV; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are done as:

Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m48 dBmV/m = 250 mV/m

Limits for Radiated Digital Emissions (0.03 – 1 GHz)

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Serial #: POLY35-U2 Rev À BLÉ

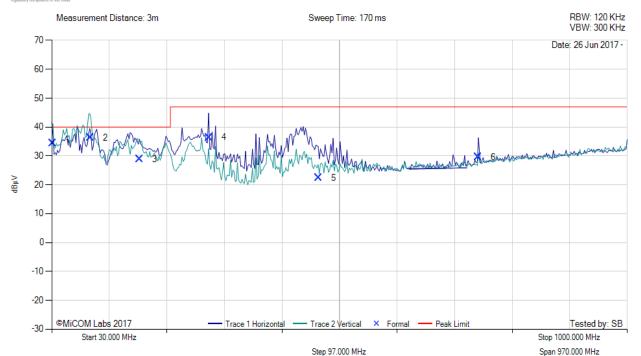
Issue Date: 20th July 2017 Page: 44 of 66

	Field S		
Frequency (MHz)	μV/m (microvolts/meter) dBμV/m (dB microvolts/meter)		Measurement Distance (m)
0.009-0.490	2400/F(kHz)		300
0.490-1.705	24000/F(kHz)		30
1.705-30.0	30	29.5	30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46.0	3
Above 960	500	54.0	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. (b) In the emission table above, the tighter limit applies at the band edges. (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency. (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. (e) The provisions in §§15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part. (f) In accordance with §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in §15.109 that are applicable to the incorporated digital device. (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 45 of 66


Equipment Configuration for Radiated Digital Emissions (Class B)

Antenna:	Integral	Variant:	GFSK
Antenna Gain (dBi):	1.40	Modulation:	GFSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2442.00	Data Rate:	1 mbit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

Variant: BLE, Test Freq: 2442.00 MHz, Power Setting: Max, Duty Cycle (%): 99

30.00 - 1000.00 MHz Cable Margin Limit Frequency Raw AF Level Measurement **Pass** Hgt Azt Num Loss Pol МHz dBµV dΒ dBµV/m Type cm Deg dBµV/m dB /Fail dB 31.57 42.26 -11.21 34.49 MaxQP Vertical 98 17 40.0 -5.5 Pass 1 3.44 94.61 55.22 3.85 -22.74 36.33 MaxQP Horizontal 179 40.0 Pass 2 84 -3.73 178.12 44.49 4.25 -19.91 28.83 MaxQP Horizontal 160 236 40.0 -11.2 **Pass** -17.30 47.0 4 294.98 49.02 4.69 36.41 MaxQP Horizontal 104 291 -10.6 Pass 5 479.37 29.86 5.28 -12.80 22.34 MaxQP Horizontal 209 262 47.0 -24.7Pass 47.0 748.88 33.01 -9.46 29.54 MaxQP Horizontal 101 73 -17.5 Pass 5.99 Test Notes: PHIHONG POE29U-1AT(PL) with DC blocking caps

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 46 of 66

9.4.4. AC Wireline Emissions

Test Conditions for ac Wireline Emissions (0.15 – 30 MHz)						
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	20.0 - 24.5			
Test Heading:	Conducted (ac Wireline Emissions)	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.207	Pressure (mBars):	999 - 1001			
Reference Document(s):	See Normative References					

Test Procedure for ac Wireline Emissions (0.15 – 30 MHz)

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test configuration and setup for ac Wireline Emission Measurement were per the ac Wireline Test Set-up specified in this document.

Limits for ac Wireline Emissions

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Eraguanay of Emission (MUT)	Conducted Limit (dBmV)				
Frequency of Emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

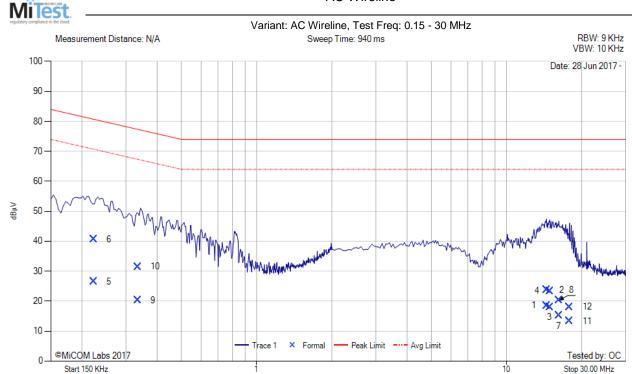
^{*} Decreases with the logarithm of the frequency

The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

- (1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- (2) For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.
- (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Serial #: POLY35-U2 Rev A BLE


Issue Date: 20th July 2017 **Page:** 47 of 66

Equipment Configuration for Radiated Digital Emissions (Class B)

Antenna:	Integral	Variant:	GFSK
Antenna Gain (dBi):	1.40	Modulation:	GFSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2402.00	Data Rate:	1 mbit/s
Power Setting:	Max	Tested By:	OC

Test Measurement Results

AC Wireline

Num	Frequency MHz	Raw dBµV	Cable Loss dB	Factor dB	Total Correction dBµV	Corrected Value dBµV	Measurement Type	Line	Limit dBµV/m	Margin dB	Pass /Fail
1	14.491	8.47	0.50	9.56	10.06	18.53	Max Avg	Telecom	64.0	-45.5	Pass
2	14.491	13.66	0.50	9.56	10.06	23.72	Max Qp	Telecom	74.0	-50.3	Pass
3	14.898	7.93	0.52	9.57	10.09	18.02	Max Avg	Telecom	64.0	-46.0	Pass
4	14.898	13.33	0.52	9.57	10.09	23.42	Max Qp	Telecom	74.0	-50.6	Pass
5	0.223	16.42	0.06	10.00	10.06	26.48	Max Avg	Telecom	71.9	-45.4	Pass
6	0.223	30.53	0.06	10.00	10.06	40.59	Max Qp	Telecom	81.9	-41.3	Pass
7	16.179	5.03	0.55	9.61	10.16	15.19	Max Avg	Telecom	64.0	-48.8	Pass
8	16.179	10.04	0.55	9.61	10.16	20.20	Max Qp	Telecom	74.0	-53.8	Pass
9	0.334	10.25	0.04	9.99	10.03	20.28	Max Avg	Telecom	68.7	-48.5	Pass

To: FCC Part 15.247 (DTS) & IC RSS-247

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 48 of 66

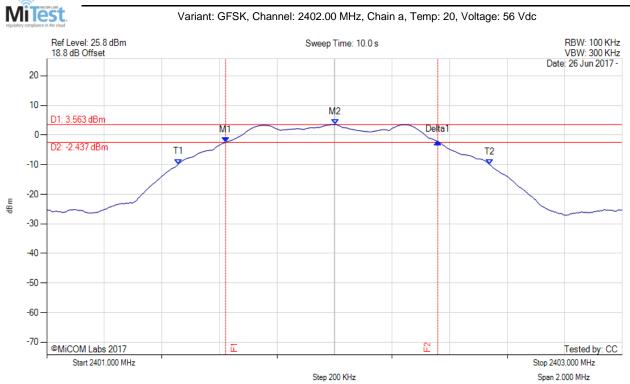
10	0.334	21.41	0.04	9.99	10.03	31.44	Max Qp	Telecom	78.7	-47.3	Pass
11	17.896	3.17	0.55	9.66	10.21	13.38	Max Avg	Telecom	64.0	-50.6	Pass
12	17.896	7.87	0.55	9.66	10.21	18.08	Max Qp	Telecom	74.0	-55.9	Pass

Test Notes: Model: RealPresence Trio 8500.S/N: 64167F1D02FA. PoE powered configuration 120V 60Hz. AC Mains

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 49 of 66

A. APPENDIX - GRAPHICAL IMAGES


To: FCC Part 15.247 (DTS) & IC RSS-247

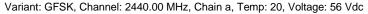
Serial #: POLY35-U2 Rev A BLE

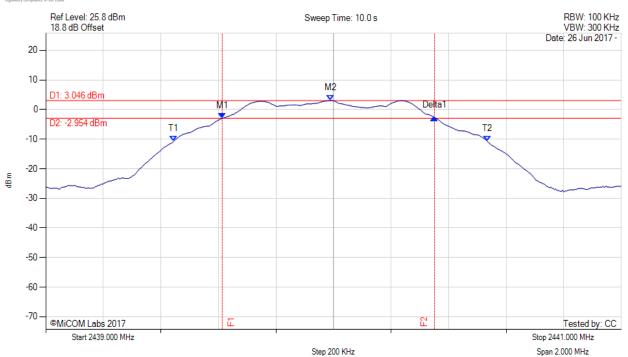
Issue Date: 20th July 2017 **Page:** 50 of 66

A.1. 6 dB & 99% Bandwidth

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1: 2401.621 MHz: -2.443 dBm M2: 2402.002 MHz: 3.563 dBm Delta1: 737 KHz: 0.220 dB T1: 2401.457 MHz: -9.856 dBm T2: 2402.539 MHz: -9.992 dBm OBW: 1.082 MHz	Measured 6 dB Bandwidth: 0.737 MHz Limit: ≥500.0 kHz Margin: -0.24 MHz

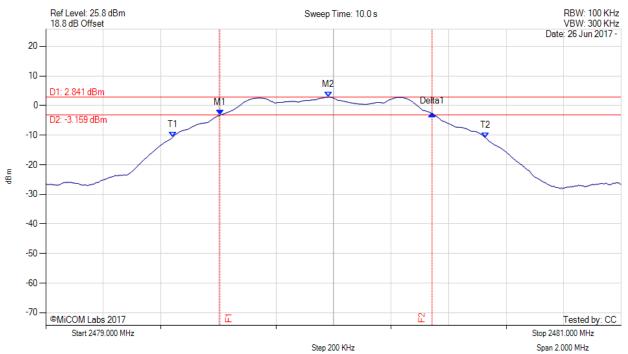



Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 51 of 66

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 2439.613 MHz: -3.004 dBm M2: 2439.990 MHz: 3.046 dBm Delta1: 737 KHz: 0.266 dB T1: 2439.445 MHz: -10.700 dBm T2: 2440.535 MHz: -10.781 dBm OBW: 1.090 MHz	Measured 6 dB Bandwidth: 0.737 MHz Limit: ≥500.0 kHz Margin: -0.24 MHz

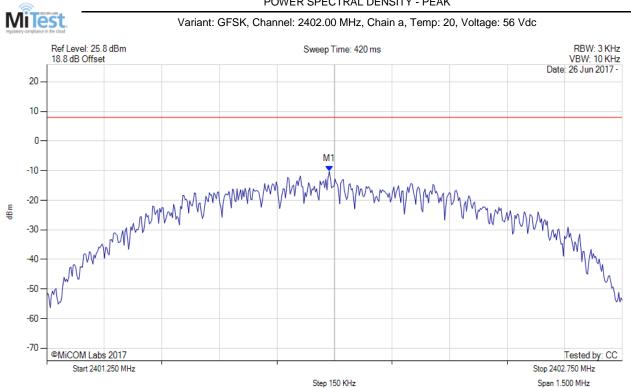

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 52 of 66

6 dB & 99% BANDWIDTH

Variant: GFSK, Channel: 2480.00 MHz, Chain a, Temp: 20, Voltage: 56 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20	M1: 2479.605 MHz: -3.297 dBm M2: 2479.982 MHz: 2.841 dBm Delta1: 737 KHz: 0.533 dB T1: 2479.441 MHz: -10.641 dBm T2: 2480.527 MHz: -10.826 dBm OBW: 1.086 MHz	Measured 6 dB Bandwidth: 0.737 MHz Limit: ≥500.0 kHz Margin: -0.24 MHz



Serial #: POLY35-U2 Rev A BLE

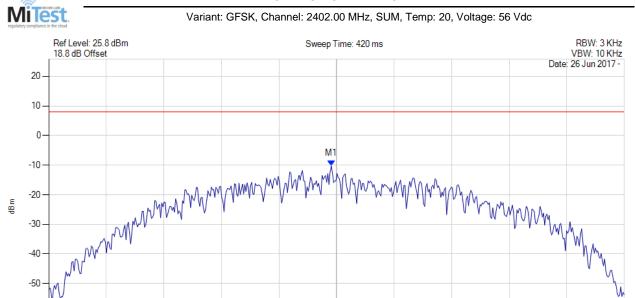
20th July 2017 Issue Date: 53 of 66 Page:

A.2. Power Spectral Density

POWER SPECTRAL DENSITY - PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 2401.986 MHz: -10.244 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: 18.24 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

Tested by: CC


Stop 2402.750 MHz

Span 1.500 MHz

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 54 of 66

POWER SPECTRAL DENSITY - PEAK

 Analyzer Setup
 Marker:Frequency: Amplitude
 Test Results

 Detector = MAX PEAK
 M1 : 2401.986 MHz : -10.244 dBm
 Limit: ≤ 8.0 dBm

 Sweep Count = 0
 Margin: -18.2 dB

 RF Atten (dB) = 20
 Trace Mode = VIEW

Step 150 KHz

back to matrix

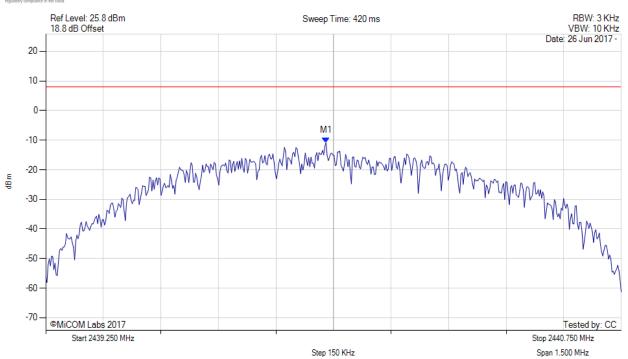
-60

-70 -

©MiCOM Labs 2017

Start 2401.250 MHz

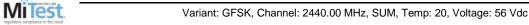
I#: POLY35-U2 Rev A BLE

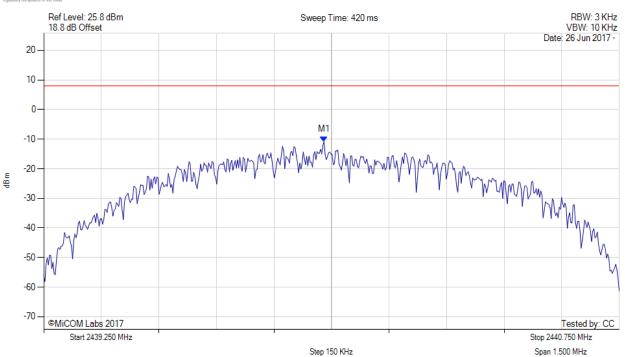

Serial #: POLY35-U2 Rev **Issue Date:** 20th July 2017

Page: 55 of 66

POWER SPECTRAL DENSITY - PEAK

Variant: GFSK, Channel: 2440.00 MHz, Chain a, Temp: 20, Voltage: 56 Vdc


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 2439.980 MHz: -10.834 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: 18.83 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

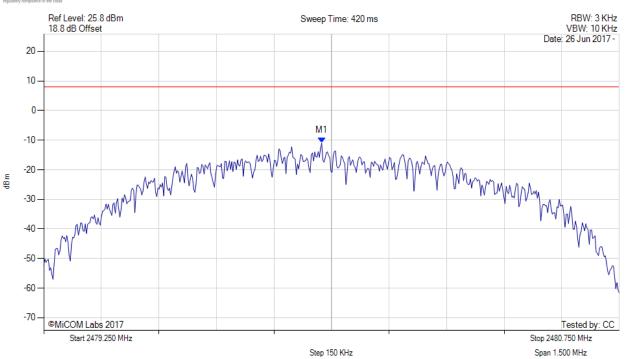


Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 56 of 66

POWER SPECTRAL DENSITY - PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 2439.980 MHz: -10.834 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0		Margin: -18.8 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

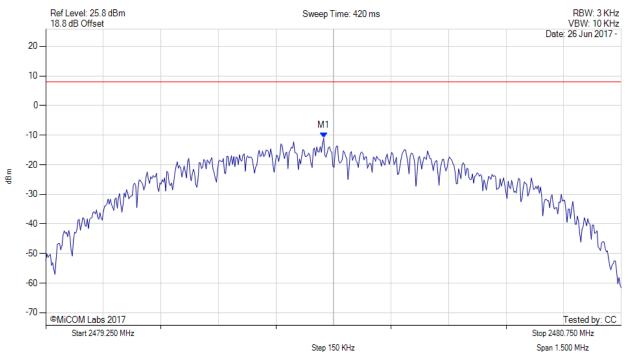

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 57 of 66

POWER SPECTRAL DENSITY - PEAK

Variant: GFSK, Channel: 2480.00 MHz, Chain a, Temp: 20, Voltage: 56 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 2479.974 MHz: -10.978 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		Margin: 18.98 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		



Serial #: POLY35-U2 Rev A BLE

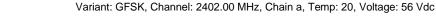
20th July 2017 Issue Date: 58 of 66 Page:

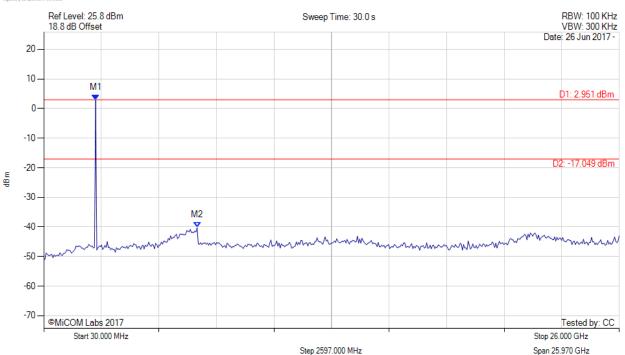
POWER SPECTRAL DENSITY - PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results		
Detector = MAX PEAK	M1: 2479.974 MHz: -10.978 dBm	Limit: ≤ 8.0 dBm		
Sweep Count = 0		Margin: -19.0 dB		
RF Atten (dB) = 20				
Trace Mode = VIEW				

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 59 of 66


A.3. Emissions

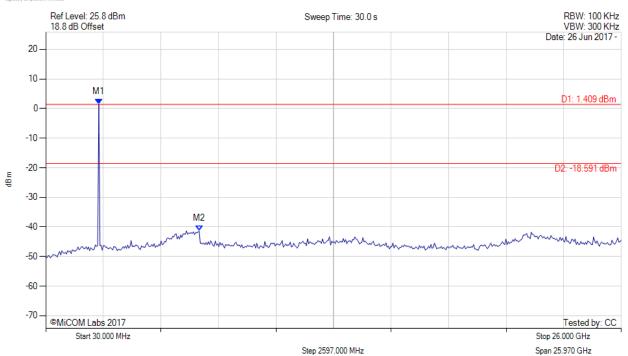

MiTest

A.3.1. Conducted Emissions

A.3.1.1. Conducted Spurious Emissions

CONDUCTED SPURIOUS EMISSIONS - PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 2371.984 MHz: 2.951 dBm	Limit: -17.05 dBm
Sweep Count = 0	M2: 6951.864 MHz: -40.215 dBm	Margin: -23.17 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

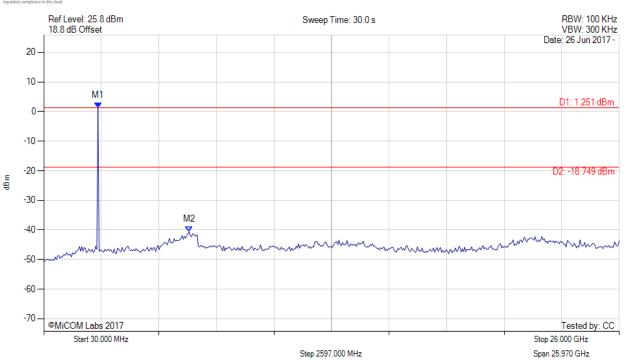

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 60 of 66

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: GFSK, Channel: 2440.00 MHz, Chain a, Temp: 20, Voltage: 56 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results			
Detector = MAX PEAK	M1: 2424.028 MHz: 1.409 dBm	Limit: -18.59 dBm			
Sweep Count = 0	M2: 6951.864 MHz: -41.308 dBm	Margin: -22.72 dB			
RF Atten (dB) = 20					
Trace Mode = VIEW					

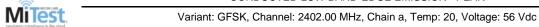

Serial #: POLY35-U2 Rev A BLE

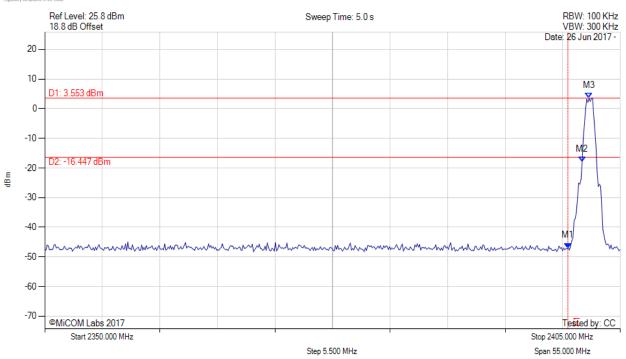
Issue Date: 20th July 2017 **Page:** 61 of 66

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: GFSK, Channel: 2480.00 MHz, Chain a, Temp: 20, Voltage: 56 Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results		
Detector = MAX PEAK	M1: 2476.072 MHz: 1.251 dBm	Limit: -18.75 dBm		
Sweep Count = 0	M2: 6587.555 MHz: -40.563 dBm	Margin: -21.81 dB		
RF Atten (dB) = 20				
Trace Mode = VIEW				


To: FCC Part 15.247 (DTS) & IC RSS-247

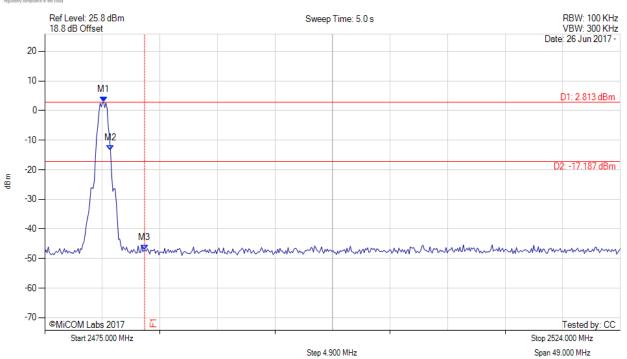

Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 Page: 62 of 66

A.3.1.2. Conducted Band-Edge Emissions

CONDUCTED LOW BAND-EDGE EMISSION - PEAK

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 2400.000 MHz : -47.018 dBm	Channel Frequency: 2402.00 MHz
Sweep Count = 0	M2: 2401.363 MHz: -18.011 dBm	
RF Atten (dB) = 20	M3: 2402.024 MHz: 3.553 dBm	
Trace Mode = VIEW		


Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 63 of 66

CONDUCTED HIGH BAND-EDGE EMISSION - PEAK

MiTest

Variant: GFSK, Channel: 2480.00 MHz, Chain a, Temp: 20, Voltage: 56 Vdc

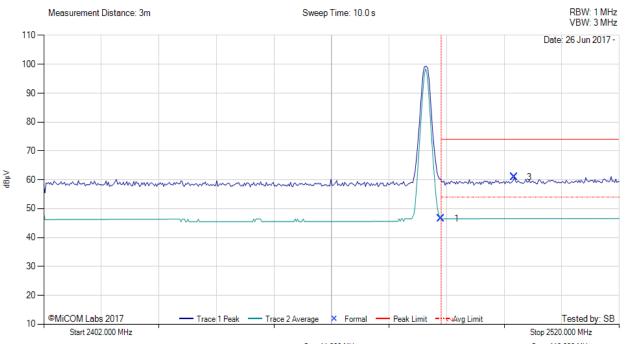

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 2480.008 MHz: 2.813 dBm	Channel Frequency: 2480.00 MHz
Sweep Count = 0	M2 : 2480.597 MHz : -13.551 dBm	
RF Atten (dB) = 20	M3 : 2483.500 MHz : -47.140 dBm	
Trace Mode = VIEW		

Serial #: POLY35-U2 Rev A BLÉ

Issue Date: 20th July 2017 **Page:** 64 of 66

A.4. Radiated Band Edge Emissions

	2310.00 - 2420.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2389.78	24.49	2.69	32.04	59.22	Max Peak	Horizontal	152	14	74.0	-14.8	Pass
2	2390.00	11.43	2.69	32.04	46.16	Max Avg	Horizontal	152	14	54.0	-7.8	Pass
3	2390.00					Restricted- Band						



Serial #: POLY35-U2 Rev A BLE

Issue Date: 20th July 2017 **Page:** 65 of 66

Variant: , Test Freq: 2480.00 MHz, Power Setting: Max, Duty Cycle (%): 99

Step 11.800 MHz Span 118.000 MHz

	2402.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.50	11.44	2.73	32.37	46.54	Max Avg	Horizontal	106	313	54.0	-7.5	Pass
3	2498.40	25.76	2.74	32.39	60.89	Max Peak	Horizontal	106	313	74.0	-13.1	Pass
2	2483.50					Restricted- Band						

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com