

*FCC PART 15, SUBPART B & C
TEST REPORT*

for

900MHZ TRANSMITTER
Model: BV 900
FCC ID: M3R-BV900

Prepared for

BROADCASTVISION
5126 CLARETON DRIVE, SUITE 160
AGOURA, CA 91301

COMPATIBLE ELECTRONICS INC.
2337 TROUTDALE DRIVE
AGOURA, CALIFORNIA 91301
(818) 597-0600

DATE: MAY 27, 1999

REPORT BODY	APPENDICES				TOTAL
	<i>A</i>	<i>B</i>	<i>C</i>	<i>D</i>	
PAGES	18	2	2	9	39

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2. ADMINISTRATIVE DATA	6
2.1 Location of Testing	6
2.2 Traceability Statement	6
2.3 Cognizant Personnel	6
2.4 Date Test Sample was Received	6
2.5 Disposition of the Test Sample	6
2.6 Abbreviations and Acronyms	6
3. APPLICABLE DOCUMENTS	7
4. Description of Test Configuration	8
4.1 Description of Test Configuration - EMI	8
4.1.1 Cable Construction and Termination	9
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 EUT and Accessory List	10
5.2 EMI Test Equipment	11
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
7. Test Procedures	13
7.1 RF Emissions	13
7.1.1 Conducted Emissions Test	13
7.1.2 Radiated Emissions Test	14
7.1.3 RF Emissions Test Results	15
7.1.4 RF Emissions Test Results (continued)	16
7.1.5 Sample Calculations	17
8. CONCLUSIONS	18

LIST OF APPENDICES

APPENDIX	TITLE
A	Modifications to the EUT
B	Additional Models Covered Under This Report
C	Diagrams, Charts and Photos <ul style="list-style-type: none"> • Test Setup Diagrams • Antenna and Effective Gain Factors • Radiated Emissions Photos
D	Data Sheets

LIST OF TABLES

TABLE	TITLE
1	Conducted Emissions Test Results
2	Radiated Emissions Test Results
3	Spurious Emissions Tested

LIST OF FIGURES

FIGURE	Title
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Test Site

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form unless done so in full with the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: 900MHz Transmitter
 Model: BV 900
 S/N: Prototype

Product Description: *This is a 900MHz Transmitter used to broadcast television sound or any music source, i.e. tape or CD player.*

Modifications: The EUT was not modified during the testing.

Manufacturer: BroadcastVision
 5126 Clareton Drive
 Agoura Hills, CA 91301

Test Date: Oct. 27 and Dec. 4, 1998

Test Specifications:
 EMI requirements
 FCC Title 47, Part 15 Subpart B & C
 Test Procedure: ANSI C63.4: 1992.

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 450 kHz - 30 MHz.	Complies with the Class B limits of FCC Title 47, Part 15 Subpart B.
2	Radiated RF Emissions, 30 MHz – 5000 GHz.	Complies with the Class B limits of FCC Title 47, Part 15 Subpart B.
3	Radiated RF Emissions, 10 kHz to 9.26 GHz.	Complies with the limits of FCC Title 47, Part 15 Subpart C.

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the 900MHz Transmission Model: BV 900. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the specification limits defined in FCC Title 47, Part 15, Subpart C, 15.249 and 15.209 and 15.205.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 2337 Troutdale Drive, Agoura, California 91301.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

BroadcastVision

John Curtis Vice President of Engineering

Compatible Electronics, Inc.

Jeremy D. Williamson	Test Technician
Ruby A. Hall	Test Engineer
Jeff S. Klinger	Lab Manager

2.4 Date Test Sample was Received

The test sample was received on October 29, 1998.

2.5 Disposition of the Test Sample

The test sample remains at Compatible Electronics.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3.**APPLICABLE DOCUMENTS**

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC Title 47, Subpart C.	FCC Rules - Intentional Radiators.
FCC Title 47, Subpart B.	FCC Rules – Radio frequency devices (including digital devices).
CISPR 16 1993	Specification for radio disturbance and immunity measuring apparatus and methods.
ANSI C63.4 1992	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

The EUT was set up in a tabletop configuration. A CD player was connected to the EUT via the RCA input jacks in order to broadcast the signal.

The final radiated and conducted data was taken in this mode of operation. All initial investigations were performed with the EMI Receiver in manual mode scanning the frequency range continuously. Photographs are included in Appendix C.

4.1.1

Cable Construction and Termination

Cable 1

This is a 1.5 meter unshielded round cable connecting the CD Player to the EUT.

There is a stereo plug at the CD player end and RCA plugs at the EUT end. The cable was bundled to a length of 75 cm.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT TYPE	MANUFACTURER	MODEL	SERIAL NUMBER
900 MHz TRANSMITTER	BROADCASTVISION	BV 900	S/N: PROTOTYPE FCC ID: M3R-BV900
AC ADAPTER	CHD	DPX351326	NONE
CD PLAYER	SONY	D-830K	152611
AC ADAPTER	SONY	AC-E455	NONE

5.2

EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
EMI Receiver	Hewlett Packard	8546A	3325A00140	Mar. 08, 1998	Mar. 08, 1999
Preamplifier	Com Power	PA-102	01249	Apr. 20, 1998	Apr. 20, 1999
RF Attenuator	Sertek	412-10	XX02	Sep. 14, 1998	Sep. 14, 1999
Biconical Antenna	Com Power	AB-100	01535	Apr. 17, 1998	Apr. 17, 1999
Log Periodic Antenna	Com Power	AL-100	A101	Apr. 16, 1998	Apr. 16, 1999
Microwave Amplifier	Com Power	PA-122	25137	Jul. 15, 1998	Jul. 15, 1999
Horn Antenna	Amplifier Research Associates	DRG 118/A	1015	Dec. 2, 1993	N.C.R.
Active Loop Antenna	Com Power	AL-130	25309	Feb. 5, 1998	Feb. 5, 1999
LISN	Com Power	LI-200	01777	Jul. 15, 1998	Jul. 15, 1999
LISN	Com Power	LI-200	01778	Jul. 15, 1998	Jul. 15, 1999
LISN	Com Power	LI-200	01779	Jul. 15, 1998	Jul. 15, 1999
LISN	Com Power	LI-200	01781	Jul. 15, 1998	Jul. 15, 1999
Antenna Mast	Com Power	AM-400	N/A	N/A	N/A
Turntable	Com Power	TT-106A	N/A	N/A	N/A
Computer	Area Electronics	B1	5581	N/A	N/A
Printer	Hewlett Packard	C4568A	SG212S11903Q	N/A	N/A

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1.2 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The EMI Receiver was used as a measuring meter. The data was collected with the EMI Receiver in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the spectrum analyzer input stage, and the EMI Receiver offset was adjusted accordingly to read the actual data measured. The LISN output was read by the EMI Receiver. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 1992. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 0.15 MHz to 1.6 MHz, 1.6 MHz to 5 MHz and 5 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable and peripheral placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the EMI Receiver span adjusted to 1 MHz.

The final data was collected under program control by the computer in several overlapping sweeps by running the EMI Receiver at a minimum scan rate of 10 seconds per octave. The six highest emissions are listed in Table 1.

7.1.2

Radiated Emissions Test

The EMI Receiver was used as a measuring meter. The Preamplifier was used to increase the sensitivity of the instrument. The EMI Receiver was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the receiver records the highest measured reading over all the sweeps. The quasi-peak was used only for those readings which are marked accordingly on the data sheets. The effective measurement bandwidth used for the radiated emissions test was 120 kHz for readings under 1GHz and 1MHz for readings over 1GHz.

Broadband antennas were used as transducers during the measurement. The Loop antenna was used from 10.0kHz to 30MHz, the biconical antenna was used from 30MHz to 300MHz, the Log Periodic antenna was used from 300MHz to 1GHz and the horn antenna was used from 1GHz to 9GHz. The frequency spans were wide (10kHz to 30MHz, 30 to 300, 300 to 1 GHz 1 GHz to 9GHz, during preliminary investigations. The final data was taken with a frequency span of 1 MHz. Furthermore, the frequency span was reduced during the preliminary investigations as deemed necessary.

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength).

Preliminary testing was done at a distance of 1 meter instead of 3 meters to determine the predominant harmonics and spurious emission frequencies. An open field test site was used for the preliminary investigations. If and when any frequency was found to be above 30 microvolts/meter level (at 1 meter distance), this frequency was recorded as a significant frequency. All significant frequencies are further examined carefully at a reduced frequency span on the EMI Receiver while changing the antenna height and EUT orientation. The bandwidth of the EMI Receiver was varied to ensure that pulse desensitization did not occur.

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The test results are listed in table 2.

7.1.3 RF Emissions Test Results

Table 1.0 CONDUCTED EMISSION RESULTS
900MHz TRANSMITTER Model: BV 900

Frequency MHz	Emission Level* dBuV	Specification Limit dBuV	Delta dB
0.6568	15.38	48	-32.62
1.9836	15.31	48	-32.69
4.4953	15.40	48	-32.60
6.7973	15.34	48	-32.66
15.8278	15.31	48	-32.69
29.0544	15.43	48	-32.57

Table 2.0 RADIATED EMISSION RESULTS
900MHz TRANSMITTER Model: BV 900

Frequency MHz	Meter* Reading dBuV/m	Effective Gain ** dB	Antenna Factor *** dB/m	Distance Factor dB	Corrected Reading dBuV/m	Spec. Limit dBuV/m	Delta dB
823.95	51.7	30.2	22.8	0	44.3	46	-1.7
911.47	98.8	28.8	21.9	0	92.3	94	-2.1
919.47	99.5#	28.7	22.4	0	93.2	94	-0.8
926.98	98.9#	28.6	22.7	0	93.0	94	-1.0
1854.00	49.7	27.8	29.1	0	51.0	54	-3.0
3707.89	41.4R	22.6	33.1	0	51.9	54	-2.1

Notes:

* The complete emissions data is given in Appendix D of this report.

** The effective factor includes the cable loss. The correction factors for the antenna and effective gain are attached in [Appendix C](#) of this report.

Quasi-Peak Readings

R Restricted Band

7.1.4 RF Emissions Test Results (continued)

Table 2.0 RADIATED EMISSIONS
900MHz TRANSMITTER

The following bands were specifically scanned.

Frequency Band in MHz	RF Energy From 900MHz Transmitter at 3 meters (uV/m)
37.5 to 38.25	< 100
73 to 74.6	< 100
74.8 to 75.2	< 100
108 to 121.94	< 150
123 to 138	< 150
149.9 to 150.05	< 150
156.52475 to 156.52525	< 150
156.7 to 156.9	< 150
162.0125 to 167.17	< 150
167.72 to 173.2	< 150
240 to 285	< 200
322 to 335.4	< 200
399.9 to 410	< 200
608 to 614	< 200
960 to 1240	< 500
1300 to 1427	< 500
1435 to 1626.5	< 500
1645.5 to 1646.5	< 500
1660 to 1710	< 500
1718.8 to 1722.2	< 500
2200 to 2300	< 500
2310 to 2390	< 500
2483.5 to 2500	< 500
2655 to 2900	< 500
3260 to 3267	< 500
3332 to 3339	< 500
3345.8 to 3358	< 500
3600 to 4400	< 500

7.1.5

Sample Calculations

The Preamplifier was used to increase the sensitivity of the EMI Receiver. A correction factor for the antenna, preamplifier, cable loss and a distance factor (if any), must be applied to the meter reading before a true field strength reading can be obtained. For greater efficiency and convenience, instead of using these correction factors for each meter reading, the specification limit was modified to reflect these correction factors at each frequency, so that the meter readings can be compared directly to the modified specification limit, referred to henceforth as the corrected meter reading limit (CML).

The equation can be derived in the following manner:

$$\text{Corrected Meter Reading} = \text{meter reading} + F - G$$

where: F = antenna factor

G = effective gain (amplifier gain - cable loss)

Therefore, the equation for determining the corrected meter reading limit is:

$$\text{CML} = \text{spec. limit} - F + G$$

A table of corrected meter reading limits was used to permit immediate comparison of the meter reading and determine if the emission level exceeded the specification limit at that frequency. The correction factors for the antenna and the effective gain are attached in Appendix C of this report. The data sheets are attached in Appendix D.

The distance factor D is 0 when the test is performed at a distance of 3 meters.

8. CONCLUSIONS

The 900MHz Transmitter Model: BV 900 meets all of the requirements of the FCC Title 47, Part 15, Subpart B & C.

APPENDIX A

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

There were no modifications made to the EUT during the test.

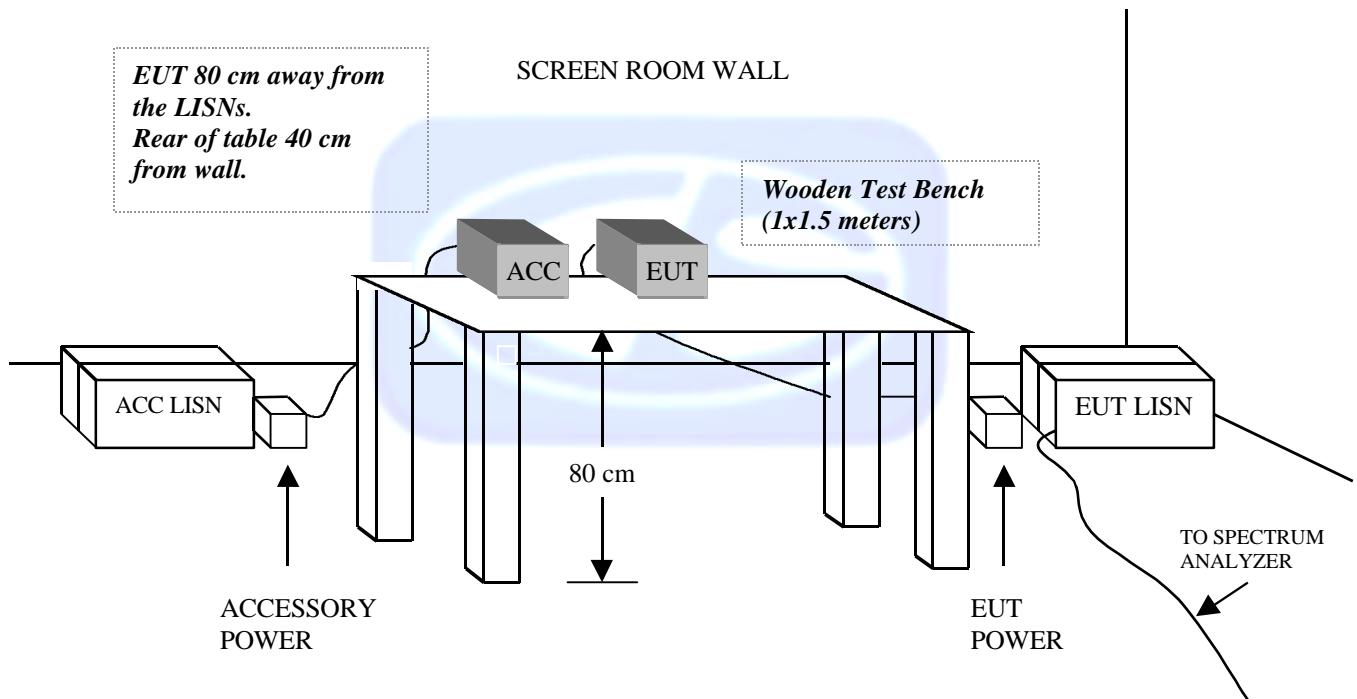
APPENDIX B

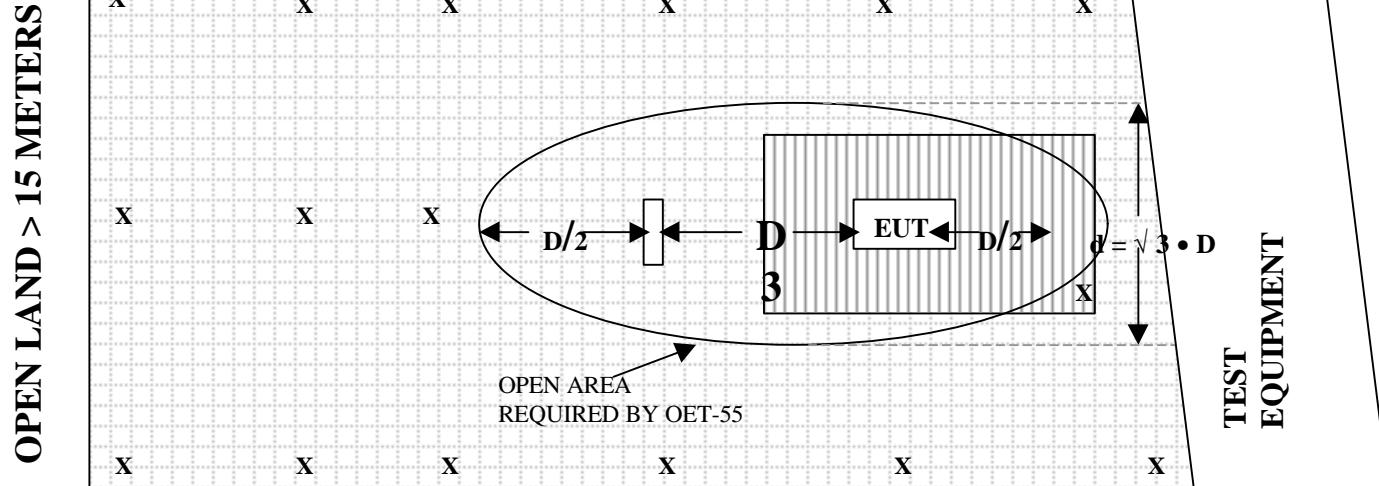
***ADDITIONAL MODELS COVERED
UNDER THIS REPORT***

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

900MHz Transmitter
Model: BV 900
S/N: Prototype


No other models are covered in this report.

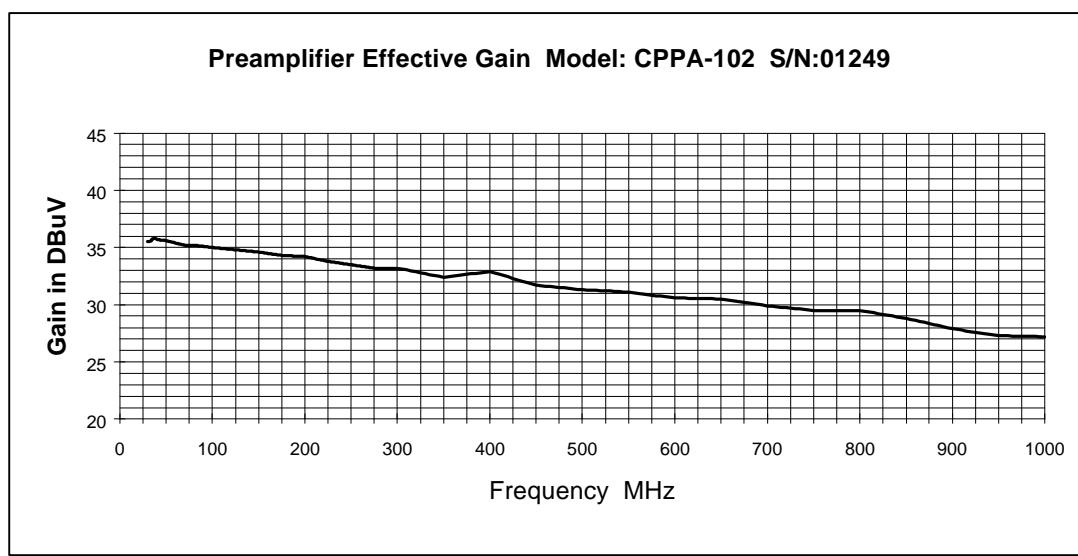
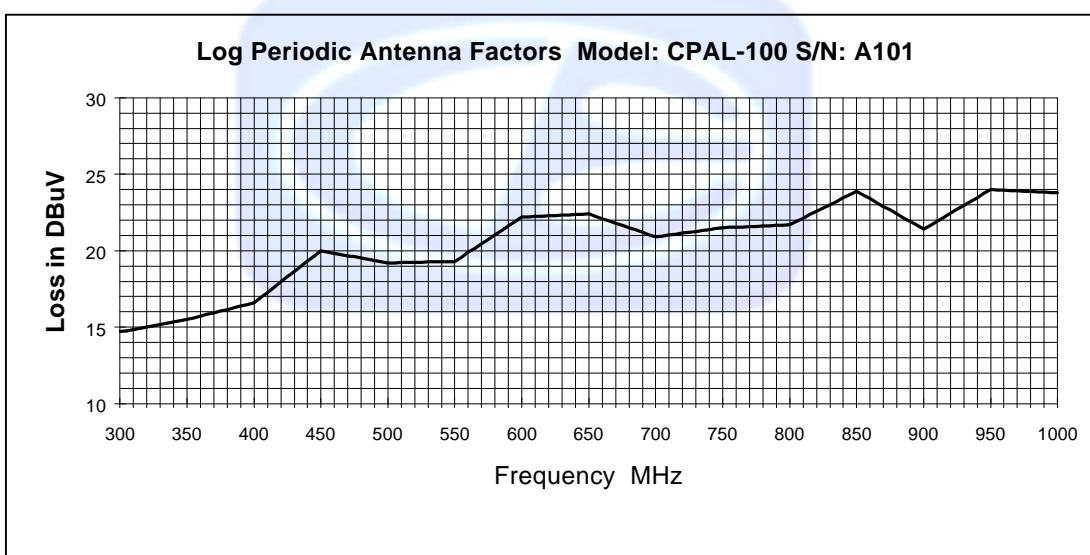
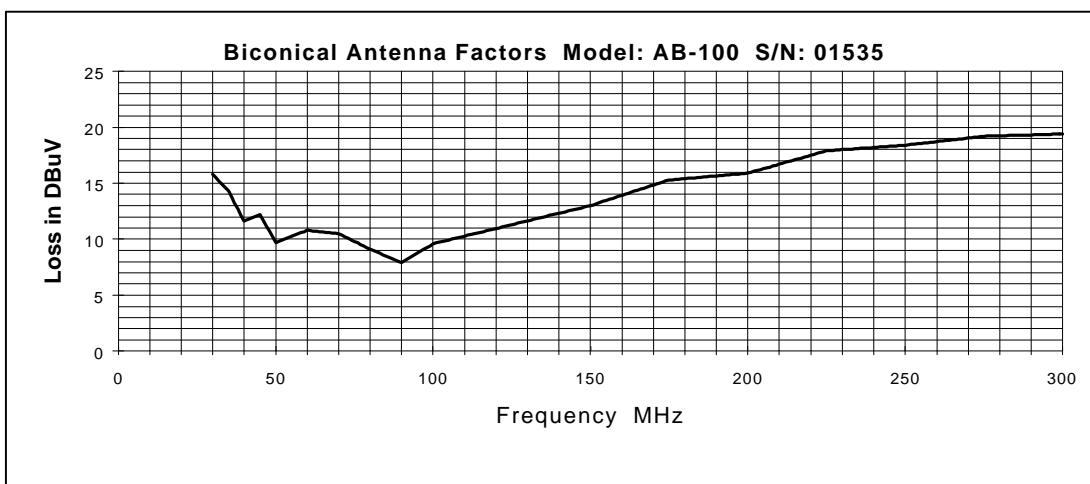


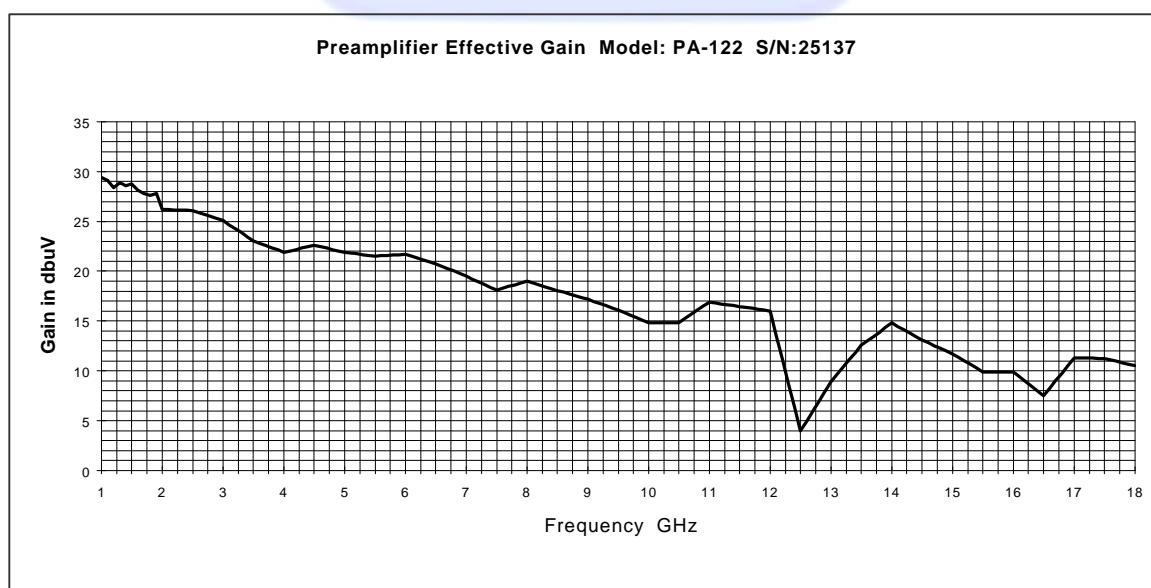
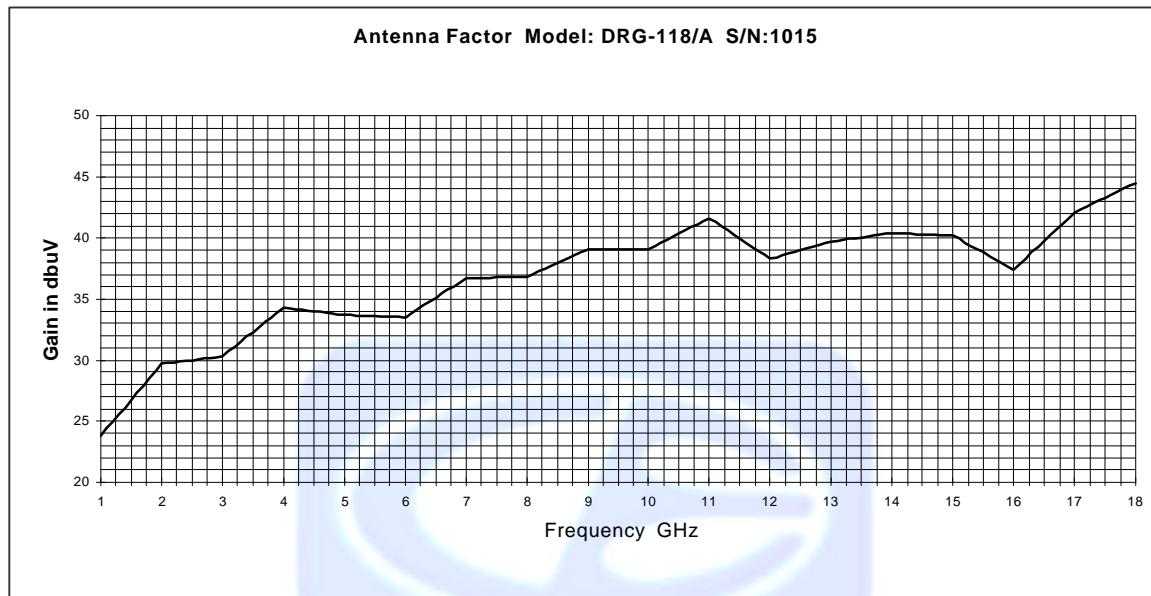
APPENDIX C

DIAGRAMS, CHARTS AND PHOTOS

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE**OPEN LAND > 15 METERS****OPEN LAND > 15 METERS**




= GROUND RODS



= GROUND SCREEN

= TEST DISTANCE (meters)

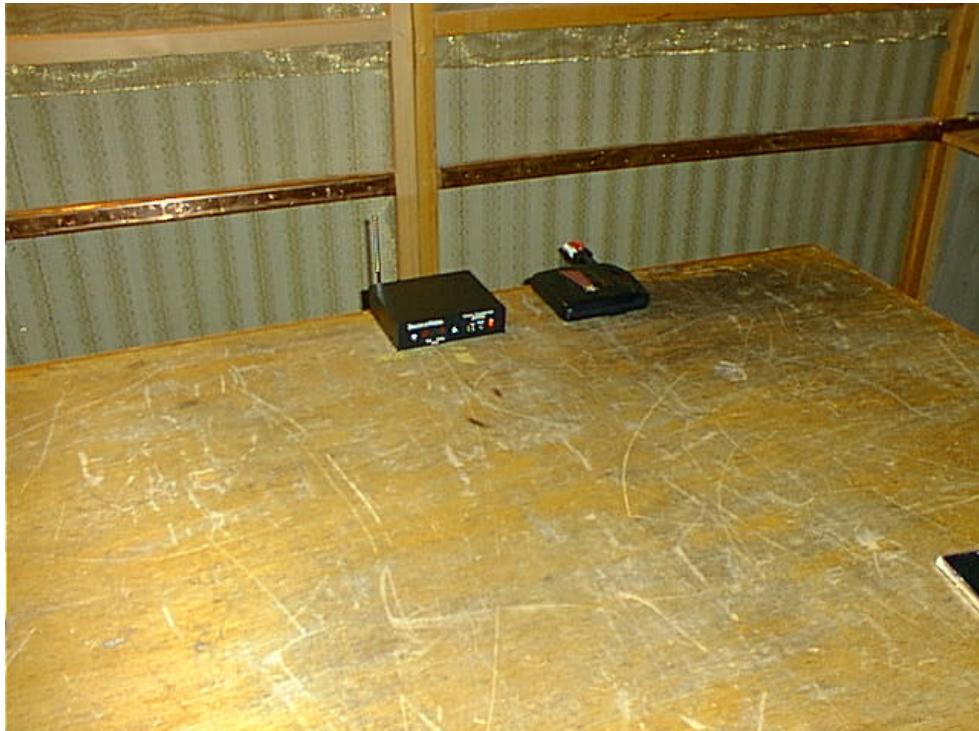
= WOOD COVER

FRONT VIEW

BROADCASTVISION
900MHZ TRANSMITTER
Model: BV 900

FCC PART 15 SUBPART B & C - RADIATED EMISSIONS – 10-27-98

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**


BACK VIEW

BROADCASTVISION
900MHZ TRANSMITTER
Model: BV 900

FCC PART 15 SUBPART B & C - RADIATED EMISSIONS – 10-27-98

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

FRONT VIEW

BROADCASTVISION
900MHZ TRANSMITTER
Model: BV 900

FCC PART 15 SUBPART B & C - CONDUCTED EMISSIONS – 12-4-98

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

REAR VIEW

BROADCASTVISION
900MHZ TRANSMITTER
Model: BV 900

FCC PART 15 SUBPART B & C - CONDUCTED EMISSIONS – 12-4-98

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

APPENDIX D

COMPATIBLE ELECTRONICS

RADIATED EMISSIONS

COMPANY NAME: BROADCAST VISION

DATE: 10-27-98

EUT: 900 MHz TRANSMITTER

EUT S/N: PROTO TYPE

EUT MODEL: BV 900

LOCATION: BREA SILVERADO AGOURA

SPECIFICATION: FCI ph.15 sub.C CLASS: B TEST DISTANCE: 3m LAB: F

ANTENNA: LOOP BICONICAL LOG HORN **POLARIZATION:** VERT HORIZ

QUALIFICATION ENGINEERING MFG. AUDIT **ENGINEER:** J. Williams

NOTES: FUNDAMENTAL UNIT:

$$50,000 \mu V/m = 44 dB_{\mu V/m}$$

CML (9) 911.47 = 100.44 B

CMLG 419.47 = 100.3 dB

$$CML @ 926.93 = 99.9 \text{ dB}$$

11. *What is the name of the person who is the subject of the photograph?*

SPURIOUS = 15.209

HARMONICS = 15.209

TEMP: 66°F

44% : 46%

* DELTA = METER READING - CORRECTED LIMIT

RADIATED EMISSIONS - CONTINUATION SHEET

COMPANY NAME: BROADCAST VISION DATE: 10-27-98

DATE: 10-27-98

EUT: 900 MHz TRANSMITTER EUT S/N: PROTOTYPE

EUT S/N: PROTO TYPE

EUT MODEL: BV 400 ENGINEER: J. WILLIAMSON

ENGINEER: J. WILLIAMSON

ANTENNA: LOOP BICONICAL LOG HORN **POLARIZATION:** VERT HORIZ

* DELTA = METER READING - CORRECTED LIMIT

RADIATED EMISSIONS - CONTINUATION SHEET

COMPANY NAME: BROADCAST VISION DATE: 10.27.88

EUT: 900 MHz TRANSMITTER EUT S/N: PROTO 001

EUT MODEL: BV 400 ENGINEER: J. WILLIAMSON

ANTENNA: LOOP BICONICAL LOG HORN **POLARIZATION:** VERT HORIZ

* DELTA = METER READING - CORRECTED LIMIT

RADIATED EMISSIONS

 COMPANY NAME: BROADCAST VISION DATE: 10-27-78

 EUT: 900 MHZ TRANSMITTER EUT S/N: PROTOTYPE

 EUT MODEL: BV900 LOCATION: BREA SILVERADO AGOURA

 SPECIFICATION: FCC pt.15 sub C CLASS: B TEST DISTANCE: 3m LAB: F

 ANTENNA: LOOP BICONICAL FLOG HORN POLARIZATION: VERT HORIZ

 QUALIFICATION ENGINEERING MFG AUDIT ENGINEER: J. WILLIAMSON

 NOTES: SPURIOUS EMISSIONS

Frequency (MHz)	Peak Reading (dBuV)	Quasi- Peak (dBuV)	Antenna Height (meters)	Azimuth (degrees)	Delta *	Corrected Limit (dBuV)	Comments
103.00	64.5		1.5	270°	-4.2	68.7	V (HIGH)
205.99	33.3		1.0	180°	-28.2	61.5	↓
103.02	57.5		2.0	90°	-11.2	68.7	H
205.98	41.1		1.5	180°	-20.4	61.5	↓
308.98	44.1		1.5	180°	-20.6	64.7	V
720.95	47.8		1.5	180°	-7.8	55.6	↓
309.01	53.4		1.0	180°	-11.3	64.7	H
87.53	52.5		1.0	180°	-14.5	67.0	V (low)
262.51	44.3		1.0	180°	-16.8	61.1	↓
87.52	48.2		4.0	180°	-19.0	67.2	H
262.38	45.4		1.0	180°	-15.7	61.1	#H
350.02	47.5		1.0	180°	-16.0	63.5	V
612.86	48.9		1.0	180°	-5.1	55.0	↓
349.98	53.8		1.0	0°	-9.7	63.5	H

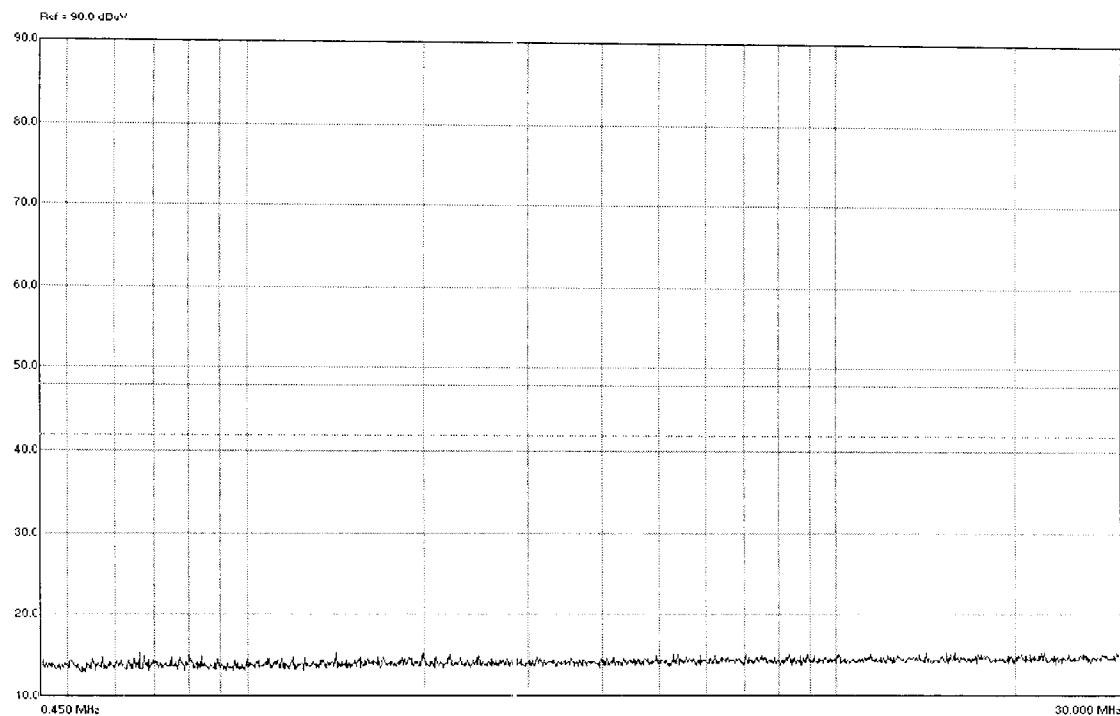
* DELTA = METER READING - CORRECTED LIMIT

RADIATED EMISSIONS - CONTINUATION SHEET

COMPANY NAME: BROADCAST VISION DATE: 10-27-98

EUT: 900 MHz TRANSMITTER EUT S/N: PROTOTYPE

EUT MODEL: BV900 ENGINEER: J. WILLIAMS


ANTENNA: LOOP BICONICAL LOG HORN POLARIZATION: VERT HORIZ

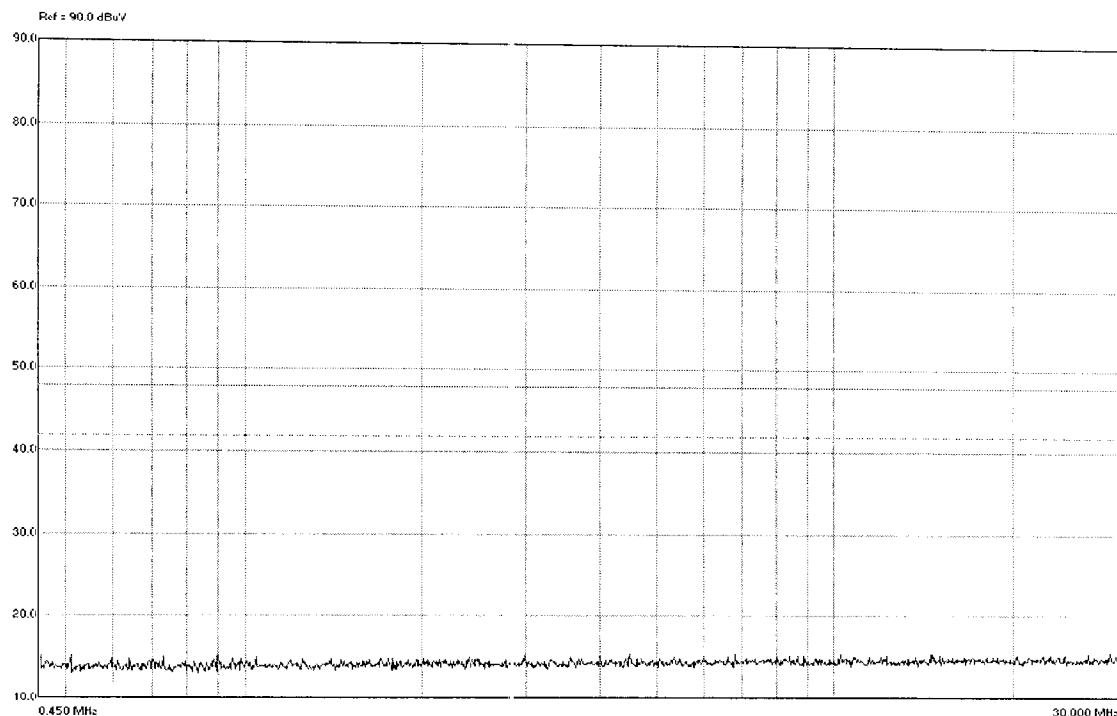
* DELTA = METER READING - CORRECTED LIMIT

DATE: 12/04/98

GENERAL COMMENTS:

FCC Part 15 Subpart C Class B
Broadcast Vision
900MHz Transmitter
M/N: BV900
110VAC Black Lead

SIX HIGHEST READINGS:


Frequency (MHz)	Peak (dBuV)	DelLim-Pk (dB)
0.656850	15.38	-32.62
1.983645	15.31	-32.69
15.369795	15.26	-32.74
15.827820	15.31	-32.69
22.101285	15.30	-32.70
29.577435	15.26	-32.74

Test Engineer's Signature:

DATE: 12/04/98

GENERAL COMMENTS:

FCC Part 15 Subpart C Class B
Broadcast Vision
900MHz Transmitter
M/N: BV900
110VAC White Lead

SIX HIGHEST READINGS:

Frequency (MHz)	Peak (dBuV)	Dellim-Pk (dB)
4.495395	15.40	-32.60
6.797340	15.34	-32.66
14.539440	15.26	-32.74
14.672415	15.26	-32.74
26.776095	15.23	-32.77
29.054400	15.43	-32.57

Test Engineer's Signature: John Doe