

EMC TEST REPORT

Report No. : EME-041122

Model No. : XG-650MB

Issued Date : Dec. 16, 2004

Applicant : Z-COM, Inc.
7F-2, No. 9, Prosperity 1st RD., Science-Based Industrial
Park, Hsinchu, Taiwan

Test By : Intertek Testing Services Taiwan Ltd.
No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li,
Shiang-Shan District, Hsinchu City, Taiwan

This test report consists of 35 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

Project Engineer

Jackey Chiu

Jackey Chiu

Reviewed By

Jerry Liu

Jerry Liu

Table of Contents

Summary of Tests.....	3
1. General information	4
1.1 Identification of the EUT	4
1.2 Additional information about the EUT	4
1.3 Antenna description	5
1.4 Peripherals equipment.....	5
2. Test specifications	6
2.1 Test standard.....	6
2.2 Operation mode	6
2.3 Test equipment.....	7
3. Maximum Output Power test.....	8
3.1 Operating environment	8
3.2 Test setup & procedure.....	8
3.3 Measured data of Maximum Output Power test results.....	8
4. Radiated Emission test	9
4.1 Operating environment	9
4.2 Test setup & procedure.....	9
4.3 Emission limits	10
4.4 Radiated spurious emission test data	11
4.4.1 Measurement results: frequencies equal to or less than 1 GHz.....	11
4.4.2 Measurement results: frequency above 1GHz.....	15
5. Emission on the band edge §FCC 15.247(C)	27
5.1 Band-edge (Radiated method).....	28

Summary of Tests**54Mbps 802.11g Wireless Mini-PCI Adapter - Model: XG-650MB**
FCC ID: M4Y-0XG650

Test	Reference	Results
Radiated Spurious Emission test	15.205, 15.209	Complies

1. General information

1.1 Identification of the EUT

Applicant : Z-COM, Inc.
Product : 54Mbps 802.11g Wireless Mini-PCI Adapter
Model No. : XG-650MB
FCC ID. : M4Y-0XG650
Frequency Range : 2412~2462 MHz
Channel Number : 11 Channels
Frequency of Each Channel : 2412MHz, 2417MHz, 2422MHz, 2427MHz, 2432MHz, 2437MHz, 2442MHz, 2447MHz, 2452MHz, 2457MHz, 2462MHz
Type of Modulation : DSSS, OFDM
Rated Power : 3.3Vdc
Power Cord : N/A
Sample Received : Nov. 16, 2004
Test Date(s) : Nov. 19, 2004 ~ Dec. 15, 2004

A FCC DoC report has been generated for the client.

1.2 Additional information about the EUT

The 802.11g Wireless LAN Mini-PCI Adapter is an enhanced high-performance, that supports high-speed wireless networking at home, at office or in public places. 802.11g Wireless LAN Mini-PCI Adapter is able to communicate with any 802.11b and 802.11g compliant products.

We verified that XG-650MB is series model to XG-650, for the model is identical in hardware aspect, and the different is in IC and components.

Owing to the change of IC and components. We conducted the Radiated Spurious Emission Test and Band-edge test.

The EUT meets special requirements for full modular approval on FCC Public Notice DA 00-1407 and the device is only for OEM integrator, please refer the test result in this report.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

1.3 Antenna description

The antenna is a fixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna Gain : 2dBi

Antenna Type : Dipole antenna

Connector Type : UFL

1.4 Peripherals equipment

Peripherals	Manufacturer	Product No.	Serial No.	FCC ID
Notebook PC	IBM	2609	BA-ZHNHN	FCC DoC Approved
Printer	HP	C2642A	TH86K1N2ZB	FCC DoC Approved
Modem	Dynalink	V1456VQE	00V230A00051494	FCC DoC Approved
Access Point	SMC	WG 4005-17 2 (A3)	C-G 3030232-1-1-3*1000	FCC DoC Approved

2. Test specifications

2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section § 15.205、§15.207、§15.209、§15.247 and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

2.2 Operation mode

The EUT was transmitted continuously during the test.

After verifying the maximum output power, we found the maximum output power of 802.11b was occurred at 11Mbps data rate and 802.11g was occurred at 54Mbps data rate. The final test was executed under this condition and recorded in this report individually.

2.3 Test equipment

Equipment	Brand	Frequency range	Model No.	Intertek ID No.	Next Cal. Date
EMI Test Receiver	Rohde & Schwarz	9kHz~2.75GHz	ESCS 30	EC303	04/13/2005
EMI Test Receiver	Rohde & Schwarz	20Hz~26.5GHz	ESMI	EC317	07/14/2005
Spectrum Analyzer	Rohde & Schwarz	9kHz~30GHz	FSP 30	EC353	07/13/2005
Spectrum Analyzer	Rohde & Schwarz	20Hz~40GHz	FSEK 30	EC365	10/18/2005
Horn Antenna	EMCO	1GHz~18GHz	3115	EC338	08/16/2005
Horn Antenna	SCHWARZBECK	14GHz~40GHz	BBHA 9170	EC351	07/08/2005
Bilog Antenna	SCHWARZBECK	25MHz~1.7GHz	VULB 9160	EC368	05/20/2005
Pre-Amplifier	MITEQ	100MHz~26.5GHz	919981	EC373	4/13/2005
Pre-Amplifier	MITEQ	26GHz~40GHz	828825	EC374	1/28/2005
Wideband Peak Power Meter/ Sensor	Anritsu	100MHz~18GHz	ML2497A/ MA2491A	EC396	10/18/2005
Controller	HDGmbH	N/A	HD 100	EP317-1	N/A
Antenna Tower	HDGmbH	N/A	MA 240	EP317-2	N/A
Turn Table	HDGmbH	N/A	DS 420S	EP317-3	N/A
LISN	Rohde & Schwarz	9KHz~30MHz	ESH3-Z5	EC344	01/14/2005

Note: The above equipments are within the valid calibration period.

3. Maximum Output Power test

3.1 Operating environment

Temperature: 25 °C
Relative Humidity: 52 %
Atmospheric Pressure: 1023 hPa

3.2 Test setup & procedure

The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (1.5 dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

3.3 Measured data of Maximum Output Power test results

Test Mode: 802.11b (DSSS Modulation) operating mode

Channel	Freq. (MHz)	C.L. (dB)	Reading (dBm)	Conducted Peak Output Power		Limit (dBm)
				(dBm)	(mW)	
1 (lowest)	2412	1.5	22.01	23.51	224.39	30
6 (middle)	2437	1.5	22.05	23.55	226.46	30
11 (highest)	2462	1.5	21.97	23.47	222.33	30

Remark:

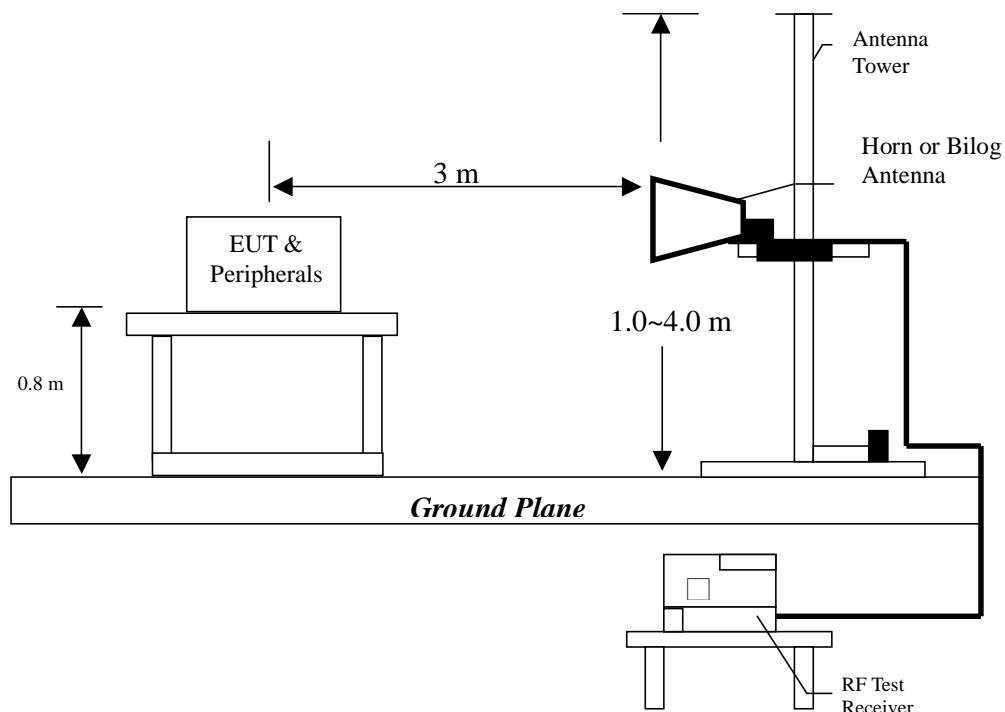
Conducted Peak Output Power = Reading + C.L.

Test Mode: 802.11g (OFDM Modulation) operating mode

Channel	Freq. (MHz)	C.L. (dB)	Reading (dBm)	Conducted Peak Output Power		Limit (dBm)
				(dBm)	(mW)	
1 (lowest)	2412	1.5	22.58	24.08	255.86	30
6 (middle)	2437	1.5	22.61	24.11	257.63	30
11 (highest)	2462	1.5	22.57	24.07	255.27	30

Remark:

Conducted Peak Output Power = Reading + C.L.


4. Radiated Emission test

4.1 Operating environment

Temperature: 22 °C (10-40°C)
Relative Humidity: 50 % (10-90%)
Atmospheric Pressure: 1023 hPa (860-1060hPa)

4.2 Test setup & procedure

The Diagram below shows the test setup, which is utilized to make these measurements.

Radiated emissions were investigated over the frequency range from 30MHz to 1000MHz using a receiver RBW of 120kHz record QP reading, and the frequency over 1GHz using a spectrum analyzer RBW of 1MHz and 10Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1MHz RBW/VBW) recorded also on the report.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

The EUT configuration please refer to the “Spurious set-up photo.pdf”.

4.3 Emission limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency (MHz)	Limits (dB μ V/m@3m)
30-88	40
88-216	43.5
216-960	46
Above 960	54

Remark:

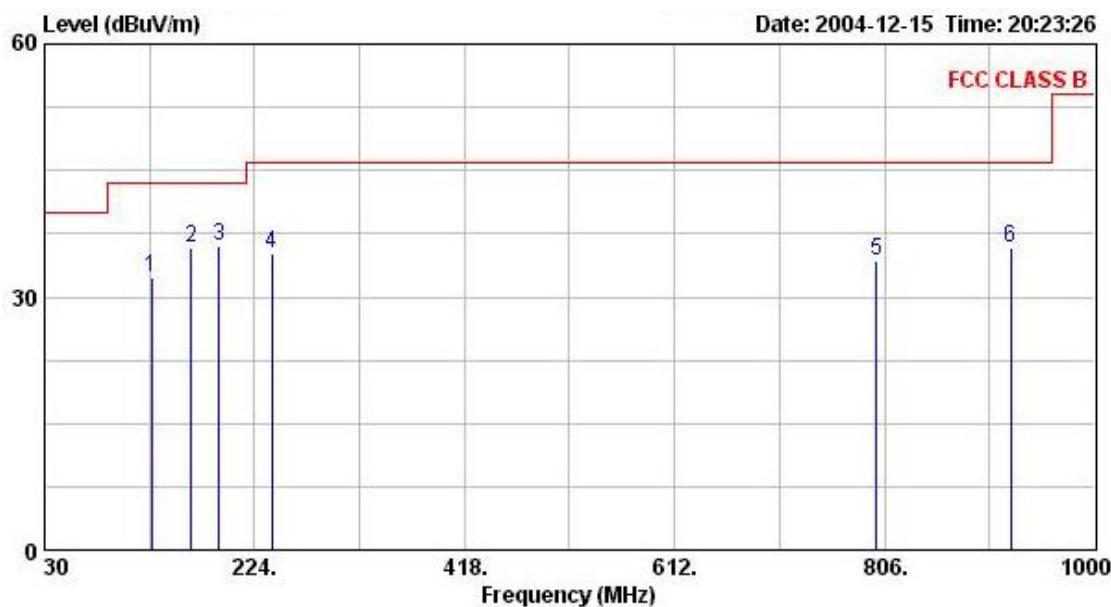
1. In the above table, the tighter limit applies at the band edges.
2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Uncertainty was calculated in accordance with NAMAS NIS 81.

Expanded uncertainty ($k=2$) of radiated emission measurement is ± 4.98 dB.

4.4 Radiated spurious emission test data

4.4.1 Measurement results: frequencies equal to or less than 1 GHz

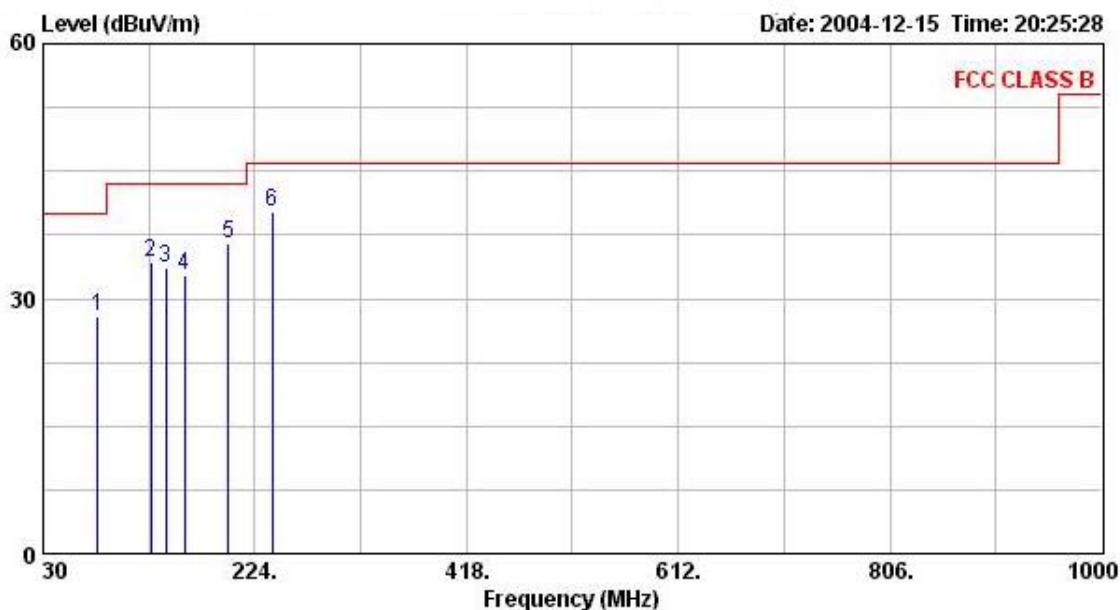

The test was performed on EUT under 802.11b continuously transmitting mode channel 1, 6, 11 were verified. The worst case occurred at 802.11b Tx channel 1.

Phase: Line
 Model No.: XG-650MB
 Worst Case: 802.11b Tx channel 1

Freq MHz	Pol/Phase	Factor	Read	Limit	Over	Ant Pos	Table	Remark
			Level dB	Level dBuV	Line dBuV/m		cm	
128.900	VERTICAL	13.20	19.10	32.30	43.50	-11.20	105	169 QP
165.800	VERTICAL	14.58	21.31	35.89	43.50	-7.61	110	258 QP
191.000	VERTICAL	13.39	22.61	36.00	43.50	-7.50	126	112 QP
240.000	VERTICAL	12.42	22.79	35.21	46.00	-10.79	189	300 QP
798.200	VERTICAL	24.32	9.93	34.25	46.00	-11.75	147	15 QP
922.400	VERTICAL	25.47	10.40	35.87	46.00	-10.13	135	262 QP

Remark:

1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = Level (dBuV) – Limit (dBuV)

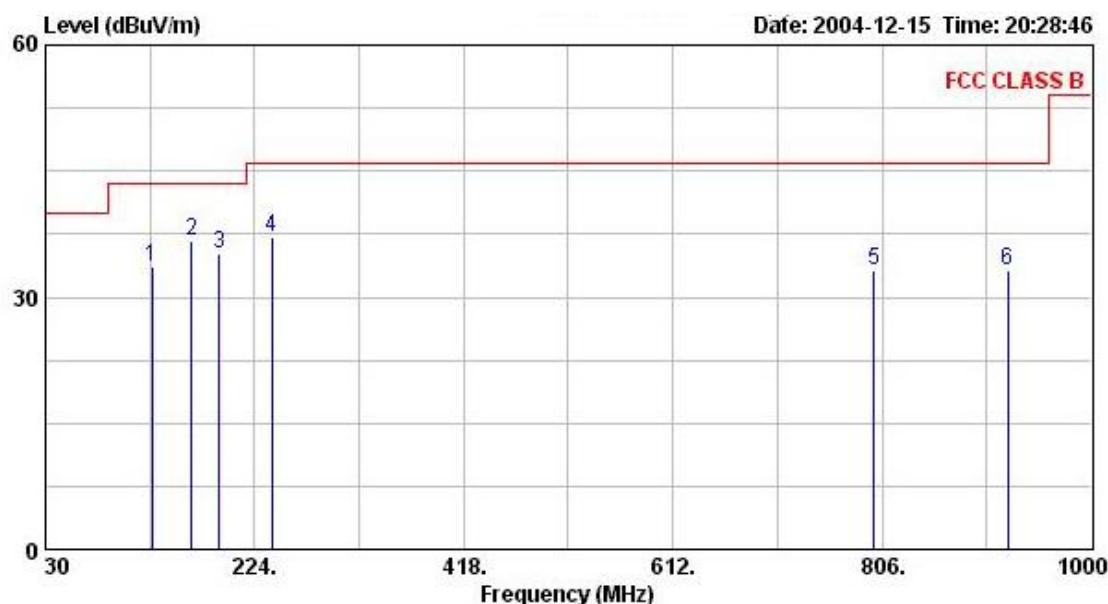


Phase: Neutral
 Model No.: XG-650MB
 Worst Case: 802.11b Tx channel 1

Freq MHz	Pol/Phase	Factor	Read	Limit	Over	Ant	Table		
			Level dB	Level dBuV	Line dBuV/m	Limit dBuV/m	dB	Pos	Pos
80.100	HORIZONTAL	10.05	17.93	27.98	40.00	-12.02	354	101	QP
128.900	HORIZONTAL	13.20	21.06	34.26	43.50	-9.24	300	115	QP
142.500	HORIZONTAL	14.18	19.47	33.65	43.50	-9.85	314	219	QP
160.000	HORIZONTAL	14.92	17.73	32.65	43.50	-10.85	251	95	QP
200.100	HORIZONTAL	12.91	23.56	36.47	43.50	-7.03	285	106	QP
240.100	HORIZONTAL	12.42	27.83	40.25	46.00	-5.75	166	278	QP

Remark:

1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = Level (dBuV) – Limit (dBuV)

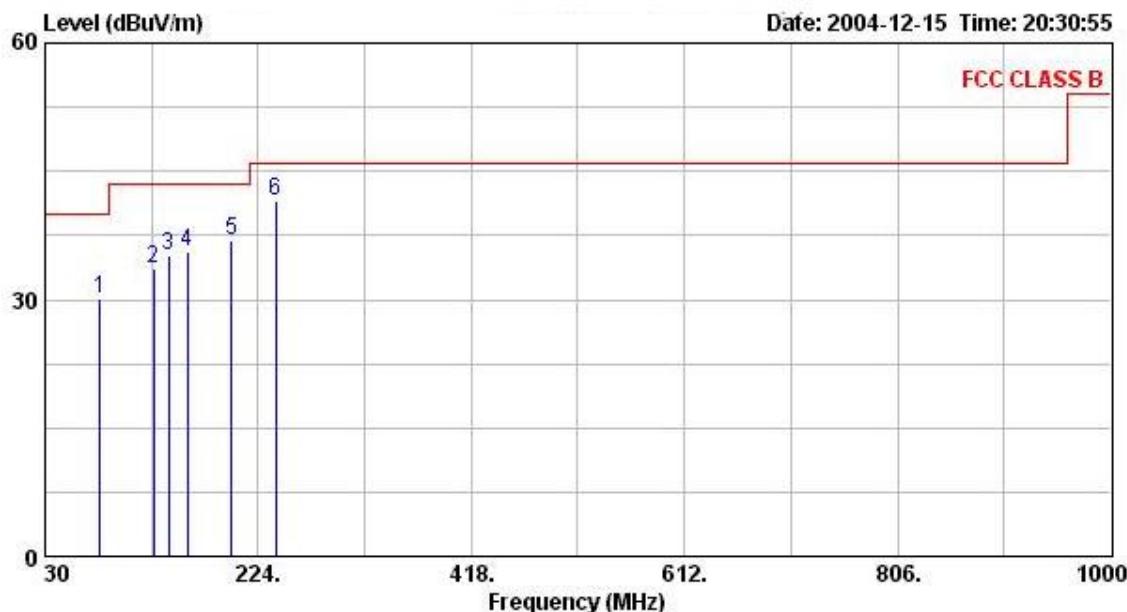

The test was performed on EUT under 802.11g continuously transmitting mode channel 1, 6, 11 were verified. The worst case occurred at 802.11g Tx channel 1.

Phase: Line
 Model No.: XG-650MB
 Worst Case: 802.11g Tx channel 1

Freq MHz	Pol/Phase	Factor	Read	Limit	Over	Ant	Table			
			Level dB	Level dBuV	Line dBuV/m	Line dBuV/m	Limit dB	Pos	Pos	Remark
128.920	VERTICAL		13.20	20.36	33.56	43.50	-9.94	115	282	QP
165.890	VERTICAL	14.58	22.16	36.74	43.50	-6.76	100	145	QP	
191.000	VERTICAL		13.39	21.82	35.21	43.50	-8.29	138	25	QP
240.100	VERTICAL		12.42	24.83	37.25	46.00	-8.75	200	171	QP
798.260	VERTICAL		24.34	8.93	33.27	46.00	-12.73	132	258	QP
922.520	VERTICAL		25.48	7.64	33.12	46.00	-12.88	100	106	QP

Remark:

1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = Level (dBuV) – Limit (dBuV)



Phase: Neutral
 Model No.: XG-650MB
 Worst Case: 802.11g Tx channel 1

Freq	Pol/Phase	Factor	Read	Limit	Over	Ant	Table				
			Level	Level	Line	Limit	Pos	Pos	Remark		
MHz			dB	dBuV	dBuV/m	dBuV/m			cm	deg	
80.000	HORIZONTAL	10.05	20.14	30.19	40.00	-9.81	400	62	QP		
128.930	HORIZONTAL	13.20	20.42	33.62	43.50	-9.88	352	168	QP		
142.590	HORIZONTAL	14.37	20.77	35.14	43.50	-8.36	341	111	QP		
160.000	HORIZONTAL	14.92	20.71	35.63	43.50	-7.87	230	299	QP		
200.180	HORIZONTAL	12.91	24.10	37.01	43.50	-6.49	275	14	QP		
240.000	HORIZONTAL	12.42	29.21	41.63	46.00	-4.37	193	85	QP		

Remark:

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = Level (dBuV) - Limit (dBuV)

4.4.2 Measurement results: frequency above 1GHz

Polarity: : Vertical

EUT : XG-650MB

Test Condition : 802.11b Tx channel 1

Frequency (MHz)	Spectrum Analyzer Detector	Antenna Polariz. (H/V)	Preamp (dB)	Correction Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV)	Limit @ 3 m (dBuV)	Margin (dB)	Antenna high (cm)	Turn Table angle (degree)
4076.000	PK	V	39.61	35.57	50.58	46.54	74	-27.46	167	209
4076.000	AV	V	39.61	35.57	45.66	41.62	54	-12.38	167	209

Remark:

1. Corrected Level = Reading + Correction Factor – Preamp
2. Correction Factor = Antenna Factor + Cable Loss
3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is :

For PK:

1GHz-3GHz: 20dBuV

3GHz-14GHz: 27dBuV

14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV

3GHz-14GHz: 16dBuV

14GHz-26.5GHz: 28dBuV

Polarity: : Horizontal

EUT : XG-650MB

Test Condition : 802.11b Tx channel 1

Test Result:

No spurious emission was found above the spectrum analyzer's noise floor.

The noise floor are listed as below:

For PK:

1GHz-3GHz: 20dBuV

3GHz-14GHz: 27dBuV

14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV

3GHz-14GHz: 16dBuV

14GHz-26.5GHz: 28dBuV

Polarity: : Vertical

EUT : XG-650MB

Test Condition : 802.11b Tx channel 6

Frequency (MHz)	Spectrum Analyzer Detector	Antenna Polariz. (H/V)	Preamp (dB)	Correction Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV)	Limit @ 3 m (dBuV)	Margin (dB)	Antenna high (cm)	Turn Table angle (degree)
4126.000	PK	V	39.61	35.57	49.92	45.88	74	-28.12	171	192
4126.000	AV	V	39.61	35.57	45.35	41.31	54	-12.69	171	192

Remark:

1. Corrected Level = Reading + Correction Factor—Preamp
2. Correction Factor = Antenna Factor + Cable Loss
3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is :

For PK:

1GHz-3GHz: 20dBuV
3GHz-14GHz: 27dBuV
14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV
3GHz-14GHz: 16dBuV
14GHz-26.5GHz: 28dBuV

Polarity: : Horizontal
EUT : XG-650MB
Test Condition : 802.11b Tx channel 6

Test Result:

No spurious emission was found above the spectrum analyzer's noise floor.
The noise floor are listed as below:

For PK:
1GHz-3GHz: 20dBuV
3GHz-14GHz: 27dBuV
14GHz-26.5GHz: 39dBuV

For AV:
1GHz-3GHz: 10dBuV
3GHz-14GHz: 16dBuV
14GHz-26.5GHz: 28dBuV

Polarity: : Vertical

EUT : XG-650MB

Test Condition : 802.11b Tx channel 11

Frequency (MHz)	Spectrum Analyzer Detector	Antenna Polariz. (H/V)	Preamp (dB)	Correction Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV)	Limit @ 3 m (dBuV)	Margin (dB)	Antenna high (cm)	Turn Table angle (degree)
4176.000	PK	V	39.61	35.57	50.39	46.35	74	-27.65	168	233
4176.000	AV	V	39.61	35.57	45.26	41.22	54	-12.78	168	233

Remark:

1. Corrected Level = Reading + Correction Factor—Preamp
2. Correction Factor = Antenna Factor + Cable Loss
3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is :

For PK:

1GHz-3GHz: 20dBuV

3GHz-14GHz: 27dBuV

14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV

3GHz-14GHz: 16dBuV

14GHz-26.5GHz: 28dBuV

Polarity: : Horizontal
EUT : XG-650MB
Test Condition : 802.11b Tx channel 11

Test Result:

No spurious emission was found above the spectrum analyzer's noise floor.
The noise floor are listed as below:

For PK:
1GHz-3GHz: 20dBuV
3GHz-14GHz: 27dBuV
14GHz-26.5GHz: 39dBuV

For AV:
1GHz-3GHz: 10dBuV
3GHz-14GHz: 16dBuV
14GHz-26.5GHz: 28dBuV

Polarity: : Vertical

EUT : XG-650MB

Test Condition : 802.11g Tx channel 1

Frequency (MHz)	Spectrum Analyzer Detector	Antenna Polariz. (H/V)	Preamp (dB)	Correction Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV)	Limit @ 3 m (dBuV)	Margin (dB)	Antenna high (cm)	Turn Table angle (degree)
4076.000	PK	V	39.61	35.57	50.31	46.27	74	-27.73	111	78
4076.000	AV	V	39.61	35.57	44.96	40.92	54	-13.08	111	78

Remark:

1. Corrected Level = Reading + Correction Factor – Preamp
2. Correction Factor = Antenna Factor + Cable Loss
3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is :

For PK:

1GHz-3GHz: 20dBuV

3GHz-14GHz: 27dBuV

14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV

3GHz-14GHz: 16dBuV

14GHz-26.5GHz: 28dBuV

Polarity: : Horizontal

EUT : XG-650MB

Test Condition : 802.11g Tx channel 1

Test Result:

No spurious emission was found above the spectrum analyzer's noise floor.

The noise floor are listed as below:

For PK:

1GHz-3GHz: 20dBuV

3GHz-14GHz: 27dBuV

14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV

3GHz-14GHz: 16dBuV

14GHz-26.5GHz: 28dBuV

Polarity: : Vertical
EUT : XG-650MB
Test Condition : 802.11g Tx channel 6

Frequency (MHz)	Spectrum Analyzer Detector	Antenna Polariz. (H/V)	Preamp (dB)	Correction Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV)	Limit @ 3 m (dBuV)	Margin (dB)	Antenna high (cm)	Turn Table angle (degree)
4126.000	PK	V	39.61	35.57	51.96	47.92	74	-26.08	103	87
4126.000	AV	V	39.61	35.57	46.85	42.81	54	-11.19	103	87

Remark:

1. Corrected Level = Reading + Correction Factor—Preamp
2. Correction Factor = Antenna Factor + Cable Loss
3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is :

For PK:

1GHz-3GHz: 20dBuV
3GHz-14GHz: 27dBuV
14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV
3GHz-14GHz: 16dBuV
14GHz-26.5GHz: 28dBuV

Polarity: : Horizontal
EUT : XG-650MB
Test Condition : 802.11g Tx channel 6

Test Result:

No spurious emission was found above the spectrum analyzer's noise floor.

The noise floor are listed as below:

For PK:

1GHz-3GHz: 20dBuV
3GHz-14GHz: 27dBuV
14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV
3GHz-14GHz: 16dBuV
14GHz-26.5GHz: 28dBuV

Polarity: : Vertical

EUT : XG-650MB

Test Condition : 802.11g Tx channel 11

Frequency (MHz)	Spectrum Analyzer Detector	Antenna Polariz. (H/V)	Preamp (dB)	Correction Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV)	Limit @ 3 m (dBuV)	Margin (dB)	Antenna high (cm)	Turn Table angle (degree)
4176.000	PK	V	39.61	35.57	50.17	46.13	74	-27.87	192	131
4176.000	AV	V	39.61	35.57	44.93	40.89	54	-13.11	192	131

Remark:

1. Corrected Level = Reading + Correction Factor – Preamp
2. Correction Factor = Antenna Factor + Cable Loss
3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is :

For PK:

1GHz-3GHz: 20dBuV

3GHz-14GHz: 27dBuV

14GHz-26.5GHz: 39dBuV

For AV:

1GHz-3GHz: 10dBuV

3GHz-14GHz: 16dBuV

14GHz-26.5GHz: 28dBuV

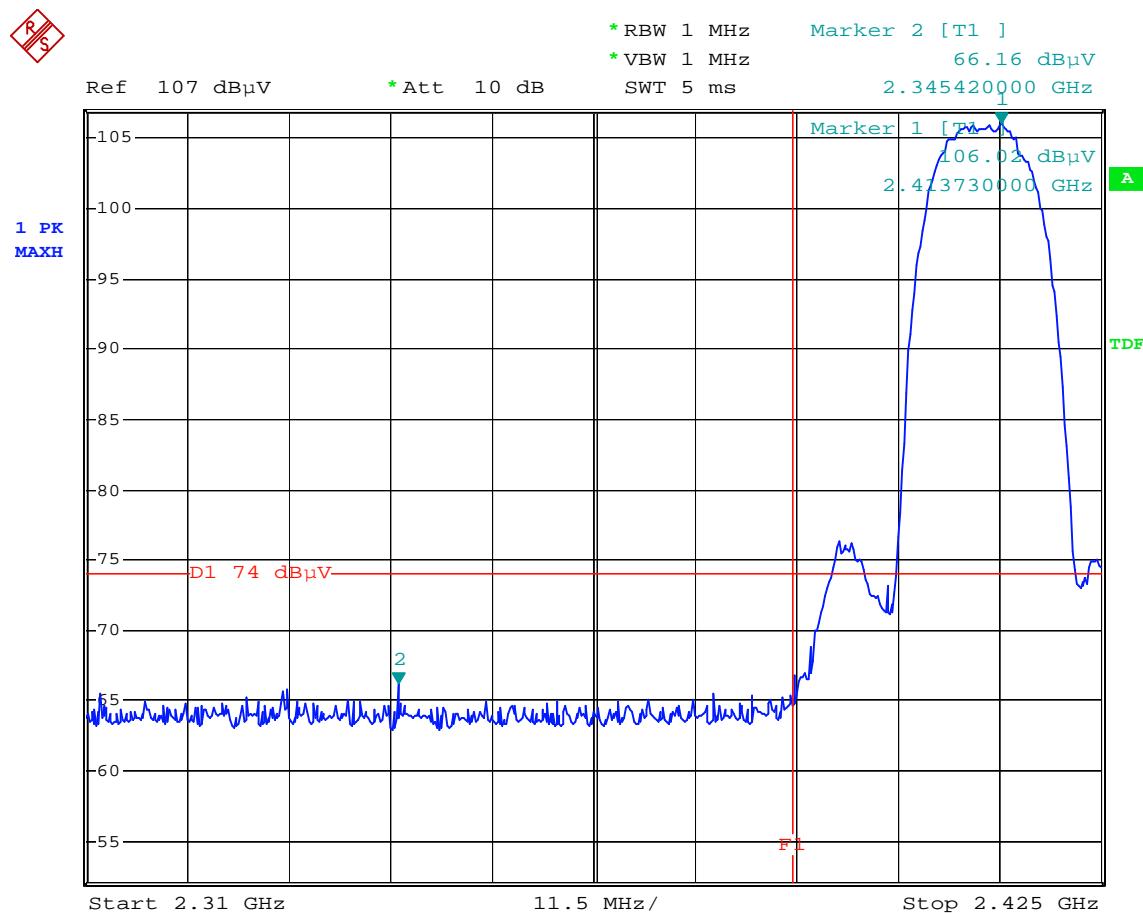
Polarity: : Horizontal
EUT : XG-650MB
Test Condition : 802.11g Tx channel 11

Test Result:

No spurious emission was found above the spectrum analyzer's noise floor.
The noise floor are listed as below:

For PK:
1GHz-3GHz: 20dBuV
3GHz-14GHz: 27dBuV
14GHz-26.5GHz: 39dBuV

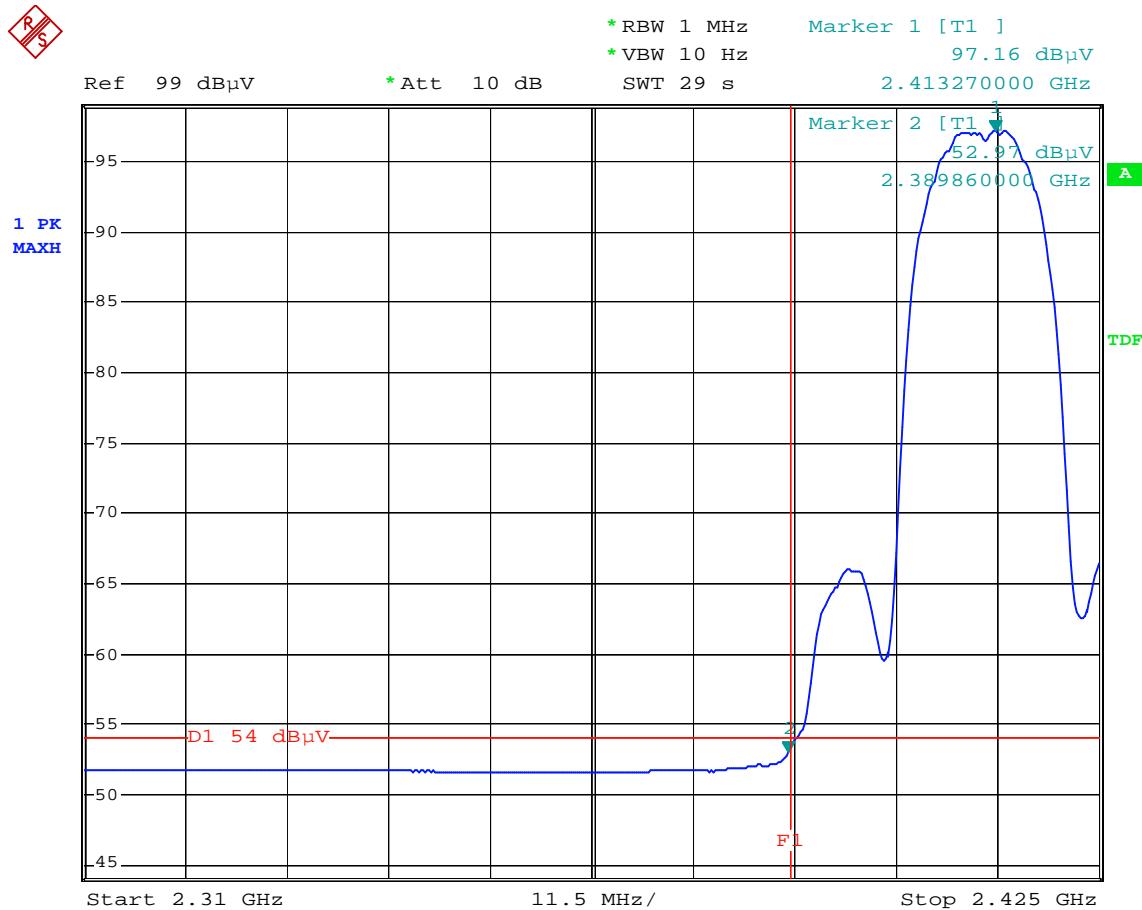
For AV:
1GHz-3GHz: 10dBuV
3GHz-14GHz: 16dBuV
14GHz-26.5GHz: 28dBuV

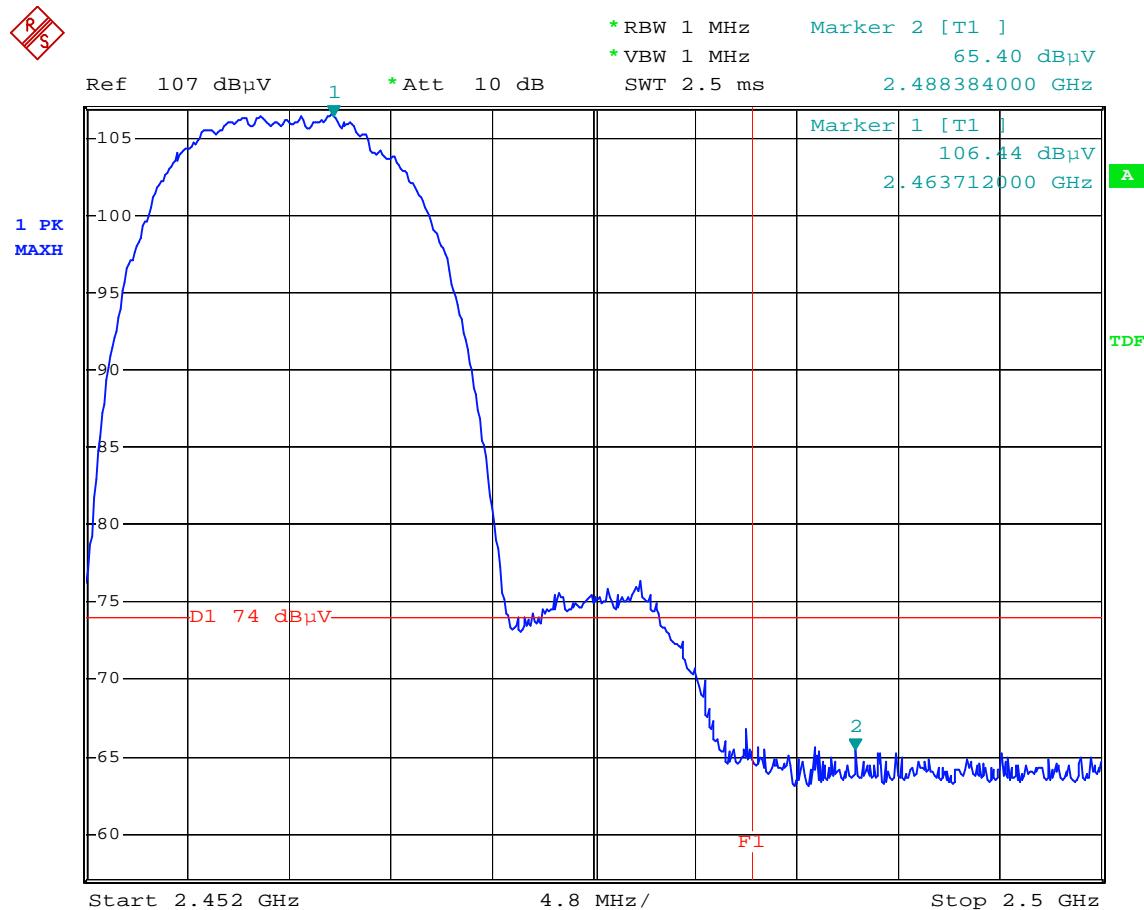

5. Emission on the band edge §FCC 15.247(C)

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

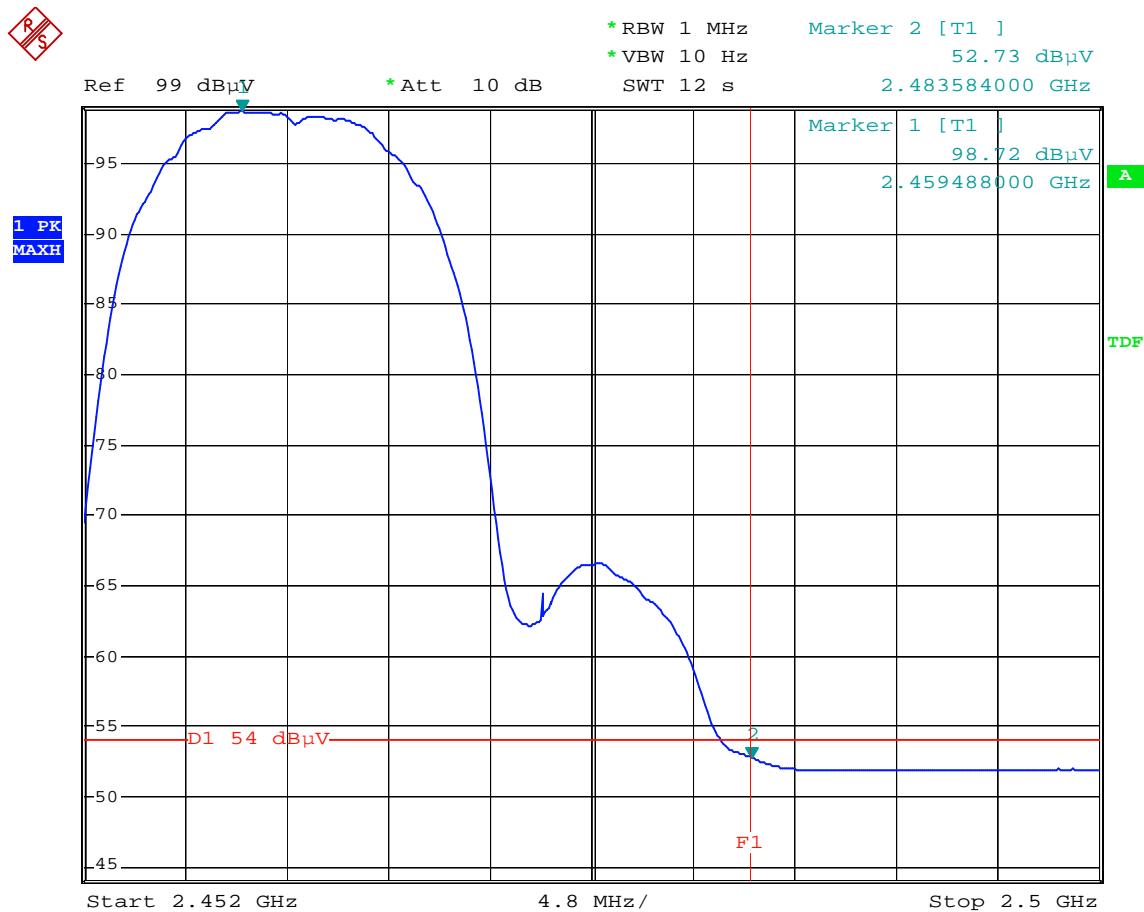
Please see the plot below.

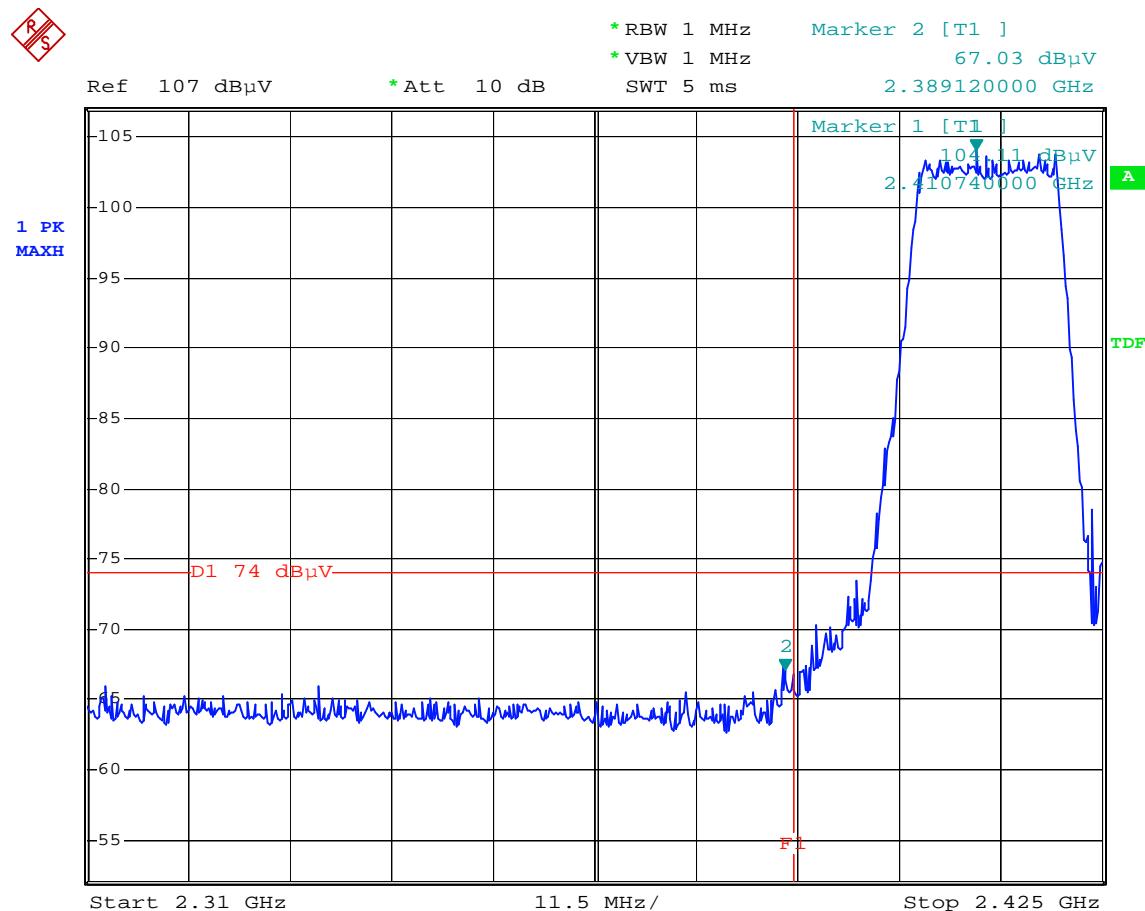
5.1 Band-edge (Radiated method)


Test Mode: 802.11b (DSSS Modulation) operating mode

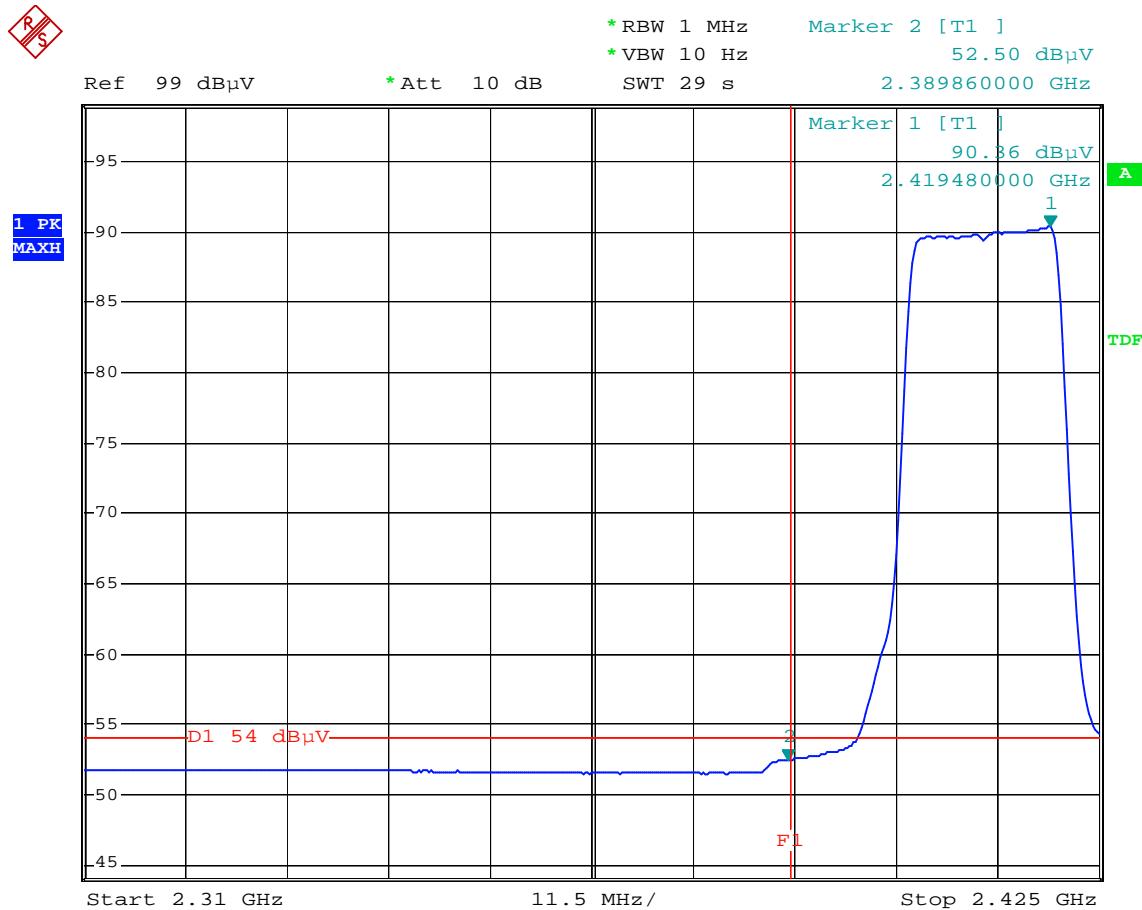

Comment: Band-edge test at low channel

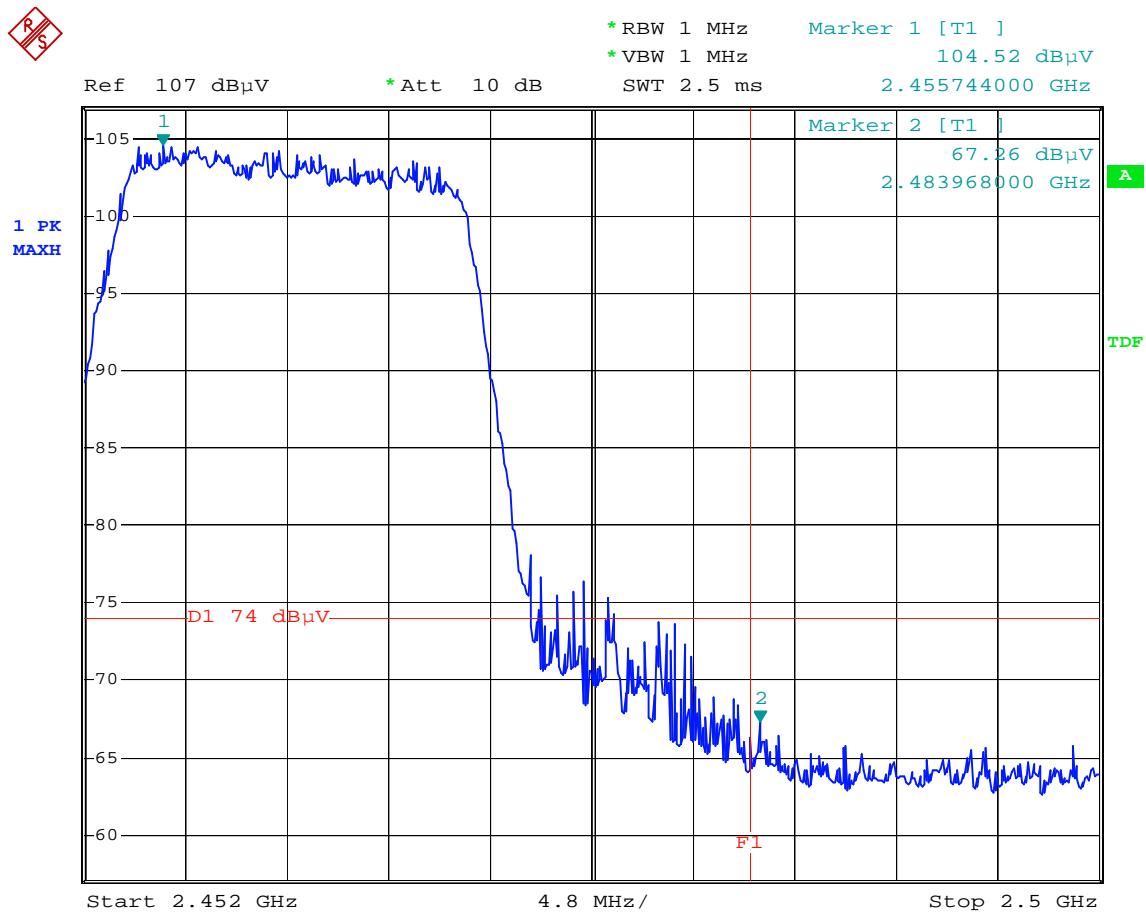
Comment: Peak detector F1=2390MHz 11b


Date: 19.NOV.2004 10:53:16


Comment: Band-edge test at low channel
 Comment: Average detector F1=2390MHz 11b
 Date: 19.NOV.2004 11:11:50

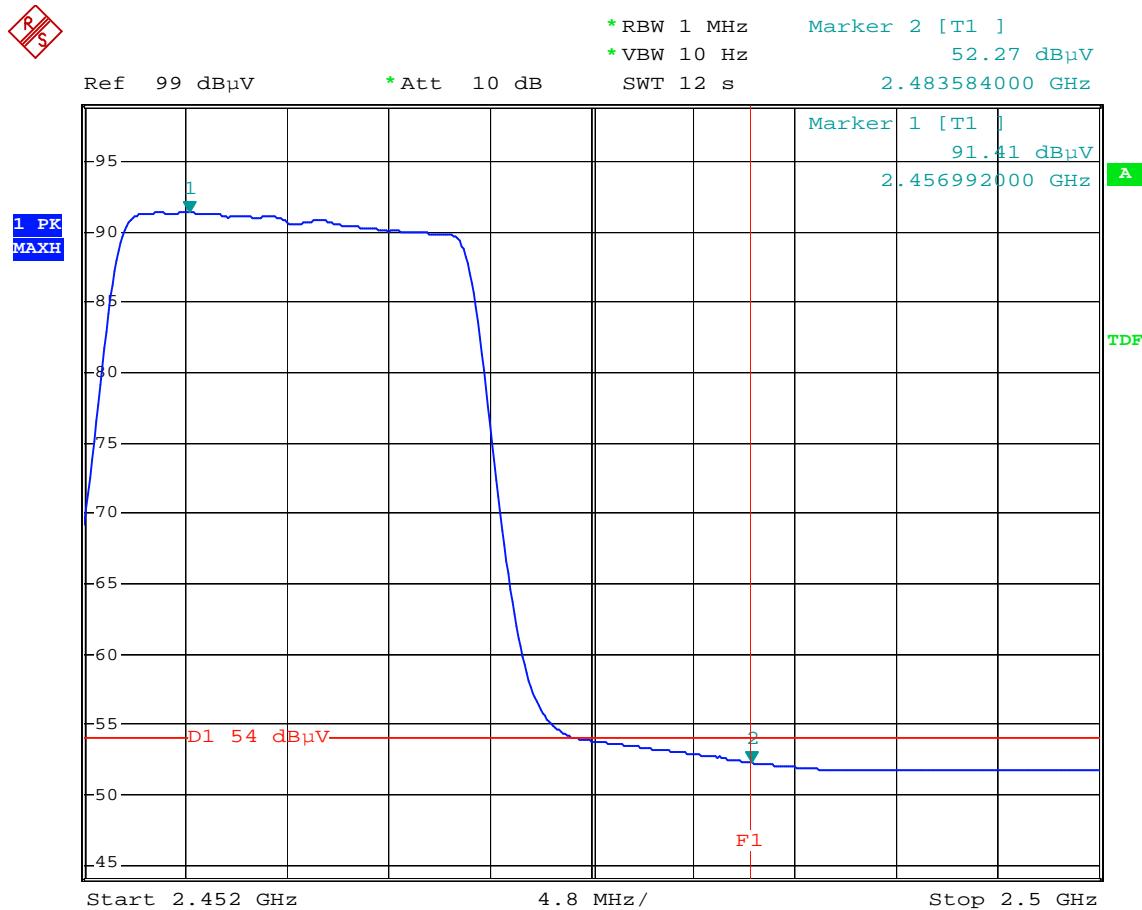
Comment: Band-edge test at high channel
 Comment: Peak detector F1=2483.5MHz 11b
 Date: 19.NOV.2004 10:57:35


Test Mode: 802.11g (OFDM Modulation) operating mode


Comment: Band-edge test at low channel

Comment: Peak detector F1=2390MHz 11g

Date: 19.NOV.2004 11:06:11


Comment: Band-edge test at low channel
 Comment: Average detector F1=2390MHz 11g
 Date: 19.NOV.2004 11:09:04

Comment: Band-edge test at high channel

Comment: Peak detector F1=2483.5MHz 11g

Date: 19.NOV.2004 11:02:20

Comment: Band-edge test at high channel
 Comment: Average detector F1=2483.5MHz 11g
 Date: 19.NOV.2004 11:03:27