

6L0296RUS1

Applicant:	Sirit Inc. 1321 Valwood Parkway Carrollton, TX 75006
Equipment Under Test:	IDentity MaX Reader–012
In Accordance With:	FCC Part 15, Subpart C, 15.247 Frequency Hopping Transmitters
Tested By:	Nemko USA Inc. 802 N. Kealy Lewisville, Texas 75057-3136
Authorized By:	Arctif
	Abe Cox, Key Accounts Manager
Date:	29 June 2006

Nemko Test Report:

PROJECT NO.: 6L0296RUS1

Table of Contents

Section 1.	Summary of Test Results	3
	Equipment Under Test (E.U.T.)	
Section 3.	Channel Separation.	7
Section 4.	Time of Occupancy	10
Section 5.	Peak Power Output	17
Section 6.	Spurious Emissions (Antenna Conducted)	21
Section 7.	Powerline Conducted Emissions	31
Section 8. T	'est Equipment List	36
ANNEX A	- TEST DETAILS	37
ANNEX B	- TEST DIAGRAMS	45

Nemko USA, Inc.

FCC PART 15, SUBPART C

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

Section 1. Sur	nmary of	Test Re	sults
----------------	----------	---------	-------

Manufacturer: Sirit Inc.

Model No.: IDentity MaX Reader–012

Serial No.: ENG-MAX-008

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Frequency Hopping Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

\boxtimes	New Submission	Production Unit
	Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

MAJAN

NVLAP LAB CODE: 100426-0

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	RESULT
Powerline Conducted Emissions	15.207(a)	48 dBμV	COMPLIES
Channel Separation	15.247(a)(1)	Greater of 25 kHz or 20 dB Bandwidth	COMPLIES
Pseudorandom Hopping Algorithm	15.247(a)(1)		COMPLIES
Time of Occupancy	15.247(a)(1)(ii)	≤ 0.4 sec in 20 sec	COMPLIES
20 dB Occupied Bandwidth	15.247(a)(1)	≤ 1 MHz	COMPLIES
Peak Power Output	15.247(b)	1 Watt	COMPLIES
Spurious Emissions (Antenna Conducted)	15.247(c)	-20 dBc	COMPLIES
Spurious Emissions (Radiated)	15.247(c)	Table 15.209(a)	COMPLIES

Footnotes:

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

Section 2. Equipment Under Test (E.U.T.)

General Equipment Information

Frequency Band: 902 - 928 MHz

2400 – 2483.5 MHz

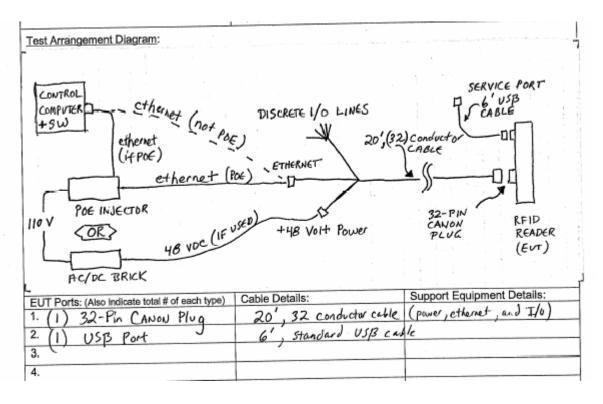
Channel Frequencies: 902.75 to 927.25 MHz

Number of Channels: 50

Channel Spacing: 500kHZ

User Frequency Adjustment: Software controlled

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER


EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

Description of DUT

The IDentity MaX reader is an RFID device capable of reading EPC Class 0, Class 1 and Class 1 Gen 2 RFID tags, and processing the data for a gated access type application. Generally, the reader is configured, upon installation, to work with specific inputs and outputs to interface with customer systems including access panels, gates and visual indicators. All system configurations are accomplished using either a PC based application or a web based user interface.

System Diagram

48 VDC Power Supply AULT Model PW118

PoE Power Supply PHIHONG Model PSA16U-480(POE)

The 48 VDC Power supply was used during testing.

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

Section 3. Channel Separation

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

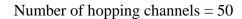
TESTED BY: Kevin Rose DATE: June 16, 2006

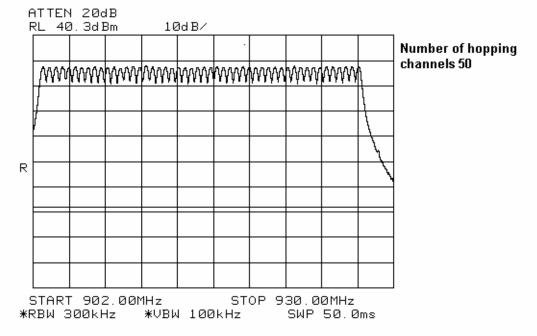
Test Results: Complies.

Measurement Data: See 20 dB BW plot

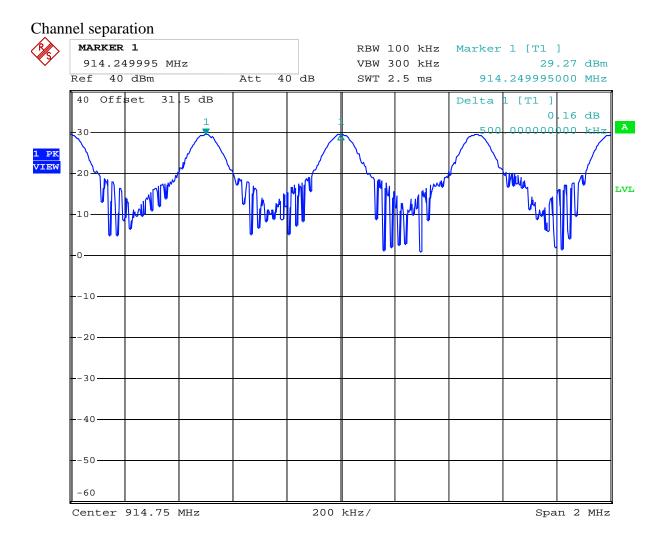
Measured 20 dB bandwidth: 352 kHz Channel Separation: 500 kHz

Equipment Used: 1045,1083,1464,1659,1064,1065.


Measurement Uncertainty: +/- 1.7 dB


Temperature: 20°C

Relative 46%


Humidity:

PROJECT NO.: 6L0296RUS1

PROJECT NO.: 6L0296RUS1

Date: 16.JUN.2006 13:14:52

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

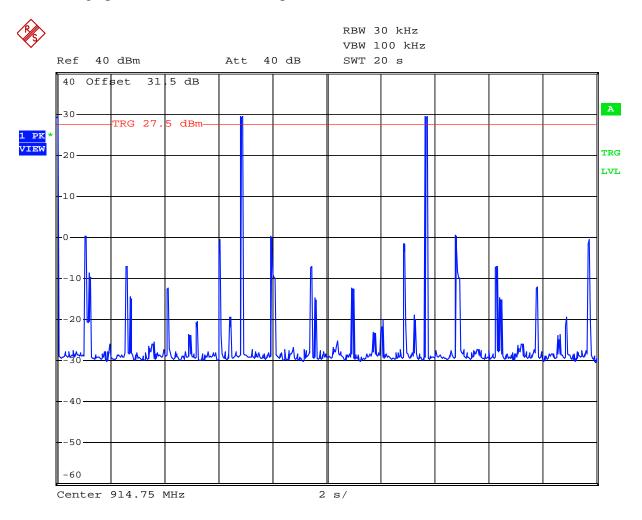
PROJECT NO.: 6L0296RUS1

Section 4. Time of Occupancy

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)

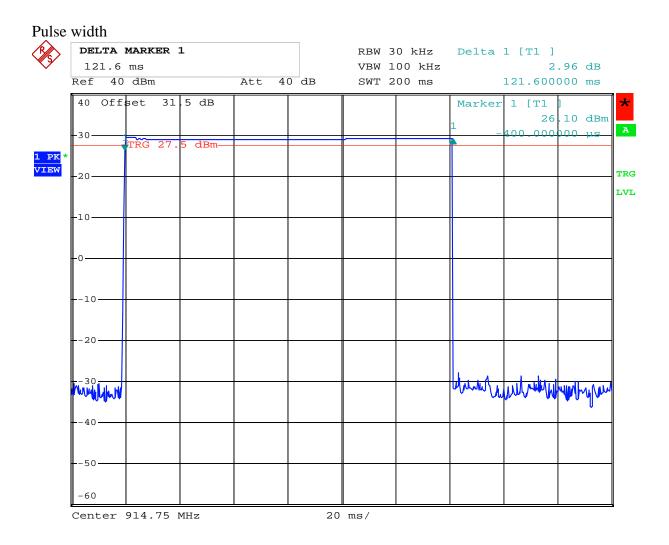
TESTED BY: Kevin Rose DATE: June 16, 2006

Test Results: Complies.


Measurement Data:

Maximum Dwell Time On Any Channel: 364.8 mS in 20 seconds

Equipment Used: 1045,1083,1464,1659,1064,1065.


PROJECT NO.: 6L0296RUS1

20 second graph 364.8ms in a 20 second period

Date: 16.JUN.2006 13:10:57

PROJECT NO.: 6L0296RUS1

Date: 16.JUN.2006 13:13:13

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

Section 5. Occupied Bandwidth

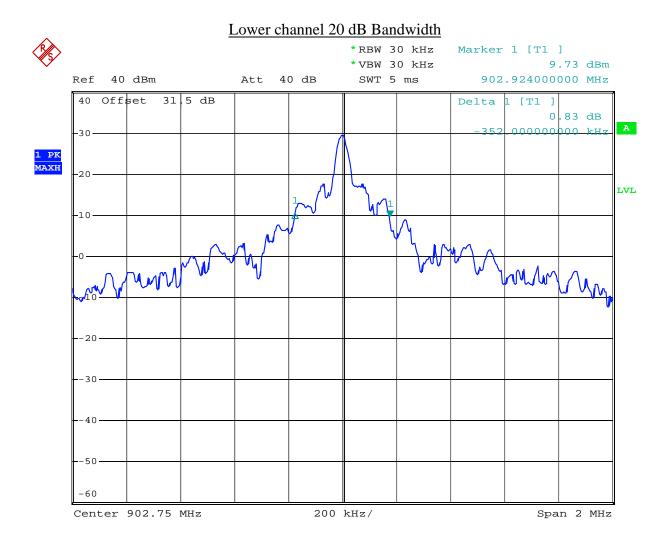
NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(1)(i)

TESTED BY: Kevin Rose DATE: June 16 2006

Test Results: Complies.

Measurement Data: See attached plots.

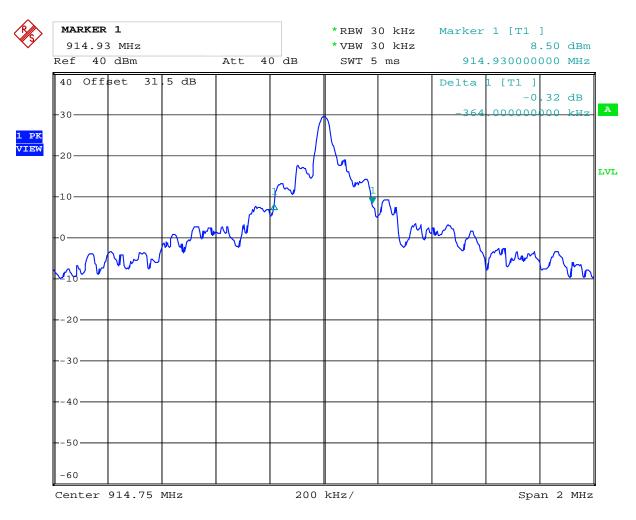
Equipment Used: 1045,1083,1464,1659,1064,1065.


Measurement Uncertainty: +/- 1.7 dB

Temperature: 19°C

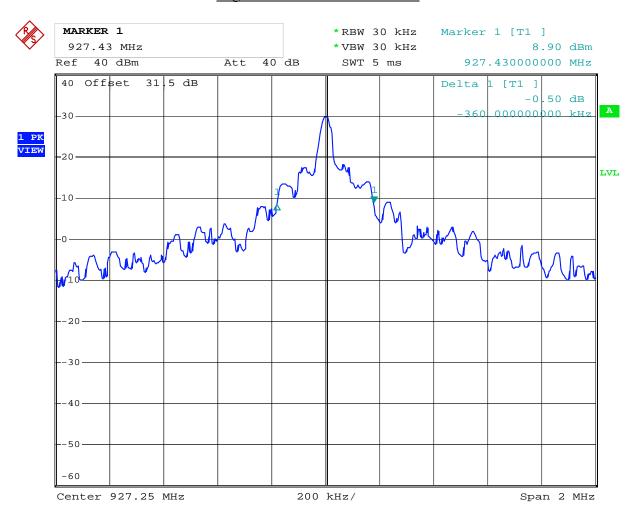
Relative 38%

Humidity:


PROJECT NO.: 6L0296RUS1

Date: 16.JUN.2006 13:20:54

PROJECT NO.: 6L0296RUS1


Mid channel 20 dB Bandwidth

Date: 16.JUN.2006 13:42:32

PROJECT NO.: 6L0296RUS1

High channel 20 dB Bandwidth

Date: 16.JUN.2006 13:38:28

Nemko USA, Inc.

FCC PART 15, SUBPART C

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader–012

PROJECT NO.: 6L0296RUS1

Section 5. Peak Power Output

NAME OF TEST: Peak Power Output PARA. NO.: 15.247 (b)

TESTED BY: Kevin Rose DATE: June 16, 2006

Test Results: Complies.

Measurement Data: See attached plots.

If yes, state the type of non-standard connector MMCX

used:

Antennas:

Model	Туре	Manufacturer	Gain (dBi)	E.I.R.P. (dBm)		
ID Max Integrated Antenna	Panel	Sirit Inc.	5.47	35.23		
Peak power output at anten	Peak power output at antenna port(dBm): 29.76					

Equipment Used: 1045,1083,1464,1659,1064,1065.

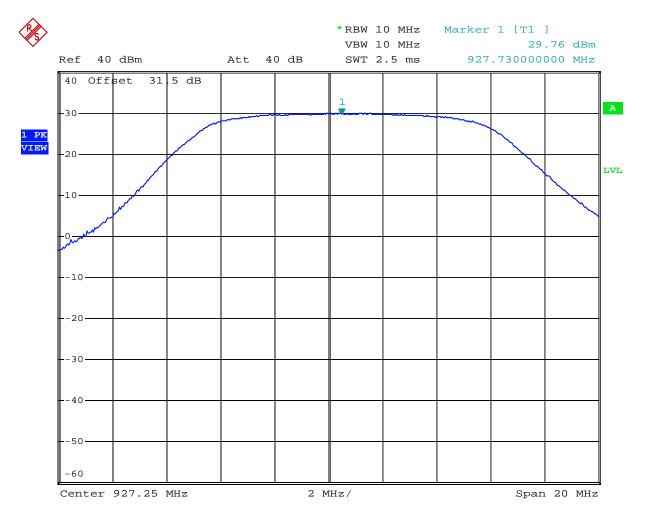
Measurement Uncertainty: +/- 1.7 dB

Temperature: 19°C

Relative 38%

Humidity:

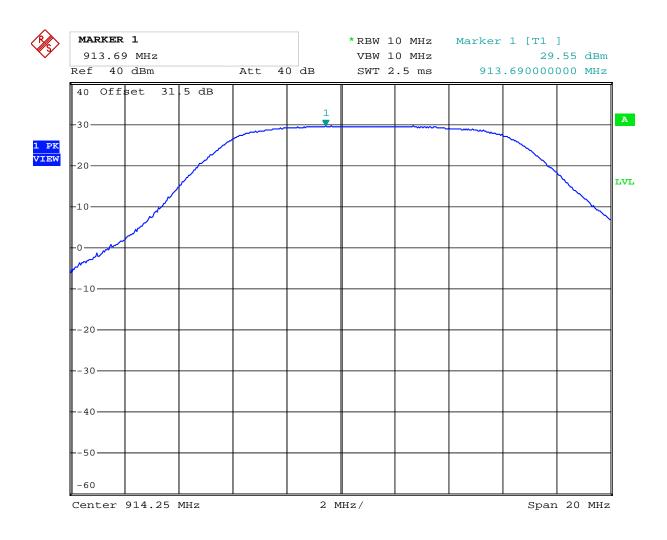
15.31(e): The DUT was tested at +/- 15% input voltage on both power supplies. This had


no effect on output power.

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

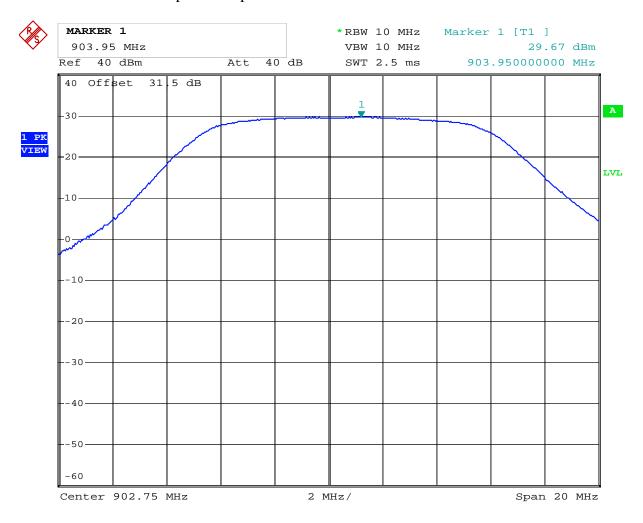
EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1


High channel conducted power

Date: 16.JUN.2006 13:46:57

PROJECT NO.: 6L0296RUS1


Mid channel conducted power output

Date: 16.JUN.2006 13:47:34

PROJECT NO.: 6L0296RUS1

Low channel conducted power output

Date: 16.JUN.2006 13:48:42

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

Section 6. Spurious Emissions (Antenna Conducted)

NAME OF TEST: Spurious Emissions (Antenna Conducted) PARA. NO.: 15.247(c)

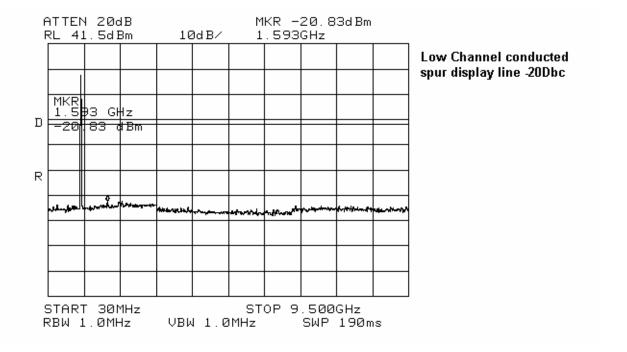
TESTED BY: Kevin Rose DATE: June 16, 2006

Test Results: Complies

Measurement Data:

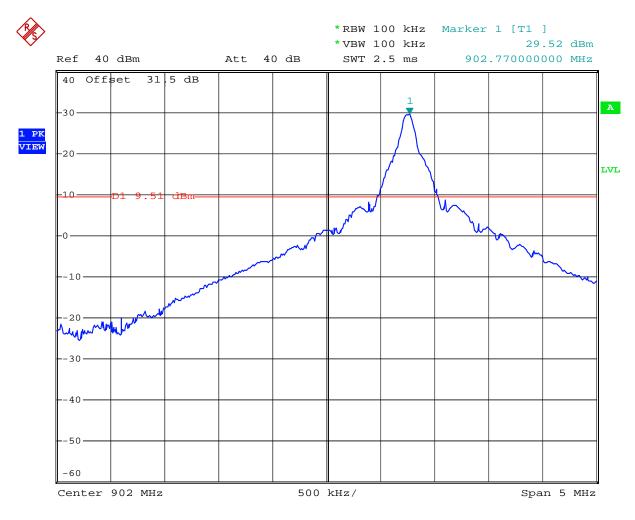
Equipment Used: 1045,1083,1464,1659,1064,1065.

Measurement Uncertainty: +/- 1.7 dB


Temperature: 21°C

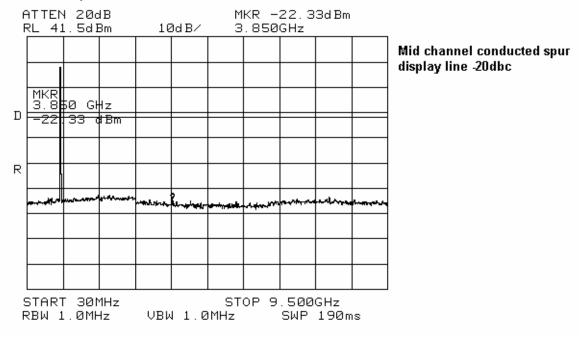
Relative 46%

Humidity:

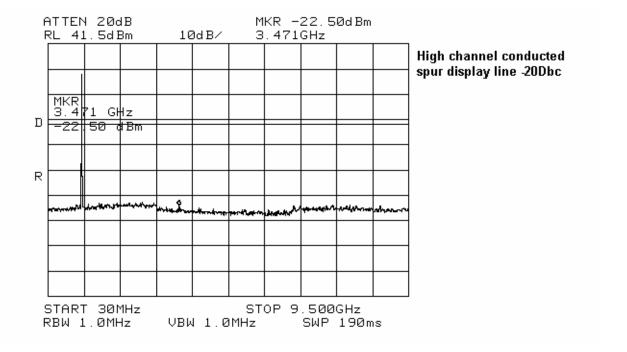

PROJECT NO.: 6L0296RUS1

LOW CHANNEL Spurious Emissions

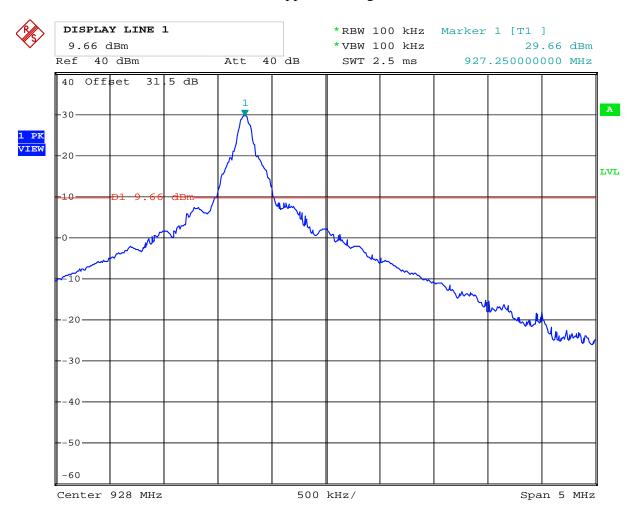
PROJECT NO.: 6L0296RUS1


Lower bandedge 20dBc

Date: 16.JUN.2006 13:30:22


PROJECT NO.: 6L0296RUS1

MID CHANNEL Spurious Emissions


PROJECT NO.: 6L0296RUS1

HIGH CHANNEL Spurious Emissions

PROJECT NO.: 6L0296RUS1

Upper Bandedge

Date: 16.JUN.2006 13:28:07

Nemko USA, Inc.

FCC PART 15, SUBPART C

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader–012

PROJECT NO.: 6L0296RUS1

Section 7. Spurious Emissions (Radiated)

NAME OF TEST: Spurious Emissions (Radiated) PARA. NO.: 15.247(c)

TESTED BY: Kevin Rose DATE: June 16, 2006

Test Results: Complies.

Measurement Data: See attached table.

Duty Cycle Calculation: No Duty Cycle

Duty Cycle correction factor (dB) = $20 \log (rf_{ON} \text{ in ms}/100 \text{ms})$

Equipment Used: 791,760,759,1016,993,1484,1485,1464.

Measurement Uncertainty: +/- 1.7 dB

Temperature: 19°C

Relative 38%

Humidity:

All measurement were made with 1MHz RBW and 1MHz VBW for peak and 1MHz RBW and 10Hz VBW for average measurements.

During the test the EUT was transmitting continuous and hopping function was disabled.

Note: All readings are Peak 1MHz RBW and 1MHz VBW

PROJECT NO.: 6L0296RUS1

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

Test Data - Radiated Emissions

LOW CHANNEL

Measu	rement Data:	Rea	ding liste	ed by orde	er taken.		Те	est Distance	e: 3 Meters	i	
			Cable	Cable	Pre-A						
#	Freq	Rdng	Horn				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	$dB\mu V/m$	dB	Ant
					Low C	hannel					
1	1805.493M	21.3	+0.7	+2.0	+27.7		+0.0	23.6	54.0	-30.4	Vert
			+27.3								
2	7221.984M	24.5	+1.2	+3.9	+24.8		+0.0	40.8	54.0	-13.2	Vert
	7.11.5.10.73.F	22.0	+36.0	2.5	25.6		0.0	242	7 40	10.0	**
3	5416.485M	22.8	+1.2	+3.5	+27.6		+0.0	34.2	54.0	-19.8	Vert
4	6210 250M	22.0	+34.3	.20	.26.1		. 0. 0	26.5	540	17.5	XIt
4	6319.250M	22.8	+1.3 +34.6	+3.9	+26.1		+0.0	36.5	54.0	-17.5	Vert
5	1805.496M	25.2	+0.7	+2.0	+27.7		+0.0	27.5	54.0	-26.5	Horiz
)	1603.490101	23.2	+27.3	+2.0	+27.7		+0.0	21.3	34.0	-20.3	попи
6	4513.742M	27.0	+1.0	+3.1	+27.6		+0.0	35.5	54.0	-18.5	Horiz
0	4313.742WI	27.0	+32.0	⊤3.1	±27.0		+0.0	33.3	34.0	-10.5	110112
7	5416.486M	27.0	+1.2	+3.5	+27.6		+0.0	38.4	54.0	-15.6	Horiz
			+34.3						- 110		
8	7221.986M	23.5	+1.2	+3.9	+24.8		+0.0	39.8	54.0	-14.2	Horiz
			+36.0								
					Mid C	hannel					
9	1829.502M	22.8	+0.7	+2.1	+27.8		+0.0	25.2	54.0	-28.8	Horiz
			+27.4								
10	4573.737M	23.2	+1.0	+3.1	+27.6		+0.0	31.9	54.0	-22.1	Horiz
			+32.2							100	
11	5488.487M	23.7	+1.2	+3.5	+27.6		+0.0	35.2	54.0	-18.8	Horiz
10	(402 227) (26.0	+34.4	.20	.05.6		. 0. 0	41.0	540	12.0	тт .
12	6403.237M	26.8	+1.3	+3.9	+25.6		+0.0	41.0	54.0	-13.0	Horiz
12	7317.987M	22.5	+34.6	+4.0	+25.0		+0.0	38.8	54.0	-15.2	Horiz
13	1311.98/WI	22.3	+1.2 +36.1	+4.0	+23.0		+0.0	30.0	J4.U	-13.2	попи
14	6403.235M	24.5	+1.3	+3.9	+25.6		+0.0	38.7	54.0	-15.3	Vert
14	0703.233141	24.3	+34.6	F3.7	123.0		10.0	30.1	J +. U	-13.3	v CI t
L			137.0								

20 6490.738M

21 1854.488M

6L0296RUS1

PROJECT NO.:

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

+0.0

+0.0

40.1

24.9

54.0

54.0

-13.9

-29.1

Horiz

Horiz

EQUIPMENT: IDentity MaX Reader-012

High Channel 15 1854.496M 23.5 +0.7+2.1+27.8+0.026.1 54.0 -27.9 Vert +27.616 6490.740M +0.025.8 +1.3+4.0+25.240.6 54.0 -13.4 Vert +34.7 17 7417.988M +0.022.8 +1.2+4.1+25.3 39.1 54.0 -14.9 Vert +36.3 18 8345.236M 23.0 +1.2 +4.4 +23.4 +0.042.1 54.0 -11.9 Vert +36.919 7417.988M -13.4 24.3 +1.2+4.1+25.3 +0.040.6 54.0 Horiz +36.3

+25.2

+27.8

Note: All readings are Peak 1MHz RBW and 1MHz VBW

+1.3

+34.7

+0.7

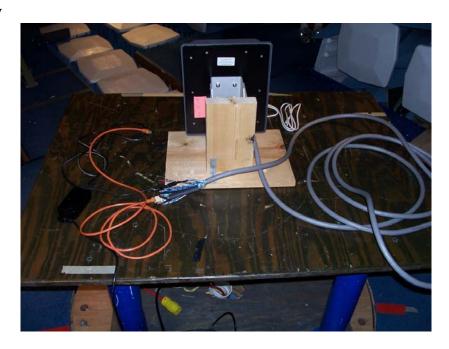
+27.6

+4.0

+2.1

25.3

22.3


PROJECT NO.: 6L0296RUS1

Radiated Photographs

FRONT VIEW

REAR VIEW

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

Section 7. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

TESTED BY: Kevin Rose DATE: June 16 2006

Test Results: Complies.

Measurement Data: See attached plots.

Equipment Used: 1659,1258,1081,1555

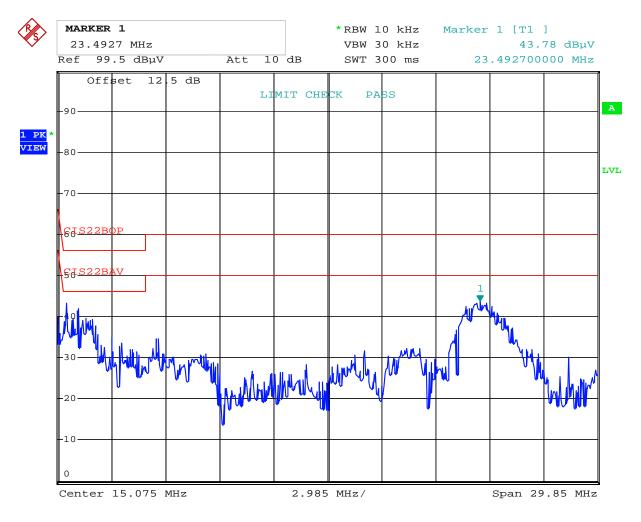
Measurement Uncertainty: +/- 1.7 dB

Temperature: 22°C

Relative 43%

Humidity:

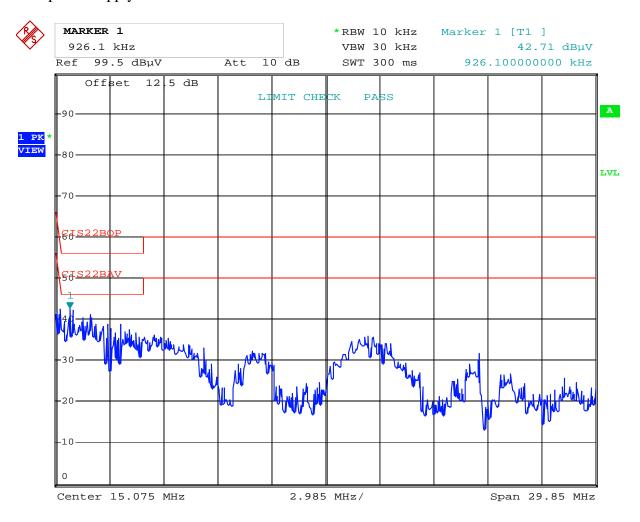
Ault power supply


PhiHong

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

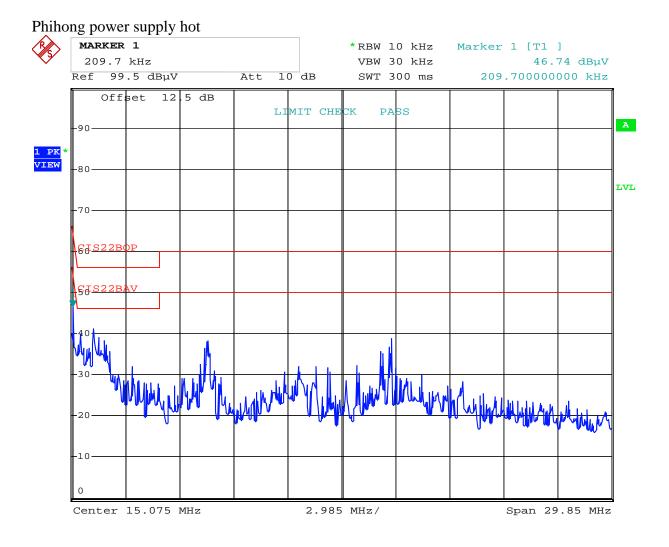
PROJECT NO.: 6L0296RUS1


Ault power supply hot

Date: 16.JUN.2006 14:52:26

PROJECT NO.: 6L0296RUS1

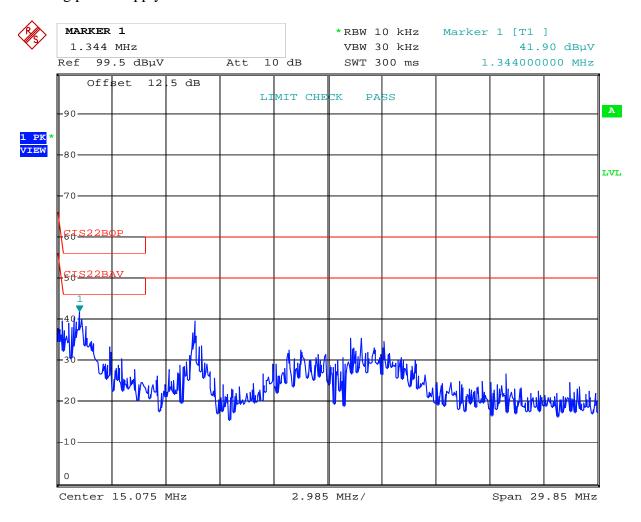
Ault power supply Neutral



Date: 16.JUN.2006 14:50:31

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012


PROJECT NO.: 6L0296RUS1

Date: 16.JUN.2006 14:56:22

PROJECT NO.: 6L0296RUS1

Phihong power supply neutral

Date: 16.JUN.2006 14:58:48

PROJECT NO.: 6L0296RUS1

Section 8. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
1045	CABLE 2m	Astrolab Inc. 32027-2-29094-72TC	N/A	CBU	N/A
1083	Cable 2m	Astrolab 32027-2-29094-72TC	N/A	CBU	N/A
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/14/05	01/15/07
1659	Spectrum Analyzer	Rhode & Schwarz FSP	973353	01/10/06	01/10/07
1064	ATTENUATOR	NARDA 776B-20	NONE	CBU	N/A
1065	ATTENUATOR	NARDA 776B-10	NONE	CBU	N/A
791	PREAMP, 25dB	Nemko USA, Inc. LNA25	398	04/20/06	04/20/07
760	Antenna biconical	Electro Metrics MFC-25	477	08/04/05	08/04/06
759	ANTENNA, LOG PERIODIC	A.H. SYSTEMS SAS-200/510	556	02/13/06	02/13/07
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	04/20/06	04/20/07
993	Horn antenna	A.H. Systems SAS-200/571	XXX	08/01/05	08/02/07
1484	Cable 2.0-18.0 Ghz	Storm PR90-010-072	N/A	08/26/05	08/26/06
1485	Cable 2.0-18.0 Ghz	Storm PR90-010-216	N/A	08/26/05	08/26/06
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/14/05	01/15/07
1659	Spectrum Analyzer	Rhode & Schwarz FSP	973353	01/10/06	01/10/07
1258	LISN .15mhz-30mhz	EMCO 0	1305	04/19/06	04/19/07
1081	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	06/15/06	06/15/07
1555	Filter high pass 5KHz	Solar Electronics 7930-5.0	933125	04/20/06	04/20/07

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

ANNEX A - TEST DETAILS

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

Minimum Standard: Frequency hopping systems shall have hopping channel carrier

frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Page 38 of 47

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader–012

PROJECT NO.: 6L0296RUS1

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)(ii)

Minimum Standard:

Frequency	20 dB	No. of	Average Time of
Band	Bandwidth	Hopping	Occupancy
(MHz)		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20 sec.
902 - 928	=>250 kHz	25	=<0.4 sec. in 10 sec.
2400 - 2483.5		75	=<0.4 sec. in 30 sec.
5725 - 5850		75	=<0.4 sec. in 30 sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz

LOG dB/div.: 10 dB

Sweep: Sufficient to see one hop time sequence.

Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table (10, 20, or 30 seconds).

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

Nemko USA, Inc.

FCC PART 15, SUBPART C

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 - 2483.5	1 MHz
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div.

VBW: >RBW

Span: Sufficient to display 20 dB bandwidth

LOG dB/div.: 10 dB

Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

NAME OF TEST: Peak Power Output PARA. NO.: 15.247(b)

Minimum Standard:

Frequency	No. of	Maximum Peak
Band	Hopping	Power Output at
(MHz)	Channels	Antenna Port
902 - 928	at least 50	1 watt
902 – 928	25 - 49	0.25 watts
2400 – 2483.5	75	1 watt
5725 – 5850	75	1 watt

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

PROJECT NO.: 6L0296RUS1

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi$ $R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E =the maximum measured field strength in V/m

R =the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 20 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205

shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

Method Of Measurement:

30 MHz - 10th harmonic plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader-012

PROJECT NO.: 6L0296RUS1

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency	Field Strength	Field Strength
(MHz)	(μV/m @ 3m)	(dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

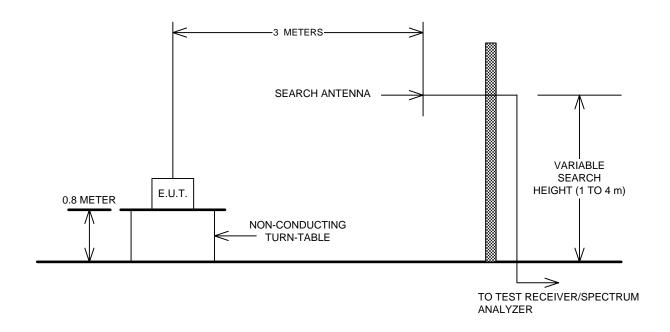
THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands

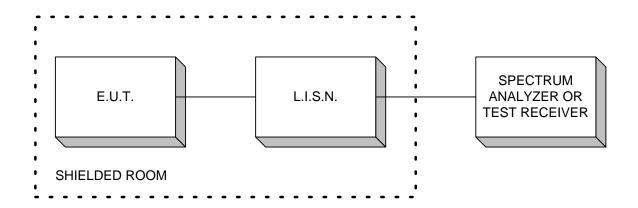
MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER


EQUIPMENT: IDentity MaX Reader-012

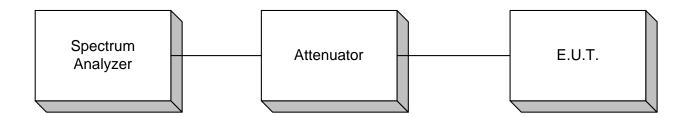
PROJECT NO.: 6L0296RUS1


ANNEX B - TEST DIAGRAMS

PROJECT NO.: 6L0296RUS1

Test Site For Radiated Emissions

Conducted Emissions



FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: IDentity MaX Reader–012

PROJECT NO.: 6L0296RUS1

Peak Power At Antenna Terminals

