

# Operation Manual

**HITACHI**  
Inspire the Next

**UHF Digital TV Transmitters**

**ATSC 3.0: 930 to 3800 Watts RMS**

**ATSC 1.0: 1100 to 4400 Watts RMS**

**E-Compact High Power Series**

**EC701HP-BB3**  
**EC702HP-BB3**  
**EC703HP-BB3**  
**EC704HP-BB3**



**Read before handling the equipment.**

## W A R N I N G

**All rights reserved to Hitachi Kokusai Electric Comark LLC, thus any reproduction, adaptation, translation, or misuse of this manual without prior written permission is prohibited, except as permitted by copyright laws.**

Operation Manual  
UHF Digital Transmitters  
ATSC 3.0: 930 to 3800 Watts RMS  
ATSC 1.0: 1100 to 4400 Watts RMS  
E-Compact High Power Series  
EC701HP-BB3 • EC702HP-BB3  
EC703HP-BB3 • EC704HP-BB3

Rev R05 – EN-US

All rights reserved

Hitachi Kokusai Electric Comark LLC  
104 Feeding Hills Rd, Soutwhick, MA 01077  
United States of America  
Phone: (800) 345-9295 - [support@comarktv.com](mailto:support@comarktv.com)  
[www.comarktv.com](http://www.comarktv.com)

# CONTENTS

## 1. Index

---

|                                                                                  |           |
|----------------------------------------------------------------------------------|-----------|
| <b>CONTENTS.....</b>                                                             | <b>3</b>  |
| 1. Index .....                                                                   | 3         |
| 2. Abbreviations .....                                                           | 8         |
| 3. About this Manual .....                                                       | 9         |
| 4. Basic Knowledge Required.....                                                 | 10        |
| 5. Structure.....                                                                | 10        |
| <b>Section 1 – Care, Warranty, and Service .....</b>                             | <b>11</b> |
| 1. Care and Safety .....                                                         | 11        |
| 2. Warranty .....                                                                | 12        |
| 2.1. FCC Compliance.....                                                         | 12        |
| 2.3. Technical Assistance.....                                                   | 13        |
| <b>Section 2 – Minimum Installation Requirements .....</b>                       | <b>14</b> |
| 1. Introduction.....                                                             | 15        |
| 2. Minimum Requirements.....                                                     | 15        |
| 2.1. AC Mains - Wire Gauge.....                                                  | 15        |
| 2.2. Grounding .....                                                             | 16        |
| 2.3. Stability.....                                                              | 16        |
| 2.4. Insulation.....                                                             | 16        |
| 2.5. Atmospheric Discharge Protection System .....                               | 19        |
| 2.5.1    Lightning rods .....                                                    | 19        |
| 2.5.2    Protectors .....                                                        | 19        |
| 2.6. Air Conditioning .....                                                      | 19        |
| 2.6.1    Temperature.....                                                        | 19        |
| 2.6.2    Humidity .....                                                          | 20        |
| 2.6.3    Cooling .....                                                           | 20        |
| 2.7. AC Load and Thermal Dissipation Information for Infrastructure Install..... | 21        |
| <b>Section 3 – E-Compact BB3 High Power Series UHF Digital Transmitters.....</b> | <b>22</b> |
| 1. Overview.....                                                                 | 22        |

|                                                                                     |    |
|-------------------------------------------------------------------------------------|----|
| <b>2. Specifications</b> .....                                                      | 23 |
| <b>3. Construction</b> .....                                                        | 25 |
| 3.1. Single drive, Dual drive (optional), and touch screen display (optional) ..... | 25 |
| 3.2. EC701HP-BB3 .....                                                              | 28 |
| 3.3. EC702HP-BB3 .....                                                              | 30 |
| 3.4. EC703HP-BB3 .....                                                              | 32 |
| 3.5. EC704HP-BB3 .....                                                              | 34 |
| <b>4. Main Modules</b> .....                                                        | 36 |
| 4.1. Control Module CM9001 (MOD GV 40288) .....                                     | 37 |
| 4.1.1. RF Input .....                                                               | 37 |
| 4.1.2. Interfaces .....                                                             | 38 |
| 4.1.3. Communication .....                                                          | 40 |
| 1. .....                                                                            | 42 |
| 4.1.4. CM9001 Communication Schematic for EC701HP-BB3 .....                         | 42 |
| 4.1.5. Display interface .....                                                      | 44 |
| 4.1.6. Equipment feature .....                                                      | 46 |
| 4.1.7. ALARMS - Front Panel Signaling and Shortcut Keys .....                       | 47 |
| 4.1.8. System Operation (Display interface) .....                                   | 48 |
| Main Menu > Setup .....                                                             | 48 |
| > Main Menu > Setup > Power: .....                                                  | 49 |
| > Main Menu > Setup > Transmitter Setup: .....                                      | 49 |
| > Main Menu > Setup > Time and Date Setup: .....                                    | 49 |
| > Main Menu > Setup > Password Setup: .....                                         | 50 |
| > Main Menu > Setup > Alarms Mask: .....                                            | 50 |
| > Main Menu > Setup > Transistor Bias Adjustment: .....                             | 50 |
| > Main Menu > Setup > Temperature: .....                                            | 51 |
| > Main Menu > Setup > Control Mode: .....                                           | 51 |
| Main Menu > Measurements .....                                                      | 52 |
| > Main Menu > Measurements > Power: .....                                           | 52 |
| > Main Menu > Measurements > Exciter Status: .....                                  | 52 |
| > Main Menu > Measurements > HPA Drawers: .....                                     | 53 |
| > Main Menu > Measurements > HPA Drawers > RF Power: .....                          | 54 |
| > Main Menu > Measurements > HPA Drawers > Software Version: .....                  | 54 |
| > Main Menu > Measurements > HPA Drawers > Power Supply: .....                      | 55 |
| > Main Menu > Measurements > HPA Drawers > Drain Current: .....                     | 55 |
| > Main Menu > Measurements > HPA Drawers > Temperature: .....                       | 56 |
| > Main Menu > Measurements > Software: .....                                        | 56 |
| > Main Menu > Measurements > Communication Status: .....                            | 56 |
| > Main Menu > Measurements > CM Driver Temp.: .....                                 | 57 |
| Main Menu > System Alarms / Log .....                                               | 57 |
| > Main Menu > System Alarms/Log > Current Alarms: .....                             | 58 |
| > Main Menu > System Alarms/Log > Alarms/Log: .....                                 | 58 |
| > Main Menu > System Alarms/Log > Drawers Alarms: .....                             | 59 |
| > Main Menu > System Alarms/Log > Drawers Alarms > Current Alarms: .....            | 60 |
| > Main Menu > System Alarms/Log > Drawers Alarms > Past Alarms: .....               | 60 |
| > Main Menu > System Alarms/Log > Drawers Alarms > Clear Past Alarm: .....          | 61 |
| Power Amplifiers Drawers (HPA) Alarms List .....                                    | 62 |
| > Main Menu > System Alarms/Log > Clear Alarm Log: .....                            | 63 |
| Control Module Main Alarm List .....                                                | 63 |
| Main Menu > Remote Access .....                                                     | 64 |

|                                                                            |    |
|----------------------------------------------------------------------------|----|
| 4.1.9. WEB Interface – Remote Access .....                                 | 65 |
| Introduction.....                                                          | 65 |
| Homepage features .....                                                    | 67 |
| Alarms .....                                                               | 68 |
| Log Alarms.....                                                            | 68 |
| Setup.....                                                                 | 69 |
| Power Setup.....                                                           | 69 |
| Transmitter Setup.....                                                     | 70 |
| PA Temperature Control.....                                                | 70 |
| Time and Date Setup.....                                                   | 70 |
| Alarm Mask .....                                                           | 71 |
| Exciter.....                                                               | 71 |
| Import/Export.....                                                         | 71 |
| Measurements .....                                                         | 73 |
| Software Version.....                                                      | 73 |
| Power.....                                                                 | 73 |
| Communication Status .....                                                 | 74 |
| Transistor Bias .....                                                      | 74 |
| Exciter Status .....                                                       | 74 |
| Drawers .....                                                              | 75 |
| Power Supply.....                                                          | 76 |
| Driver .....                                                               | 76 |
| Power Amplifier .....                                                      | 77 |
| Remote .....                                                               | 80 |
| SNMP .....                                                                 | 80 |
| NETWORK.....                                                               | 80 |
| User.....                                                                  | 81 |
| Software Update .....                                                      | 81 |
| 4.2. PA708HP - Power Amplifier Module (MOD GV 40272 / MOD GV 40276 ) ..... | 82 |
| 4.2.1. Interfaces .....                                                    | 83 |
| 4.2.2. Specifications .....                                                | 84 |
| 4.2.3. Power Amplifier Drawer Functional Description .....                 | 85 |
| 4.2.4. A/C Power, RF Input and Communication Plug-In.....                  | 86 |
| 4.2.5. Power Amplifier Drawer Address Configuration - MODBUS .....         | 87 |
| 4.2.6. Power Amplifier Signaling LED's .....                               | 88 |
| 4.2.7. Power Supplies Signaling LED's .....                                | 89 |
| 4.2.8. CP2000 - 2000 Watts Powers Supplies .....                           | 89 |
| 4.2.9. Power Supply Redundancy Operation / Power Reduction .....           | 90 |
| 4.3. Dummy Loads Module .....                                              | 92 |
| 4.3.1. DL2K0W - Interfaces .....                                           | 93 |
| 4.3.2. DL2K0W - Signaling LED's.....                                       | 94 |
| 4.3.3. DL2K0W - Rear Connection .....                                      | 94 |
| 4.3.4. MOD 40295 / MOD 40311 - Interfaces .....                            | 95 |
| 4.4. EIA Low Pass Filter .....                                             | 96 |
| 4.4.1. Features.....                                                       | 96 |
| 4.5. EIA RF Output Line with Sample Probe .....                            | 97 |
| 4.5.1. Features.....                                                       | 97 |
| 4.6. Mask Filter .....                                                     | 99 |

|                                                                                   |     |
|-----------------------------------------------------------------------------------|-----|
| <b>4.7. MCCB (Molded Case Circuit Breaker) .....</b>                              | 100 |
| 4.7.1.    4.0kW MCCB (MOD 40307) .....                                            | 100 |
| 4.7.2.    8.0kW to 18kW MCCB .....                                                | 109 |
| Interfaces.....                                                                   | 110 |
| Interlock Connection / Information Connection.....                                | 111 |
| Mains Connection .....                                                            | 112 |
| Circuit Breakers.....                                                             | 113 |
| Sparkover - Phase Surge Protection Device (SPD) .....                             | 113 |
| MCCB 8Kw – MOD GV 40256 (SINGLE-PHASE/2-PHASES).....                              | 115 |
| MCCB 8Kw – MOD GV 40256 (3-PHASES).....                                           | 118 |
| MCCB 11Kw – MOD GV 40257 (SINGLE-PHASE/2-PHASES).....                             | 121 |
| MCCB 11Kw – MOD GV 40257 (3-PHASES).....                                          | 124 |
| MCCB 18Kw – MOD GV 40258 (SINGLE-PHASE/2-PHASES).....                             | 127 |
| MCCB 18Kw – MOD GV 40258 (3-PHASES) .....                                         | 130 |
| <b>4.8. Touch Screen Display (Optional).....</b>                                  | 133 |
| 4.8.1.    Introduction .....                                                      | 133 |
| 4.8.2.    Access .....                                                            | 133 |
| 4.8.3.    Connections.....                                                        | 134 |
| 4.8.4.    Start / Configure .....                                                 | 134 |
| 4.8.5.    Touch Screen Operation.....                                             | 136 |
| <b>Section 4 – Installation.....</b>                                              | 137 |
| 1.    Overview.....                                                               | 137 |
| 2.    Inspection.....                                                             | 137 |
| 3.    Installation Recommendations .....                                          | 137 |
| 3.1.    Preventive Protection .....                                               | 137 |
| 3.2.    Tower .....                                                               | 137 |
| 3.3.    Fastening of cables, antennas and connectors .....                        | 138 |
| 3.4.    Indoors Equipment Installation.....                                       | 139 |
| 3.5.    Equipment Grounding .....                                                 | 139 |
| 3.6.    Electric Installation Grounding .....                                     | 140 |
| 3.7.    Power Supply.....                                                         | 140 |
| 4.    Equipment Assembly .....                                                    | 141 |
| 4.1.    Assembly.....                                                             | 141 |
| 4.2.    Internal Connections.....                                                 | 143 |
| 4.3.    External RF Connections.....                                              | 147 |
| 4.3.1.    EC701HP-BB3 .....                                                       | 147 |
| 4.3.2.    EC702HP-BB3 .....                                                       | 148 |
| 4.3.3.    EC703HP-BB3 .....                                                       | 149 |
| 4.3.4.    EC704HP-BB3 .....                                                       | 150 |
| 4.4.    AC Electrical Line Connection .....                                       | 151 |
| 4.4.1.    Electrical line connection (EC701HP-BB3).....                           | 151 |
| 4.4.2.    Electrical line connection (EC702HP-BB3, EC703HP-BB3, EC704HP-BB3)..... | 152 |

|                                                                                                                            |            |
|----------------------------------------------------------------------------------------------------------------------------|------------|
| 4.4.3. Electrical line connection (EC701HP-BB3).....                                                                       | 152        |
| <b>Section 5 – Initial Activation .....</b>                                                                                | <b>155</b> |
| 1. Overview.....                                                                                                           | 155        |
| 2. Activation .....                                                                                                        | 156        |
| 3. Main Operations .....                                                                                                   | 158        |
| 3.1. Power Changing .....                                                                                                  | 158        |
| 3.2. Communication .....                                                                                                   | 158        |
| 4. Forbidden operations .....                                                                                              | 158        |
| 5. Protections.....                                                                                                        | 159        |
| 5.1. Reflected Power .....                                                                                                 | 159        |
| 5.2. Over-excitation .....                                                                                                 | 159        |
| 5.3. AC Mains Line Protection.....                                                                                         | 159        |
| 5.4. Transmitter Operating Temperature Configuration .....                                                                 | 160        |
| <b>Section 6 – Preventive Maintenance.....</b>                                                                             | <b>161</b> |
| 1. Overview.....                                                                                                           | 161        |
| 2. Preventive Maintenance .....                                                                                            | 161        |
| 2.1. Cleaning .....                                                                                                        | 161        |
| 2.2. Visual Inspection.....                                                                                                | 162        |
| 2.3. Reading Verification.....                                                                                             | 162        |
| <b>Section 7 - Attachments.....</b>                                                                                        | <b>163</b> |
| 1. POWER AMPLIFIER DRAWER: Fan Filter Access for Cleaning / Fan Replacement.....                                           | 164        |
| 2. DUMMY LOAD DRAWER: Fan Filter Access for Cleaning / Fan Replacement (mod 40295/40311 – EC702HP-BB3 / EC703HP-BB3) ..... | 165        |
| 3. DUMMY LOAD DRAWER: Fan Filter Access for Cleaning / Fan Replacement (DL2K0 – EC704HP-BB3) .....                         | 166        |
| 4. USA AC Mains Types for E-Compact Series .....                                                                           | 167        |

## 2. Abbreviations

|         |                                                               |       |                                                     |
|---------|---------------------------------------------------------------|-------|-----------------------------------------------------|
| 1PPS    | One Pulse per Second                                          | RTP   | Real-time Transport Protocol                        |
| A       | Amperes                                                       | RU    | Rack Unit                                           |
| AC      | Alternating Current                                           | SFN   | Single Frequency Network                            |
| A-DPD   | Adaptive Digital Pre-distortion                               | SI    | Service Information                                 |
| AF      | After Filter                                                  | SNMP  | Simple Network Management Protocol                  |
| ALC     | Automatic Level Control                                       | SNR   | Signal to Noise Ratio                               |
| ASI     | Asynchronous serial interface                                 | TMCC  | Transmission and Multiplexing Configuration Control |
| ASL     | Above Sea Level                                               | TS    | Transport Stream                                    |
| ATSC    | Advanced Television System Committee                          | TSoIP | Transport Stream over Internet Protocol             |
| BF      | Before filter                                                 | U     | RU - Rack Unit                                      |
| BISS    | Basic Interoperable Scrambling System                         | UDP   | User Datagram Protocol                              |
| BTS     | Broadcast Transport Stream                                    | UHF   | Ultra High Frequency                                |
| BTU     | British Thermal Unit                                          | UPS   | Uninterruptable Power Supply                        |
| CAM     | Conditional Access Module                                     | V     | Volts                                               |
| dB      | Decibel                                                       | VAC   | Volts Alternating Current                           |
| DC      | Direct current                                                | VGA   | Variable Gain Amplifier                             |
| DDP     | Potential Difference                                          | VGS   | Voltage Gate Source                                 |
| DPD     | Digital Pre distortion                                        | VSWR  | Voltage Standing Wave Ratio                         |
| DSP     | Digital Signal Processing                                     | WxDxH | Width x Depth x Height                              |
| DVB-S   | Digital Video Broadcasting – Satellite                        |       |                                                     |
| DVB-S2  | Digital Video Broadcasting – Satellite – 2nd generation       |       |                                                     |
| FPGA    | Field Programmable Gate Array                                 |       |                                                     |
| FWR     | Forward                                                       |       |                                                     |
| HKC     | Hitachi Kokusa Electric Comark                                |       |                                                     |
| IP      | Internet Protocol                                             |       |                                                     |
| ISDB-T  | Integrated Services Digital Broadcasting Terrestrial (Brazil) |       |                                                     |
| ISDB-Tb | Integrated Services Digital Broadcasting Terrestrial          |       |                                                     |
| LCD     | Liquid Crystal Display.                                       |       |                                                     |
| LPC     | Linear Pre correction                                         |       |                                                     |
| MCCB    | Molded Case Circuit Breakers                                  |       |                                                     |
| MER     | Modulation Error Rate                                         |       |                                                     |
| MFN     | Multiple Frequency Network                                    |       |                                                     |
| MSps    | Million Sample per Seconds                                    |       |                                                     |
| N/A     | Not/Apply                                                     |       |                                                     |
| NLPC    | Non-Linear Pre Correction                                     |       |                                                     |
| PA      | Power Amplifier                                               |       |                                                     |
| PCMCIA  | Personal Computer Memory Card International Association       |       |                                                     |
| PFC     | Power Factor Correction                                       |       |                                                     |
| PID     | Packet Identifier                                             |       |                                                     |
| PLL     | Phase Locked Loop                                             |       |                                                     |
| PS      | Power Supply                                                  |       |                                                     |
| PSI     | Program-specific information                                  |       |                                                     |
| PSU     | Power Supply Unit                                             |       |                                                     |
| PW      | Power                                                         |       |                                                     |
| RPM     | Rotations Per Minute                                          |       |                                                     |

### 3. About this Manual

The purpose of this manual is to provide technical information required for the installation and operation of High-Power E-Compact series of UHF TV signal transmitters (digital ATSC).

#### EC701HP-BB3

930W UHF ATSC 3.0 Transmitter (6-poles filter)  
1.1kW UHF ATSC 1.0 Transmitter (6-poles filter)

#### EC702HP-BB3

1.86kW UHF ATSC 3.0 Transmitter (6-poles filter)  
2.2kW UHF ATSC 1.0 Transmitter (6-poles filter)

#### EC703HP-BB3

2.85kW UHF ATSC 3.0 Transmitter (6-poles filter)  
3.3kW UHF ATSC 1.0 Transmitter (6-poles filter)

#### EC704HP-BB3

3.8kW UHF ATSC 3.0 Transmitter (6-poles filter)  
4.4kW UHF ATSC 1.0 Transmitter (6-poles filter)

Hitachi Kokusai Electric Comark LLC recommends that you carefully read this manual before installing or operating this equipment.



This manual is intended for use by qualified, trained installers.



Read this manual before working with the product. For personal and system safety, as well as for optimum product performance, one must be sure to thoroughly understand the contents before installing, operating, or maintaining this product.

---

## 4. Basic Knowledge Required

---

The mandatory knowledge and skills to operate the equipment are as follow:

- Knowledge of RF electronic circuits
- Knowledge of electricity and electrical systems
- Knowledge of digital electronics
- Experience conducting tests and Digital TV signals measurements in ATSC standard
- Knowledge of transmission antenna
- Experience operating radio frequency measurement equipment
- Practice in the management of radio frequency measures equipment (spectrum Analyzer, RF power meter, Vector Network Analyzer, couplers, attenuators, etc)

---

## 5. Structure

---

This manual is comprised of seven (7) sections, which provide the following information:

**Section 1 – Care, Warranty, and Service**

This section indicates the necessary care with the equipment, warranty criteria, and technical assistance is needed.

**Section 2 – Minimum Installation Requirements**

This section comprises the minimum infrastructure requirements for installing these devices, such as AC power, protection against lightning, and air conditioning.

**Section 3 – E-Compact BB3 High Power Series UHF Digital Transmitter**

This section presents all equipment characteristics, such as description, models, functional description, and technical specifications of all models of the E-Compact series High Power Transmitters.

**Section 4 – Installation**

This section provides procedures for physical and electrical installation.

**Section 5 – Initial Activation**

This section describes which steps to perform in the initial activation of the equipment.

**Section 6 – Preventive Maintenance**

This section provides information for preventive maintenance.

**Section 7 – Attachments**

This section provides additional information for this document.

# Section 1 – Care, Warranty, and Service

## 1. Care and Safety



Never open the device, as there is a risk of electric shock. If necessary, contact Comark customer service.



Before Connecting the Machine to the AC Mains, one must ensure that the grid Voltage meets the equipment's settings.



Never expose the equipment to rain, moisture or direct sunlight, in order to avoiding risk of fire or electric shock.



Avoid risks of accidents with regards to heights and electricity. Always install or maintain this equipment by qualified technicians.



Never turn on the equipment without connecting it to an Antenna or RF Load, as this may cause serious damage to the Equipment.



Never unplug any Power Amplifier Drawer while the Transmitter is on, as this may result in a risk of equipment damage.

## 2. Warranty

1. All equipment shall have warranty coverage by the supplier against manufacturing or assembly faults conducted by the supplier for the period of 12 months, beginning upon the issuing of the sales invoice. The period is irrevocable except in cases of extended warranty previously noted in the contract.
2. During warranty time, the supplier will repair, with no additional charge, the faulty products, providing adjustments, replacing or re-manufacturing all the equipment or its modules and components that present unusual behavior;
  - 2.1. The repaired/replaced products are covered for an additional period of 3 (three) months or up to the end of the original warranty time, taking into count the longer period;
  - 2.2. If the additional 3 (three) months term, referred above, is higher than the original warranty term, the warranty will only extend to the repaired/replaced modules or components;
  - 2.3. The warranty will become effective in the supplier's factory; therefore, it is not a responsibility of the supplier: the shipment of any modules, components or any other equipment or accessory. These expenses will be, when due, a responsibility of the Purchaser.
- 2.4. The Purchaser may choose to have the supplier's technical personnel travel to the Purchaser's location, instead of submitting the goods for factory repair, although the expenses relative to transportation, lodging and nourishment of the supplier's technicians will occur at sole expense of the Purchaser, upon budget approval.
3. The supplier is relieved of the warranty terms in the hereinafter situations:
  - 3.1. Faults or defects caused by AC Mains variation, atmospheric phenomena or accidental;
  - 3.2. Faults or defects caused by inadequate installation of the goods, not complying with the OPERATING MANUAL(S) or by negligence of the minimum infrastructure requirements in the installation site, which is referred in the ANNEX 1 herein attached.
  - 3.3. Faults or defects caused by inadequate usage of the products, not complying with the OPERATING MANUAL(S) or by lack of proper preventive maintenance recommended in the product's manual.
  - 3.4. In event of the goods and its accessories are submitted to 3<sup>rd</sup> Party maintenance, unauthorized by the supplier, as well as removal or violation of its serial number.
4. The supplier shall employ, during warranty term, original parts and components listed by the product's manufacturer.
5. The technical assistance must be held by the SUPPLIER or its accredited personnel or companies, failing which will result in warranty voidance.

### 2.1. FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A Digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. The antenna(s) used for this transmitter must be fixed-mounted on the outdoor permanent structures. RF exposure compliance is addressed at the time of licensing, as required by the responsible FCC Bureau(s), including antenna co-location requirements of §1.1307(b)(3).  
2. Changes or modifications not expressly approved by Hitachi Kokusai Electric Comark LLC could void the user's authority to operate the equipment. 3. This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

### 3. Technical Assistance

---

Since several devices are received in our Quality Management System without proper identification and explanations; we are now working with previous approval for maintenance devolution.

Therefore, in case of maintenance please contact:

Hitachi Kokusai Electric Comark LLC

Phone: (800) 345-9295 / Fax: (413) 998-1194 E-mail: support@comarktv.com

While submitting a request for assistance, please provide the following information: Customer name, Equipment Part Number, Serial Number, and a brief explanation of the occurrence.

With this intel we shall send the ARM number (Authorization for Return of Material), which is mandatory for the invoice.

## Section 2 – Minimum Installation Requirements

### W A R N I N G

#### **Minimum infrastructure requirements for installation and operation of TV transmitters**

1. Adequate Grounding
2. Proper Lightning protection system
3. Shelter with ventilation, footprint, and temperature in compliance with the transmitter's standards
4. Voltage stabilizer or UPS (with isolating transformer) according to the transmitter's consumption
5. Surge suppressors

**Noncompliance with any of above-mentioned terms will automatically result in the hereinafter suspension of the warranty terms.**

## 1. Introduction

This section provides information on the minimum installation requirements for ATSC E-Compact Series transmitters with recommendations on shelter, tower, antennas, cables, grounding, mains, transient preventions, etc.

## 2. Minimum Requirements

### 2.1. AC Mains - Wire Gauge

The following details the consumption with the equipment running at its maximum power.

Current (A) on each wire:

| M110                                           | M220                                                        | B220                                  | T220                                  | T380                                                                                          |
|------------------------------------------------|-------------------------------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------|
| 110VAC $\pm 15\%$<br>Between Phase and Neutral | 220VAC $\pm 15\%$<br>Between Phase B (Wild Leg) and Neutral | 220VAC $\pm 15\%$<br>Between 2-Phases | 220VAC $\pm 15\%$<br>Between 3-Phases | 380VAC $\pm 15\%$<br>Between 3 Phases<br>220VAC $\pm 15\%$<br>Between Each Phases and Netural |

| MODEL       | AC load for infrastructure install (A) - E-Compact Series - ATSC |                               |     |             |                               |     |                               |       |      |      |       |    |
|-------------|------------------------------------------------------------------|-------------------------------|-----|-------------|-------------------------------|-----|-------------------------------|-------|------|------|-------|----|
|             | (A)                                                              | M110                          |     | M220 / B220 |                               | (A) | T220                          |       | T380 |      |       |    |
|             |                                                                  | Wire Gauge<br>mm <sup>2</sup> | AWG | (A)         | Wire Gauge<br>mm <sup>2</sup> | AWG | Wire Gauge<br>mm <sup>2</sup> | AWG   |      |      |       |    |
| EC701HP-BB3 |                                                                  |                               |     | 18.1        | 8.36                          | 8   | 10.4                          | 5.26  | 10   | 6.0  | 3.31  | 12 |
| EC702HP-BB3 |                                                                  |                               |     | 34.6        | 16.77                         | 5   | 20.0                          | 10.55 | 7    | 11.5 | 5.26  | 10 |
| EC703HP-BB3 |                                                                  |                               |     | 51.6        | 26.67                         | 3   | 29.8                          | 13.3  | 6    | 17.2 | 8.36  | 8  |
| EC704HP-BB3 |                                                                  |                               |     | 72.4        | 33.63                         | 2   | 41.8                          | 21.15 | 4    | 24.1 | 10.55 | 7  |



Not available or uncommon use

The current values specified in the table are according to the load of each phase, which will determine the size of the conductors and protection.

Said gauge is the minimum recommended for the transmitter in question, if the cable length is large, consider voltage drop in the cable maximum of 5%.

The section of the neutral conductor should be the same as the phase.

The section of the ground conductor must be the same as the conductor's phase.

## 2.2. Grounding

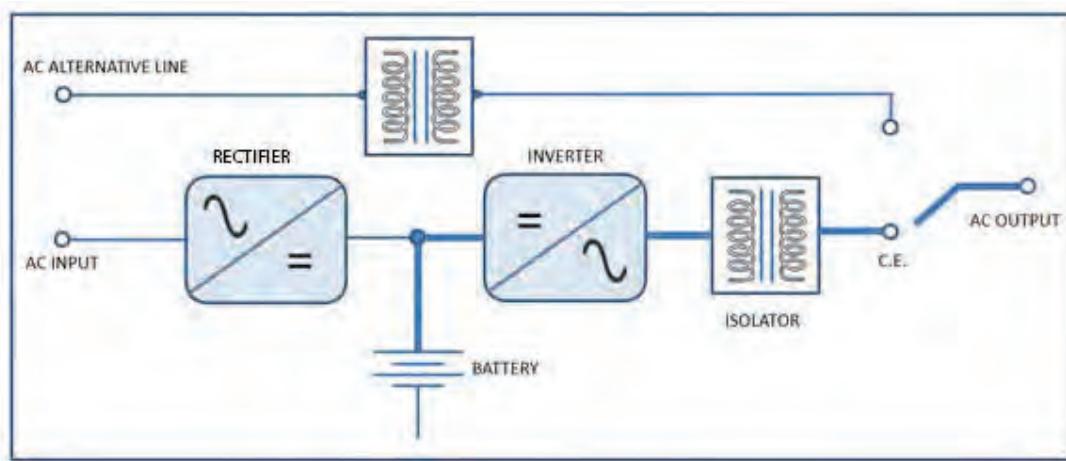
The grounding system to which the Comark TV transmitter will be attached is suggested to be designed and implemented by a qualified professional. An improper grounding system may jeopardize the equipment as well as the lives of the professionals working in the shelter. To be considered proper, the grounding is suggested to have a resistance of no more than 5 Ohms.

It is recommended that all of the devices involved in the transmission system are at the same potential, so that there is no DDP, favoring the equilibrium of the flow of the atmospheric load.

It is important to state that if there is a need for chemical alteration of the soil, in order to provide the lowest impedance, it establishes a temporary condition for not being part of the natural chemistry of the place, thus being naturally absorbed. In this condition, preventive soil analyzes should be conducted as preventive maintenance procedure.

## 2.3. Stability

The voltages in each TV Transmitter phase should be stabilized. The use of voltage stabilizers or stabilized uninterruptible power systems (UPS's) is necessary since these devices can protect the TV transmitter from power surges. The voltage stabilizer or UPS design would be most effective if exclusively used with the Comark TV transmitter and is sized to operate at least 30% above the kVA consumption specified by the TV transmitter. For example, for the TV transmitter with maximum consumption of 38kVA, a voltage stabilizer, or 50kVA UPS should be used.


Input voltage variations above 15% of the rated values specified for the Comark TV transmitter may cause damage to the equipment and in this case will not be covered by the factory warranty. In addition, it is important to check the potential difference between the ground and neutral terminals (if any) that will be connected to the Comark TV transmitter. This potential difference should be at most 3V.

## 2.4. Insulation

It is important to have isolation between the energy stations of the shelter and the TV transmitter, which is achieved with the usage of isolator transformers. This guarantees that no AC Mains' transient coming from the shelter will be passed on to the TV transmitter or vice-versa. Besides, Comark's transmitters feature switching power supplies that require purely sinusoidal power inputs and voltage regulators / no-breaks without isolator transformers that have no assurance of a purely sinusoidal outputs. It is suggested that the isolator transformer should also be exclusive to the transmitter and its dimensioning should use the same standards employed in the dimensioning of the voltage regulators / no-break (ie, at least 30% higher than the specified consumption transmitter's (KVA)).

### Recommendations

1. We recommend that the transmitter "never see" the power grid directly.
2. We recommend the use of online double-conversion UPS and / or Delta-conversion online UPS built with transformer insulation and with power factor correction (PFC).



No break Example with Isolating Transformer

### Benefits:

These types of UPS bring great protection and insulation to the transmitter due to its design.

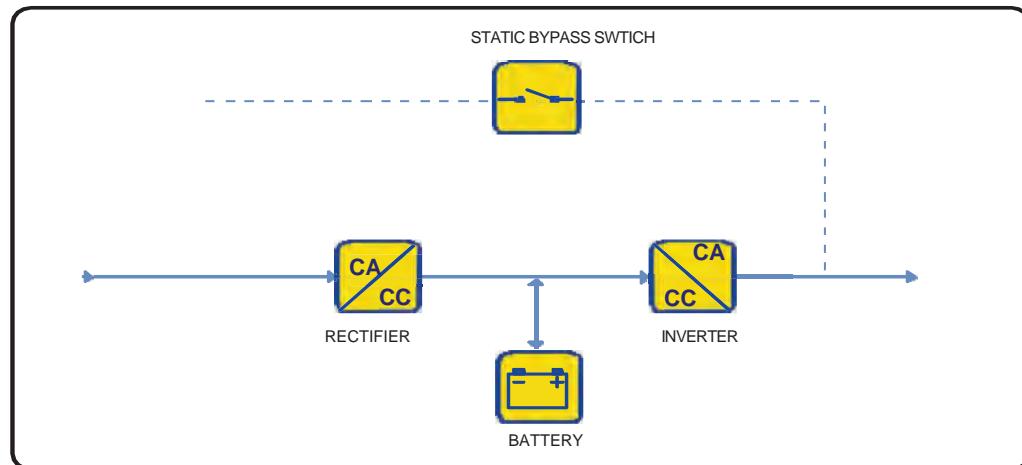
The double conversion occurs because the AC network converts to DC and the DC voltage converts back to AC, which eliminates any disturbance in the AC mains when converted to DC, thus protecting the transmitter.

It is important to note that UPS's do not necessarily need to have a battery bank, thus minimizing the cost of the final product. This solution is much better than a conventional stabilizer due to double conversion.

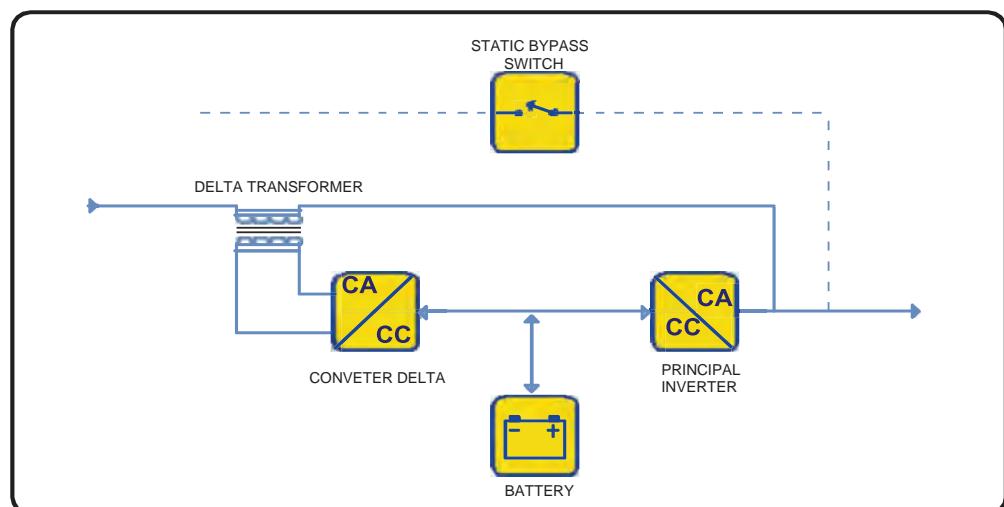
The correction of the power factor (PFC) in the no break is necessary to reduce the cost of the electric energy, as it reduces the reactive power (VAr) and the total power (VA).

It is important to emphasize that it is not efficient to have a transmitter with power factor correction (PFC) powered by a no-break without PFC, as all the advantage achieved by the transmitter is lost in the UPS, resulting in no energy savings. When this type of connection made you actually have an excellent load (resistive behavior) for the no-break but your power grid will see the no-break input (without PFC, high consumption).

When we have a power factor correction (PFC) UPS, it performs well (low reactive power, low power consumption) within the network even if it is connected to a PFC-free transmitter, as it will correct the power factor of the entire system.


### Nobreak capatibity

$$\text{Nobreak Power} = \text{PTX} * (\cos \Phi * \eta_{(\text{nobreak})})$$


PTX: Real Power [W]

COS  $\Phi$ : Transmitter Power Factor Correciton

$\eta_{(\text{nobreak})}$ : Nobreak efficiency



Double Conversion Online Nobreak



Delta Conversion Online Nobreak

## 2.5. Atmospheric Discharge Protection System

### 2.5.1 *Lightning rods*

The Atmospheric Discharge Protection System consists of the lightning rods and their elements. The tower and shelter where the equipment will be installed must be protected against atmospheric discharges by means of lightning arresters.

It is important to determine that all ferrous parts and accessories that make up the Atmospheric Discharge Protection System should be galvanized.

In the path comprised of the lightning rod to the drainage well, no splicing is allowed, much less pathways with acute angles (angles of less than 90°).

### 2.5.2 *Protectors*

The use of coaxial protectors is advisable for cables connecting external devices (antennas, microwave heads, tower inverters) to the internal ones. These protectors are devices equipped with gas spark plugs, which shorten to earth any discharge occurring in the coaxial cable. They should be kept in the shelter near the equipment and with the ground wire connected to the ground of the equipment rack.

It is favorable to use Faraday's Ring or Cage on hilltops and areas of many transmission sources, which in turn isolates the transmitter from the electromagnetic fields avoiding interference caused by induction.

## 2.6 Air Conditioning

### 2.6.1 *Temperature*

For better performance and longer equipment life, it is important that, under the shelter, the temperature is controlled strictly by means of air conditioners. For the shelter's design, one should consider the thermal dissipation specified for the transmitter (reported in BTU / h), the dissipation of the other devices inside the shelter, the thermal load generated by the solar incident, and other thermal loads present in the shelter. In addition, it is recommended that the shelter's internal pressure be slightly positive to prevent the entry of contaminants. According to the transmission power, the internal temperature of the shelter should be:

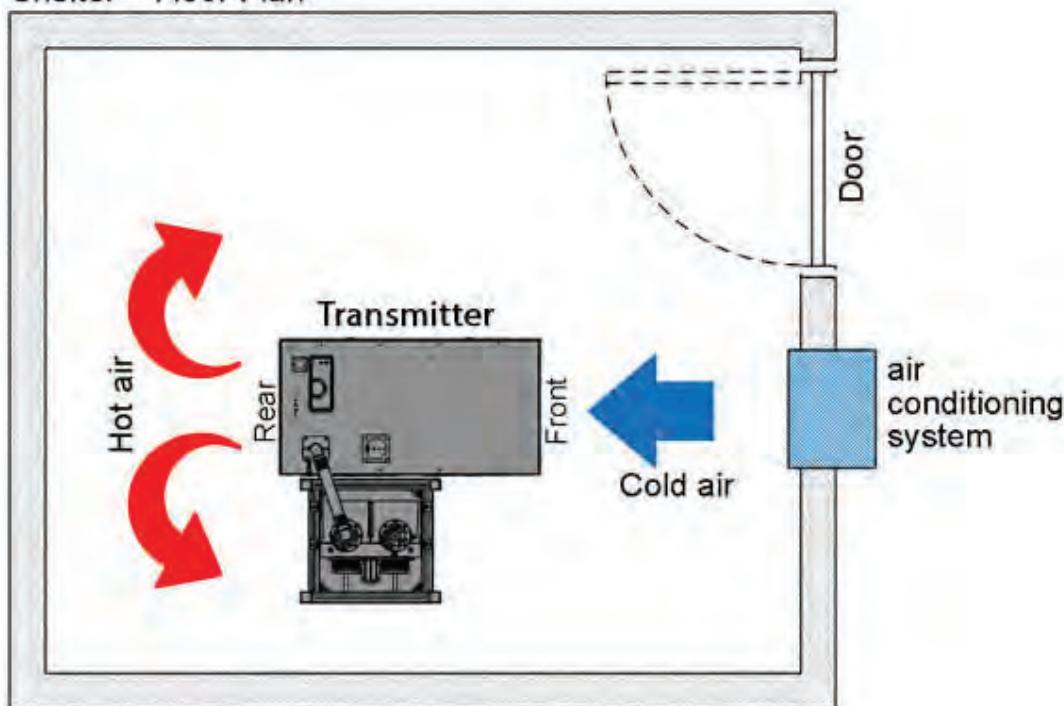
- E-COMPACT LOW POWER TV TRANSMITTERS: from 0° to 35°C
- E-COMPACT MEDIUM POWER TV TRANSMITTERS: from 0° to 30°C
- E-COMPACT HIGH-POWER TV TRANSMITTERS: 0° to 25°C

If Comark equipment is damaged by the lack or inefficiency of the HVAC system, it will NOT be covered by the factory warranty.

### 2.6.2 *Humidity*

Relative air humidity inside the shelter is also considered a critical factor for improved performance and longer equipment life. Comark equipment should operate in dry environments, which can also be achieved using air conditioners. According to the transmission power, the relative humidity inside the shelter should be:

- E-COMPACT LOW POWER TV TRANSMITTERS: 0 to 90%
- E-COMPACT MEDIUM POWER AND HIGH-POWER TV TRANSMITTERS: 0 to 80%


There must never be condensation since water can damage the internal circuits of the transmitter.

### 2.6.3 *Cooling*

Cooling must be always in circulation, with the air conditioning lowering the temperature of the room, without external air intake. For better performance of the cooling system, the air conditioner must be installed in series with the transmitter cooling cycle, directing the output air conditioning flow to the front of the Comark transmitter.

The physical installation of the transmitter should protect a free area around it for better cooling efficiency and access to maintenance. See image below:

Shelter – Floor Plan



## 2.7 AC Load and Thermal Dissipation Information for Infrastructure Install.

| E-Compact High Power Broadband ATSC | AC Load for infrastructure install (W) | Thermal Dissip. for infrastructure install (BTU/h) |
|-------------------------------------|----------------------------------------|----------------------------------------------------|
| EC701HP-BB3                         | 3976                                   | 9815                                               |
| EC702HP-BB3                         | 7609                                   | 18457                                              |
| EC703HP-BB3                         | 11356                                  | 27487                                              |
| EC704HP-BB3                         | 15930                                  | 39340                                              |

# Section 3 – E-Compact BB3 High Power Series UHF Digital Transmitters

## 1. Overview

The E-Compact High-Power family of air-cooled Doherty solid-state transmitters from Comark was designed specifically for the repack marketplace. Its design is simple, rugged, reliable, and ultra-efficient. Advanced standard features are included to ensure:

- maximum transmitter efficiency using Doherty amplifiers
- maximum flexibility with broadband amplifier technology (470-608MHz / 608-701MHz)
- optimum signal performance in all operating modes
- maximum reliability for 100% power output
- ease of initial setup and operation
- ease of monitoring and diagnostics
- flexible solutions for all installations

The E-Compact High Power BB3 Family of solid-state DTV transmitters includes four models that provide transmitter power outputs (TPO) from 930 to 3800 watts ATSC 3.0. Each power amplifier module has an excellent power density, with 3RU and 19". Featuring high gain Broadband Doherty LDMOS configured for transmitting up to 1.1kWrms (ATSC 3.0). Doherty Technology provides high efficiency and consumption cost reduction of up to 60% when compared to conventional transmitters. The final power amplifier configuration that is in parallel depends on the required output power level. The transmitters are compliant with all FCC and ATSC requirements.

We recommend the use of the EXACT-V2 DTV driver with linearization circuits to compensate for linear and non-linear distortions for the E-Compact High Power line transmitters. EXACT-V2 is software upgradeable for compatibility with ATSC 3.0.

The E-Compact family of solid-state transmitters includes a human-machine interface via an LCD display on the front panel and menus activated by programmable keys. Alarm indicators and normal controls, as well as power readouts, are available on the LCD.

There are three basic E-Compact High Power transmitter equipment configurations available:

- 1) Single Drive = One exciter driving the amplifier chain (SD)
- 2) Dual Drive = Two excitors (main/standby selectable) driving the amplifier chain (DD)
- 3) 1+1 = Two SD transmitters operating in parallel with high level RF switching (Custom made)

## 2. Specifications

- ⇒ IP Input
- ⇒ Control Module present
- ⇒ Switcher Module present
- ⇒ Power amplifier drawers
- ⇒ High efficiency with Doherty technology
- ⇒ Air cooled
- ⇒ Automatic Fan Speed Control providing low noise levels, energy saving and increased lifespan
- ⇒ Power supplies featuring Power Factor Correction better than 0.95
- ⇒ Measures and alarms through front display and keypad or remotely
- ⇒ VSWR and Overdrive protection via hardware with power reduction
- ⇒ Software oriented overheating protection for internal modules
- ⇒ Adaptive Digital Pre-correction (Linear and non-linear)
- ⇒ Telemetry: WEB Server / SNMP, for local or remote management
- ⇒ AGING transistor compensation via exciter's front panel
- ⇒ Automatic GM compensation with temperature
- ⇒ Gain and Phase adjustments per drawer
- ⇒ Isolated combiner, enabling Hot Swap
- ⇒ Main Control Software, WEB Server and SNMP
- ⇒ USB communication Drivers
- ⇒ Passive elements: Low-pass filter before and after-filter probes

**Optional:**

- ⇒ Interface color LCD touch screen display
- ⇒ Telemetry through GPRS interface
- ⇒ Exciter
- ⇒ Exciter Redundancy
- ⇒ Control Module Redundancy
- ⇒ GPS time base (exciter's internal module)

### More Features

|                               |                           |
|-------------------------------|---------------------------|
| Communication interfaces      | USB / Ethernet / SNMP     |
| Power factor                  | better than 0.95          |
| Operation altitude            | up to 8200ft ASL          |
| Environment temperature range | +32°F to +113°F           |
| Environment humidity range    | 0 to 95% (non-condensing) |

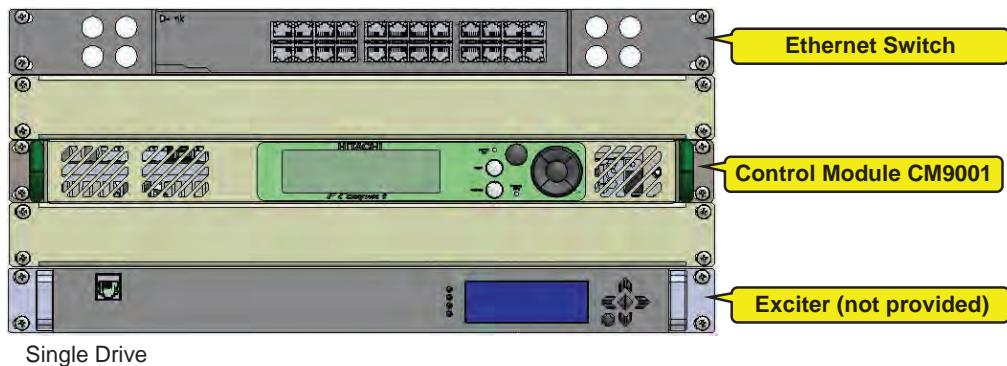
### Outputs

|                                        |                                                          |
|----------------------------------------|----------------------------------------------------------|
| Operation frequency                    | 470 to 608MHz (CH14 to 36)<br>608 to 701MHz (CH37 to 51) |
| Bandwidth                              | 6 MHz                                                    |
| RF Output Regulation                   | ≤± 0.1 dB                                                |
| Impedance                              | 50Ω                                                      |
| Minimum operation power (After Filter) | 10% of nominal power with 10W steps                      |
| TV Standard                            | ATSC 1.0 and ATSC 3.0                                    |
| Harmonics/Spurious                     | better than -60dBc                                       |
| MER                                    | better than 34dB                                         |

**Technical Table:**

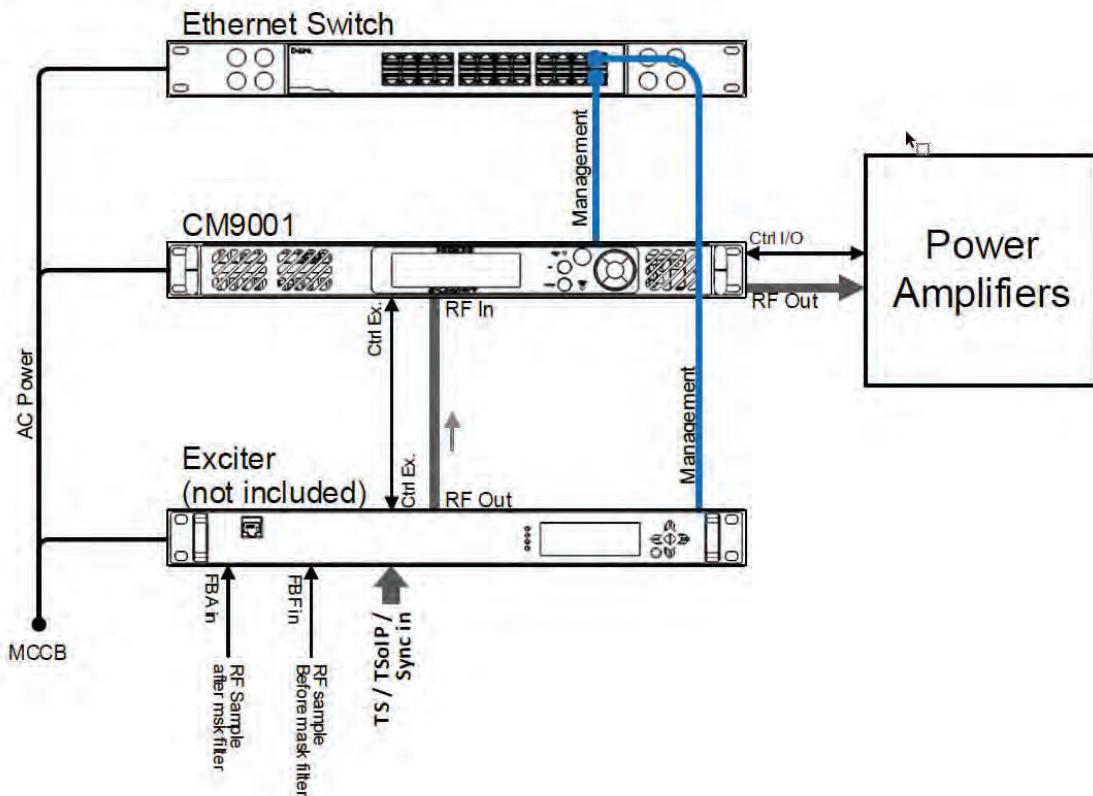
| Model:                                              | EC701HP-BB3                                                           | EC702HP-BB3       | EC703HP-BB3       | EC704HP-BB3       |
|-----------------------------------------------------|-----------------------------------------------------------------------|-------------------|-------------------|-------------------|
| <b>Output power (W)<sup>3</sup></b>                 | B.F. <sup>8</sup>                                                     | A.F. <sup>8</sup> | B.F. <sup>8</sup> | A.F. <sup>8</sup> |
| ATSC 3.0                                            | 1100                                                                  | 930               | 2200              | 1860              |
| ATSC 1.0                                            | 1300                                                                  | 1100              | 2600              | 2200              |
| <b>50Ω Output connector</b>                         | EIA 1-5/8"                                                            |                   |                   |                   |
| <b>Power modules</b>                                | 1 module                                                              | 2 modules         | 3 modules         | 4 modules         |
| <b>AC mains</b>                                     | Dual Phase 240Vac / Wye Three-Phase 208Vac / Delta Three-Phase 240Vac |                   |                   |                   |
| <b>AC typical consumption (kW)<sup>3</sup></b>      |                                                                       |                   |                   |                   |
| ATSC 3.0                                            | 2.90                                                                  | 5.70              | 8.50              | 11.30             |
| ATSC 1.0                                            | 3.15                                                                  | 6.15              | 9.17              | 12.20             |
| <b>Typical heat dissipation (BTU/h)<sup>3</sup></b> |                                                                       |                   |                   |                   |
| ATSC 3.0                                            | 6620                                                                  | 12820             | 19220             | 25510             |
| ATSC 1.0                                            | 6790                                                                  | 13150             | 19740             | 26210             |
| <b>Rack dimensions (RU)</b>                         | 10                                                                    | 20                | 24                | 28                |

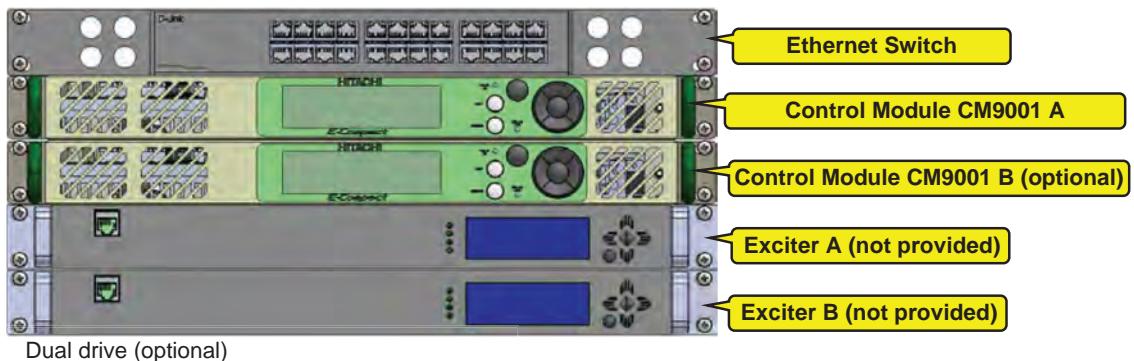
<sup>1</sup>A.F.: After Filter


<sup>2</sup>B.F.: Before Filter

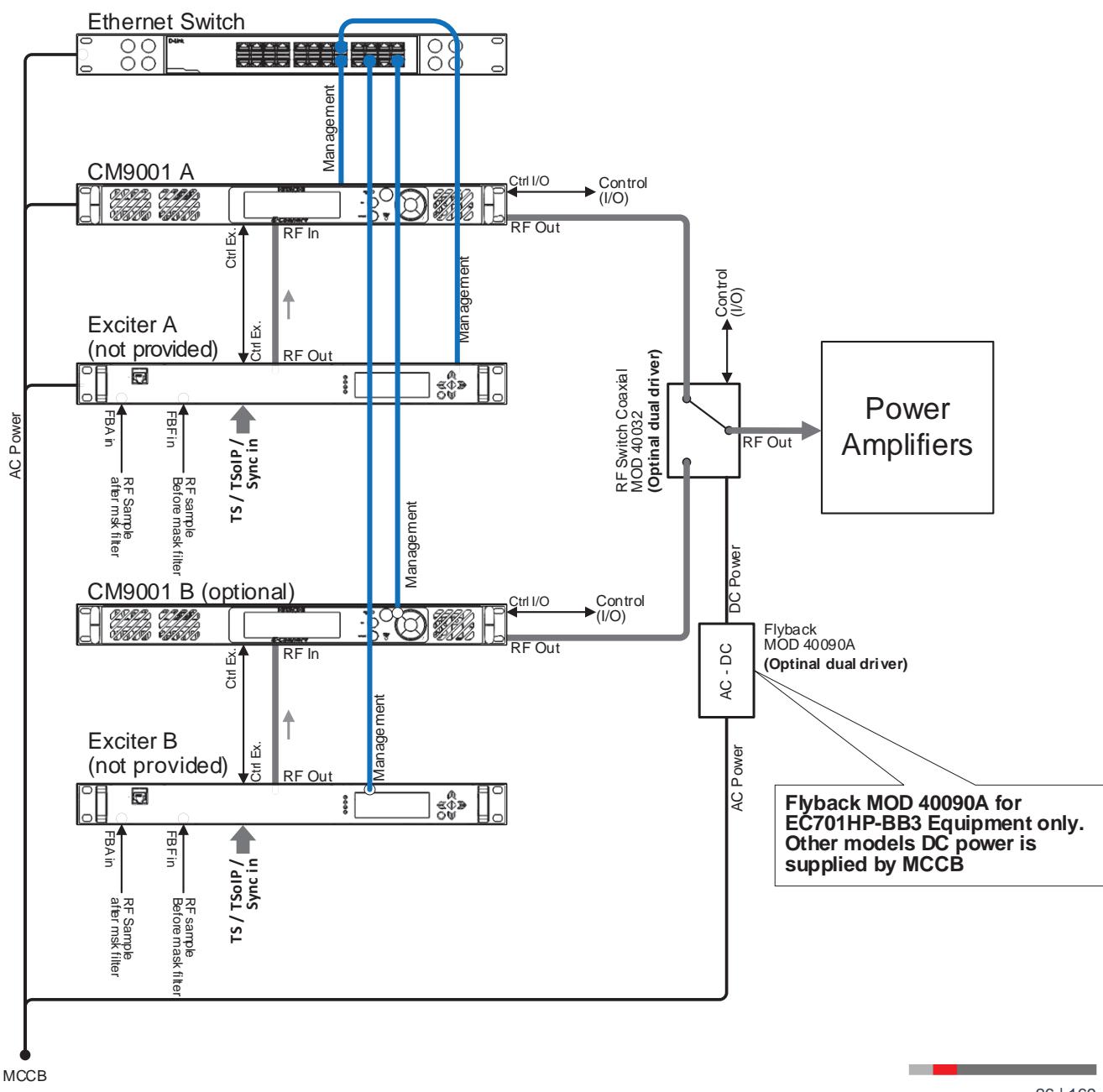
<sup>3</sup>May change depending on MER value, channel, and output power.

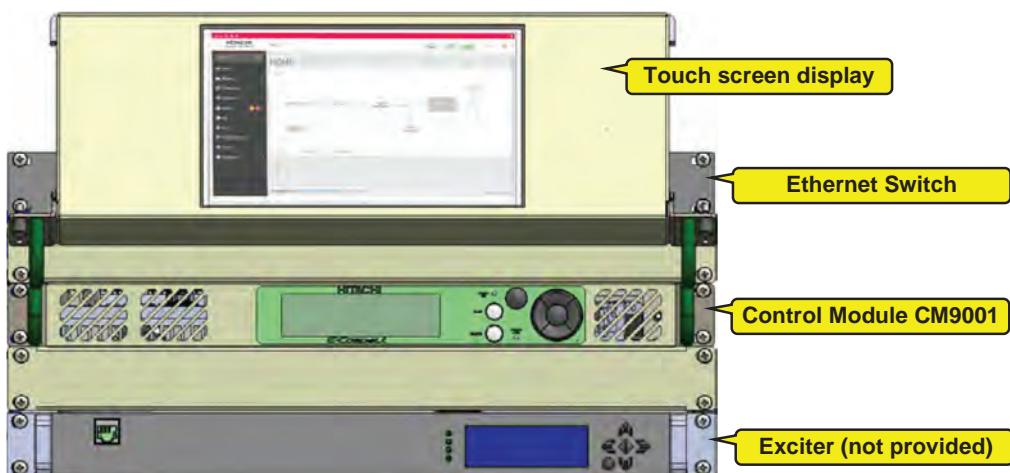
### 3. Construction


The E-Compact family of low high solid-state DTV transmitters provides maximum flexibility for site layout and installation. Transmitters are installed in custom designed 22" wide (19" panel opening) cabinets. Being available in several configurations depending on the output power, the redundancy option implemented, and number of channels at a given site.


#### 3.1. Single drive, Dual drive (optional), and touch screen display (optional)

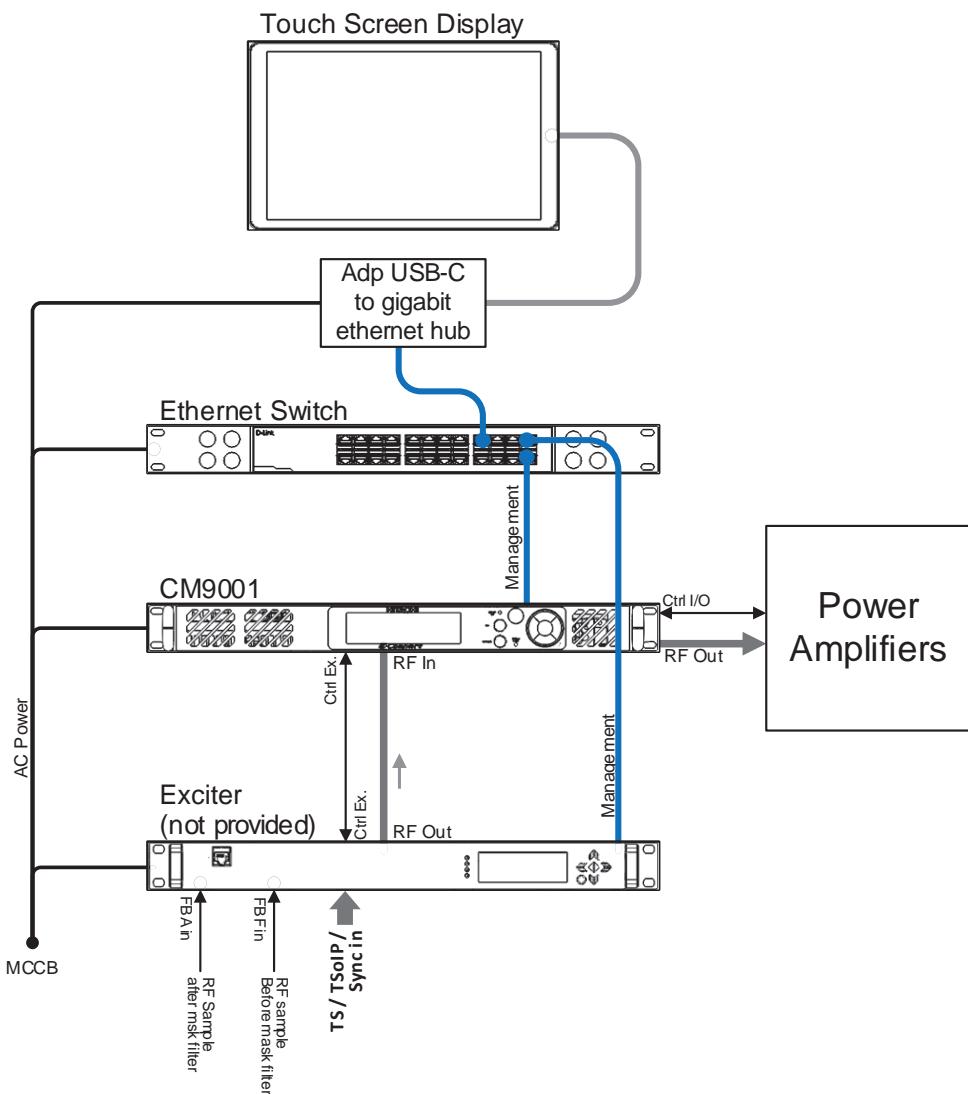



Single Drive


#### SINGLE DRIVE



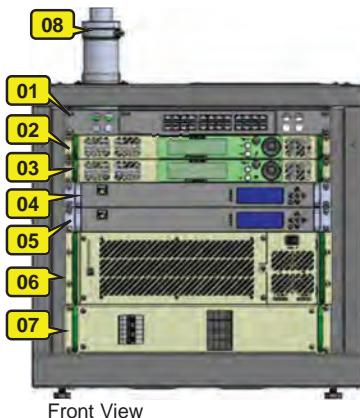



## DUAL DRIVE (OPTIONAL)

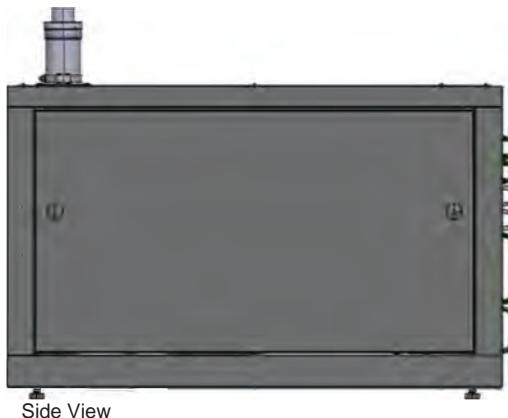




Touch screen display (optional)


### OPTIONAL INTERFACE TOUCH SCREEN DISPLAY




### 3.2. EC701HP-BB3

1100 Watts (Before Filter) UHF ATSC 3.0 output  
1300 Watts (Before Filter) UHF ATSC 1.0 output

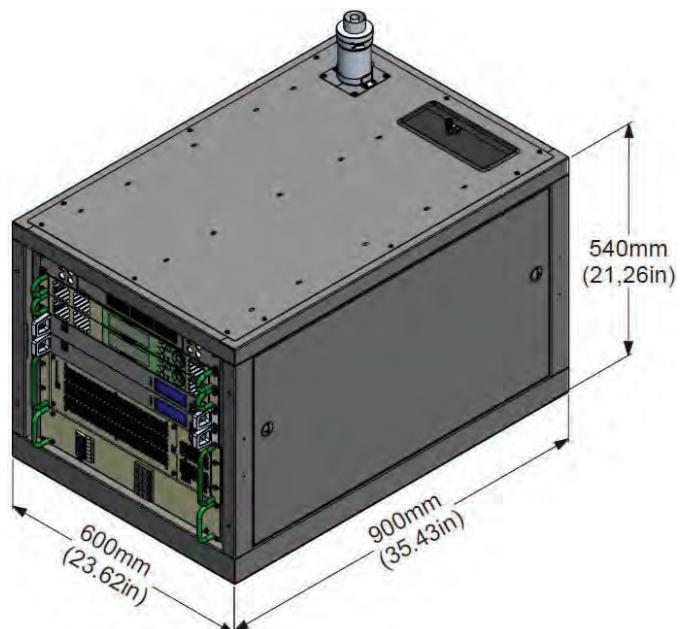
The transmitter controller is contained in a 1RU chassis and the RF amplifier is contained in a separate 3RU chassis. The digital exciter is 1RU (not provided) for a total of 5RU or 8.75" of vertical panel space. An equipment rack cabinet (10RU) is supplied.



Front View

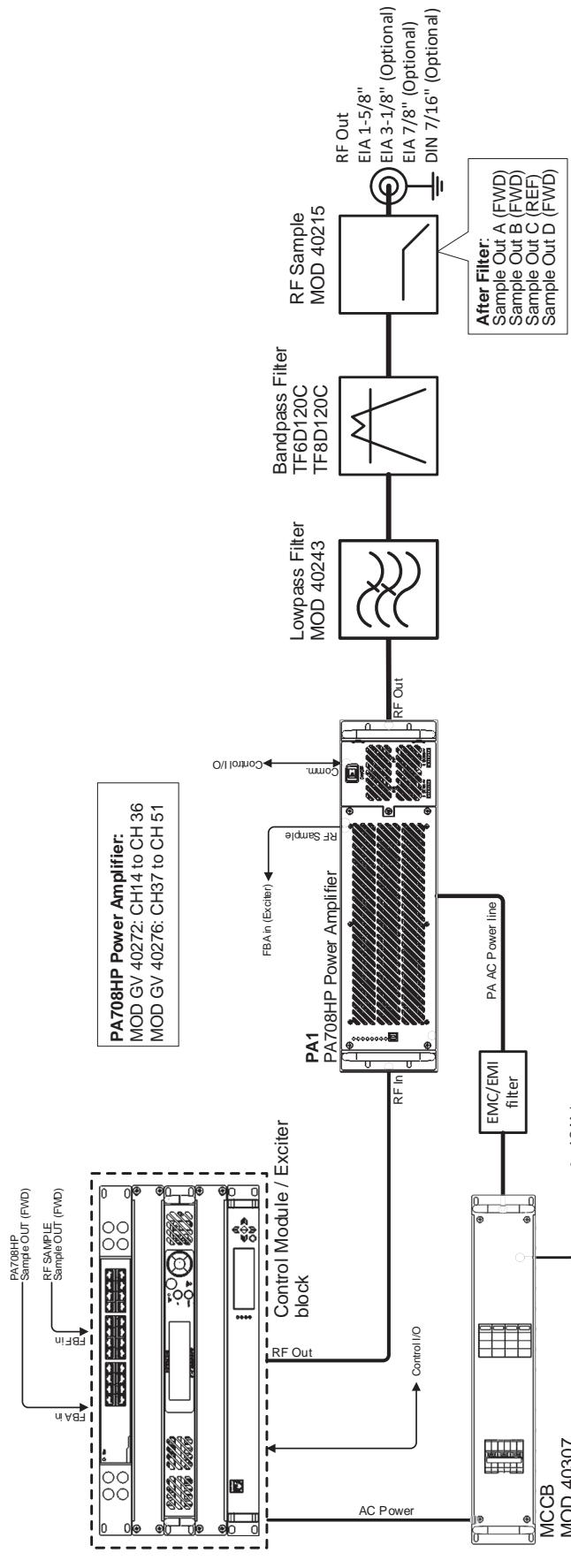


Side View




Rear View (without door)

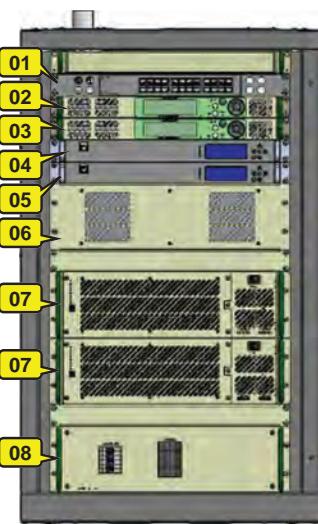



Top View

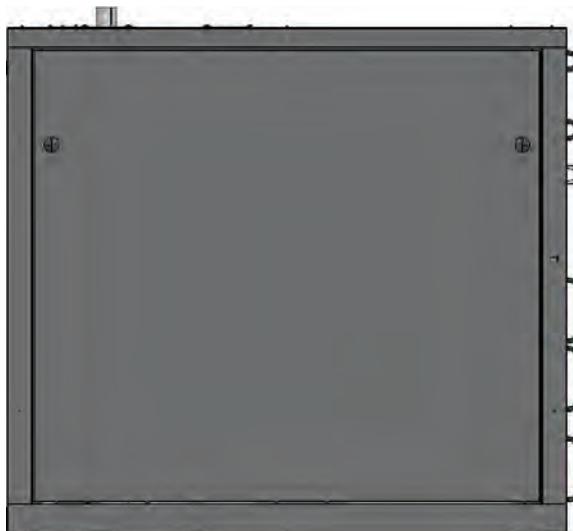
|    |                                         |
|----|-----------------------------------------|
| 01 | Ethernet Switch Module                  |
| 02 | Main Control Module CM9001              |
| 03 | Backup Control Module CM9001 (optional) |
| 04 | Main Exciter (not provided)             |
| 05 | Backup Exciter (not provided)           |
| 06 | PA708HP – MOD GV 40272: CH14 to CH 36   |
| 07 | PA708HP – MOD GV 40276: CH37 to CH 51   |
| 08 | MCCB AC Unit                            |
|    | Low Pass Filter                         |



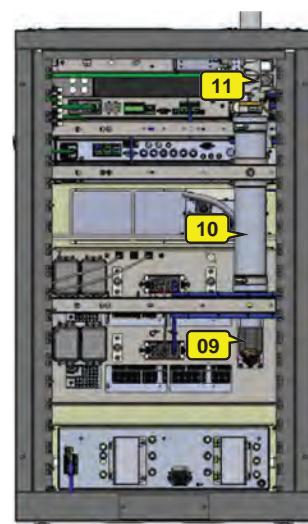
## EC701HP-BB3 BLOCK DIAGRAM


E-Compact HP-BB3 Series

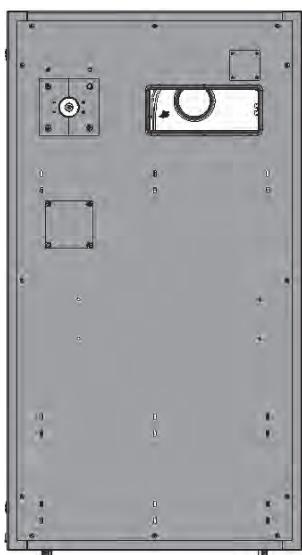



### 3.3. EC702HP-BB3

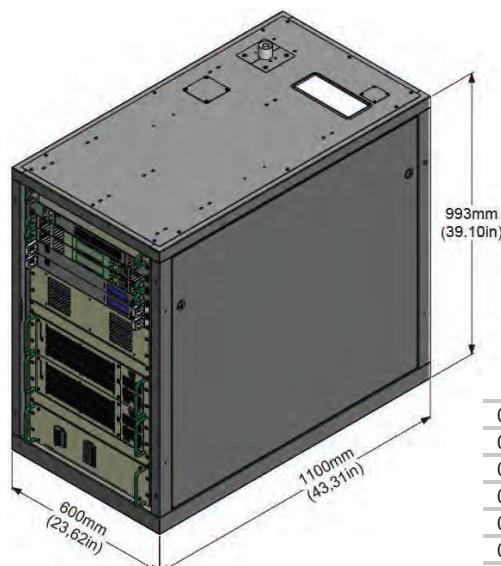
2200 Watts (Before Filter) UHF ATSC 3.0 output  
2600 Watts (Before Filter) UHF ATSC 1.0 output


The transmitter controller is contained in a 1RU chassis and two amplifiers are contained in two separate 3RU chassis. The digital exciter is 1RU for a total of 8RU or 14" of vertical panel space. Additional rack units are used by the RF load (3RU) and AC power distribution (3RU). An equipment 20RU rack cabinet is supplied.



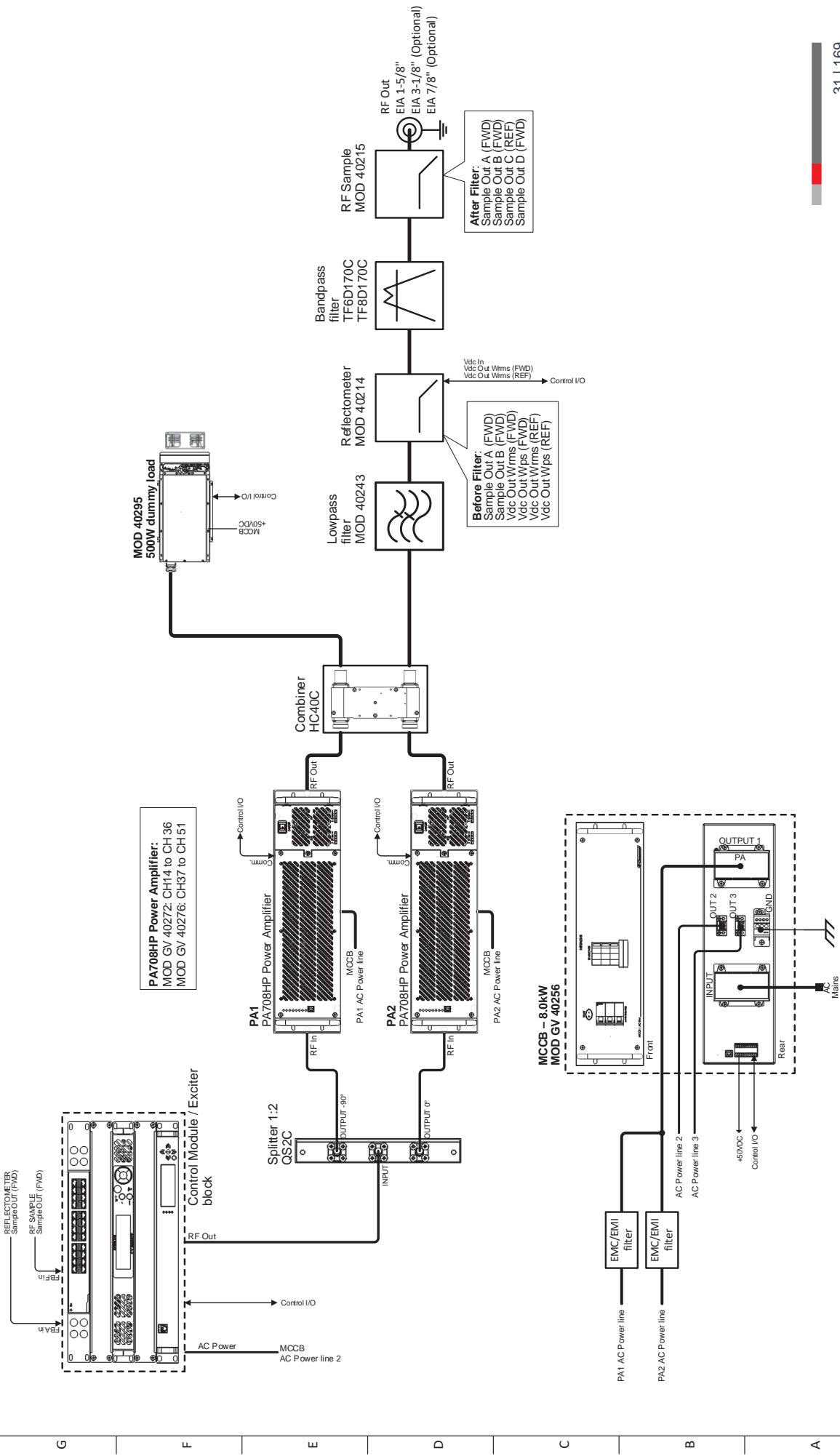

Front View




Side View



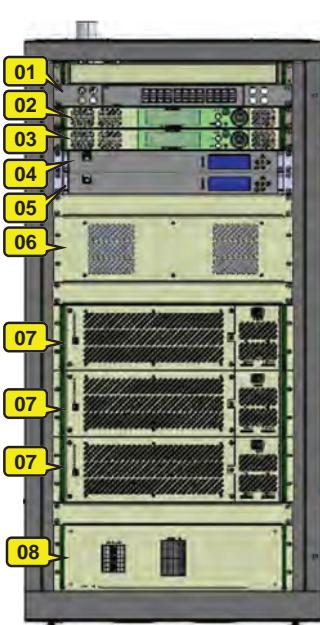
Rear View (without door)



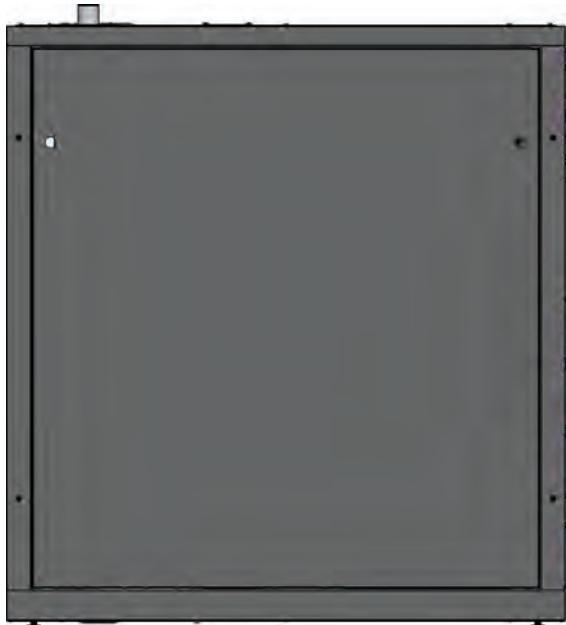

Top View



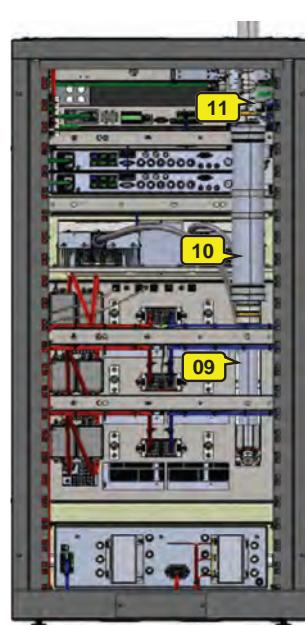
|    |                                                                                |
|----|--------------------------------------------------------------------------------|
| 01 | Ethernet Switch Module                                                         |
| 02 | Main Control Module CM9001                                                     |
| 03 | Backup Control Module CM9001 (optional)                                        |
| 04 | Main Exciter (not provided)                                                    |
| 05 | Backup Exciter (not provided)                                                  |
| 06 | Dummy Load Module MOD 40295 (500W)                                             |
| 07 | PA708HP - MOD GV 40272: CH14 to CH 36<br>PA708HP - MOD GV 40276: CH37 to CH 51 |
| 08 | MCCB AC Unit                                                                   |
| 09 | Combiner HC40C (2:1)                                                           |
| 10 | Low Pass Filter                                                                |
| 11 | Sample probe - Reflectometer                                                   |


## EC702HP-BB3 BLOCK DIAGRAM




### 3.4. EC703HP-BB3

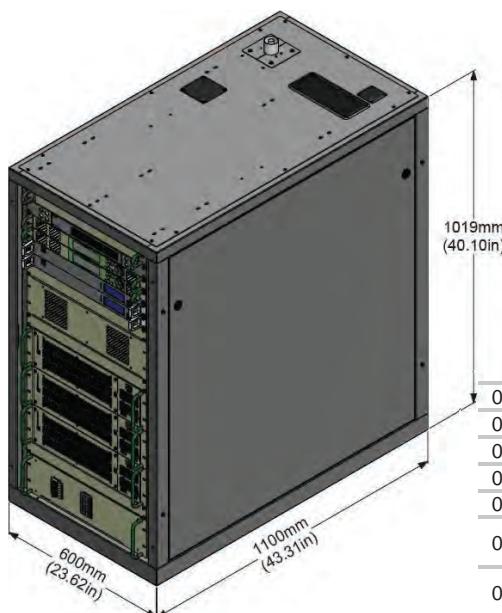
3300 Watts (before Filter) UHF ATSC 3.0 output  
3800 Watts (before Filter) UHF ATSC 1.0 output


The transmitter controller is contained in a 1RU chassis and three amplifiers are contained in three separate 3RU chassis. The digital exciter is 1RU for a total of 11RU or 19.25" of vertical panel space. Additional rack units are used by the RF load and AC power distribution. An equipment 24RU rack cabinet is supplied.



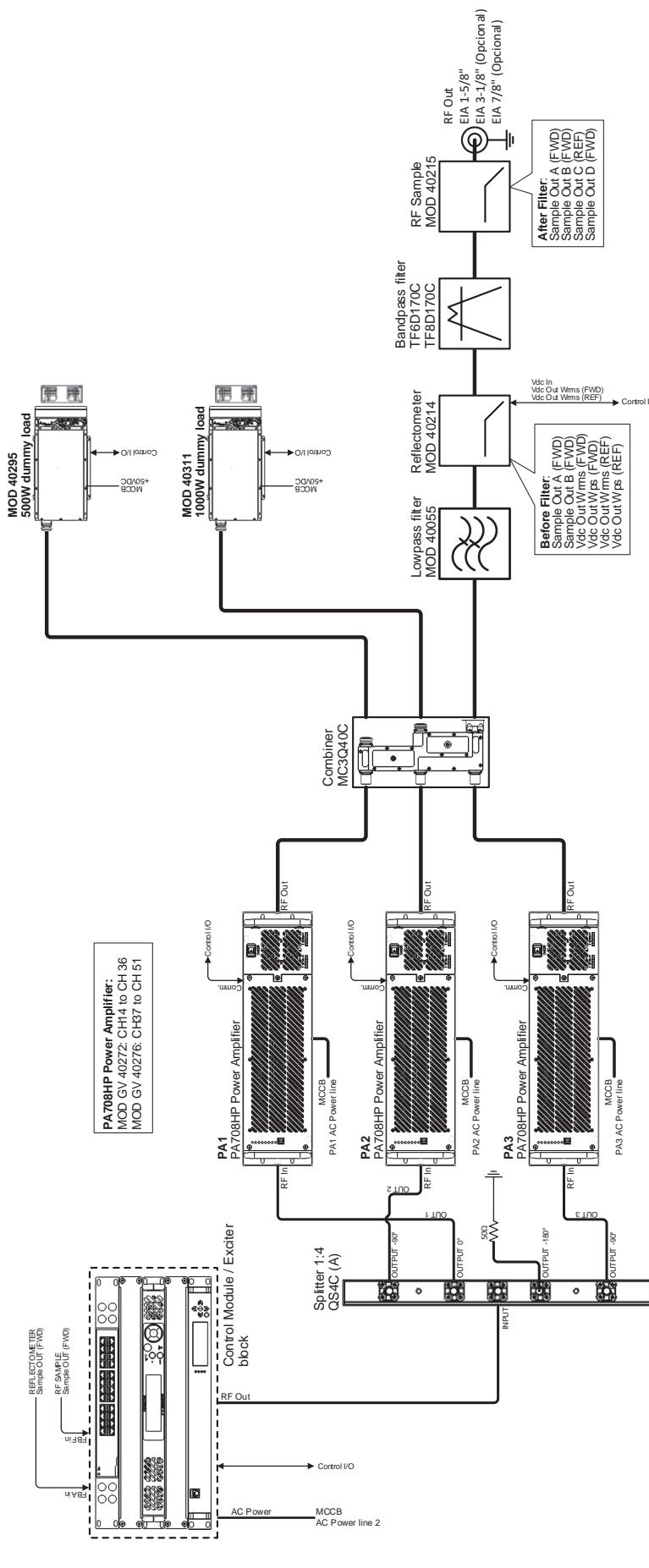
Front View




Side View



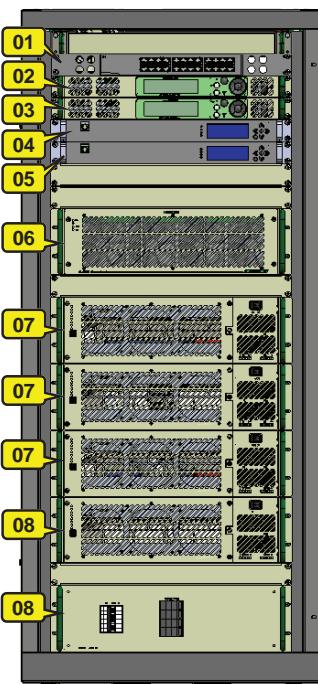
Rear View (without door)




Top View



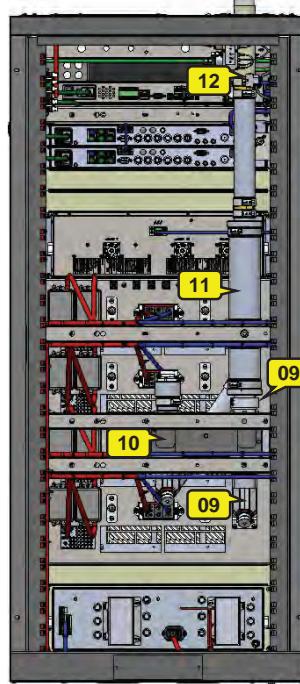
|    |                                                                                |
|----|--------------------------------------------------------------------------------|
| 01 | Ethernet Switch Module                                                         |
| 02 | Main Control Module CM9001                                                     |
| 03 | Backup Control Module CM9001 (optional)                                        |
| 04 | Main Exciter (not provided)                                                    |
| 05 | Backup Exciter (not provided)                                                  |
| 06 | Dummy Load Module MOD 40295 (500W)<br>Dummy Load Module MOD 40311 (1000W)      |
| 07 | PA708HP - MOD GV 40272: CH14 to CH 36<br>PA708HP - MOD GV 40276: CH37 to CH 51 |
| 08 | MCCB AC Unit                                                                   |
| 09 | Combiner MC3Q40C (3:1)                                                         |
| 10 | Low Pass Filter                                                                |
| 11 | Sample probe - Reflectometer                                                   |


## EC703HP-BB3 BLOCK DIAGRAM



### 3.5. EC704HP-BB3

4400 Watts (before Filter) UHF ATSC 3.0 output  
5000 Watts (before Filter) UHF ATSC 1.0 output


The transmitter controller is contained in a 1RU chassis and four amplifiers are contained in four separate 3RU chassis. The digital exciter is 1RU for a total of 14RU or 24.5" of vertical panel space. Additional rack units are used by the RF load and AC power distribution. An equipment 28RU rack cabinet is supplied.



Front View

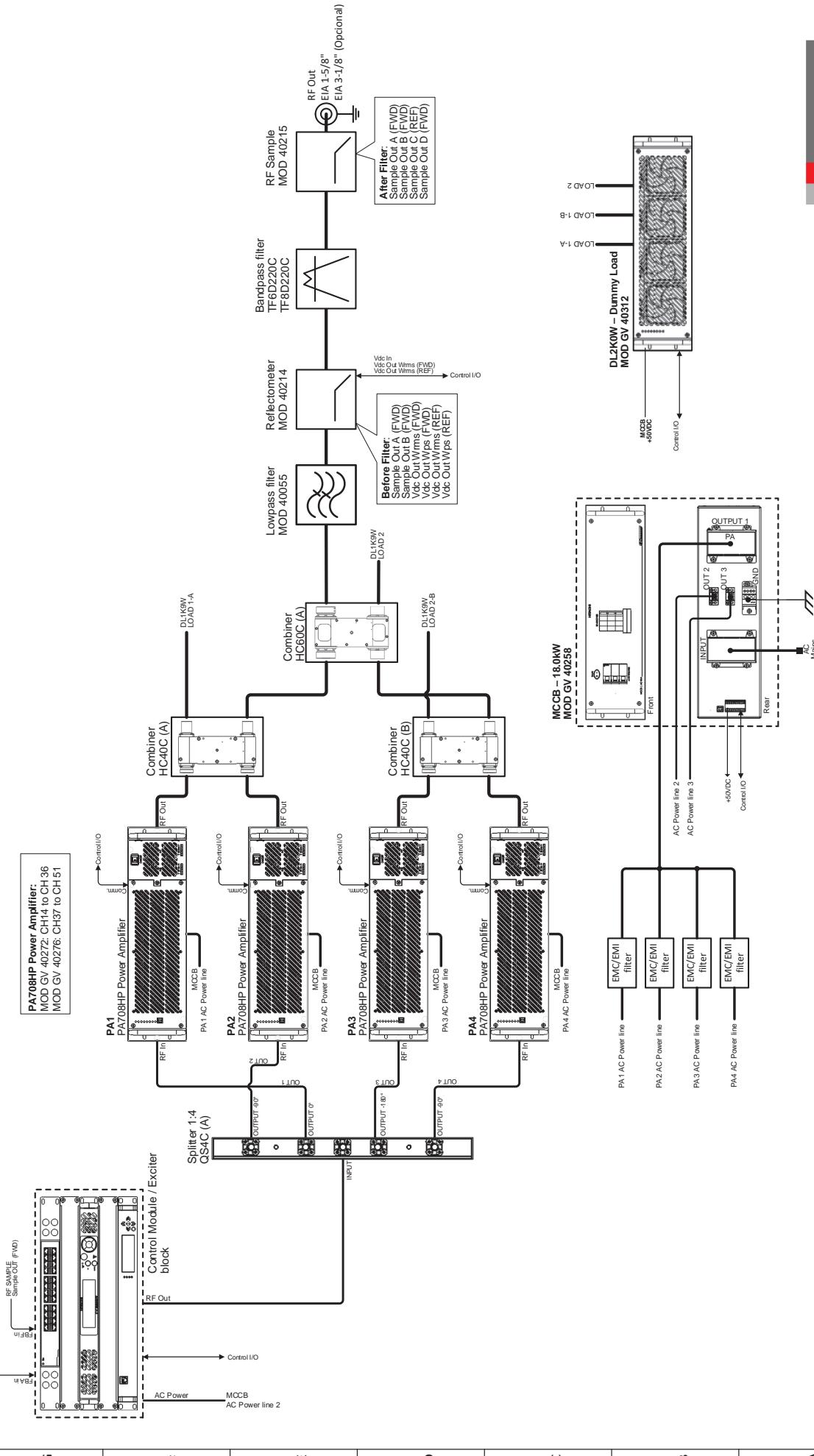


Side View



Rear View (Without door)




Top View



|    |                                                                                |
|----|--------------------------------------------------------------------------------|
| 01 | Ethernet Switch Module                                                         |
| 02 | Main Control Module CM9001                                                     |
| 03 | Backup Control Module CM9001 (optional)                                        |
| 04 | Main Exciter (not provided)                                                    |
| 05 | Backup Exciter (not provided)                                                  |
| 06 | Dummy Load Module MOD GV 40312                                                 |
| 07 | PA708HP – MOD GV 40272: CH14 to CH 36<br>PA708HP – MOD GV 40276: CH37 to CH 51 |
| 08 | MCCB AC Unit                                                                   |
| 09 | Combiner HC40C (2:1)                                                           |
| 10 | Combiner HC60C (2:1)                                                           |
| 11 | Low Pass Filter                                                                |
| 12 | Sample probe - Reflectometer                                                   |

## EC704HP-BB3 BLOCK DIAGRAM

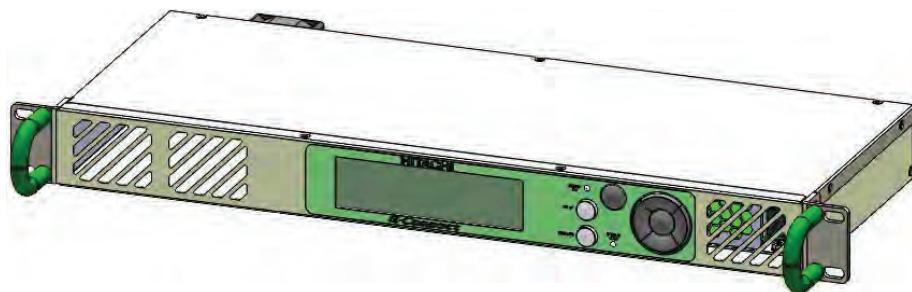
E-Compact HP-BB3 Series



## 4. Main Modules

The general structure of an E-Compact transmitter series consists of the following modules:

Drawers / Modules:


|                    | Control Module<br>CM9001 | Power Amplifier<br>PA708HP | Dummy Load Module   | MCCB Module  |
|--------------------|--------------------------|----------------------------|---------------------|--------------|
| <b>EC701HP-BB3</b> | MOD GV 40288             | MOD GV 40272/40276         | N/A                 | MOD 40307    |
| <b>EC702HP-BB3</b> | MOD GV 40288             | MOD GV 40272/40276 (x2)    | MOD 40295           | MOD GV 40256 |
| <b>EC703HP-BB3</b> | MOD GV 40288             | MOD GV 40272/40276 (x3)    | MOD 40295-MOD 40311 | MOD GV 40257 |
| <b>EC704HP-BB3</b> | MOD GV 40288             | MOD GV 40272/40276 (x4)    | MOD GV 40312        | MOD GV 40258 |

Passives Devices:

|                    | RF Splitters | Combiners           | RF Low Pass Filter | RF Out (50 Ω) | RF Output Sample | Mask Filter (Recommended)  |
|--------------------|--------------|---------------------|--------------------|---------------|------------------|----------------------------|
| <b>EC701HP-BB3</b> | N/A          | N/A                 | MOD 40243          | EIA 1-5/8"    | MOD 40215        | TF6D120C                   |
| <b>EC702HP-BB3</b> | QS2C         | HC40C               | MOD 40243          | EIA 1-5/8"    | MOD 40215        | TF6D170C                   |
| <b>EC703HP-BB3</b> | QS4C         | MC3Q40C             | MOD 40055          | EIA 1-5/8"    | MOD 40215        | TF6D170C<br>With Heat Sink |
| <b>EC704HP-BB3</b> | QS4C         | HC40C (2x)<br>HC60C | MOD 40055          | EIA 1-5/8"    | MOD 40215        | TF6D220C<br>With Heat Sink |

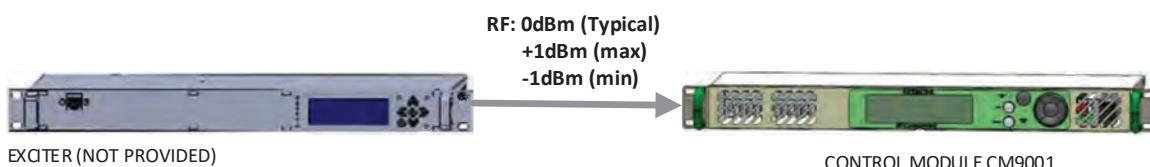
N/A: NOT APPLY

#### 4.1. Control Module CM9001 (MOD GV 40288)

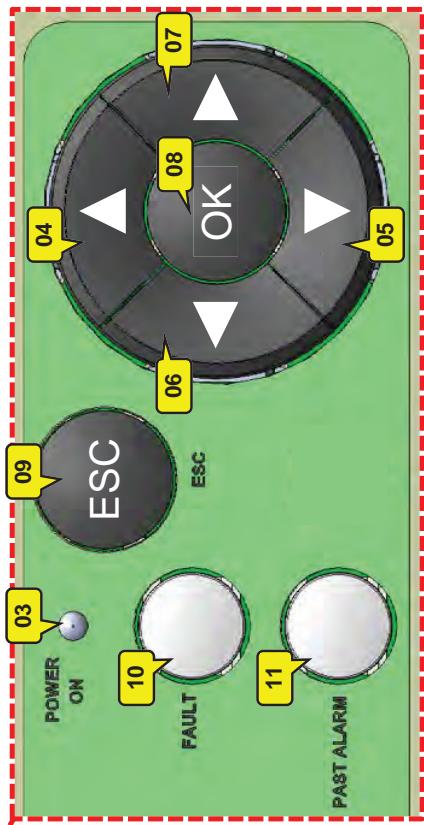
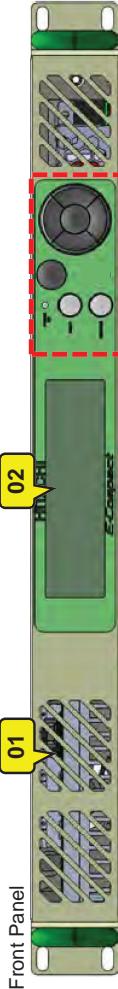


The E-Compact series of transmitters utilize a dedicated 1RU controller chassis, CM9001. The controller chassis has several functions including:

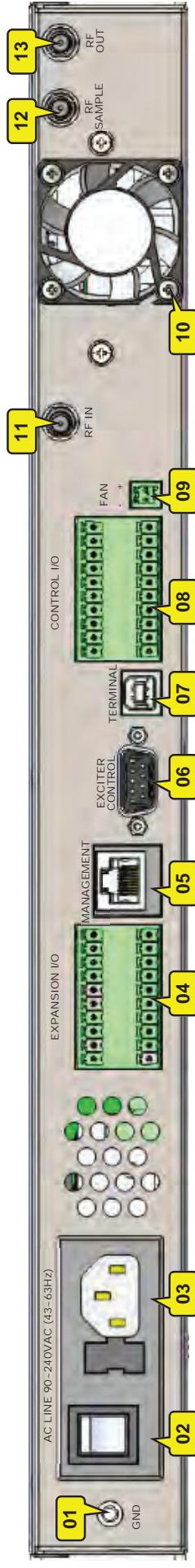
- Access to exciter setup / monitoring
- AC mains power monitoring
- RF drive signal monitoring
- RF Exciter Level Control to RF Splitters
- RF power amplifier metrics
- RF output signal monitoring (FWD & RFL)
- Local user interface
- USB port for software diagnostics / updates
- External Web GUI status monitoring and control interface


The CM9001 controller gathers the status monitoring of all the transmitter subassemblies to provide to the operator transmitter status information, either locally or remotely. The controller provides transmitter telemetry including RF power monitoring. A user-friendly interface on the transmitter controller chassis includes:

- A front panel LCD screen provides transmitter status information
- A front-panel control interface for menu driven commands (up/down/right/left navigation, escape, & OK buttons)
- LED status indicators

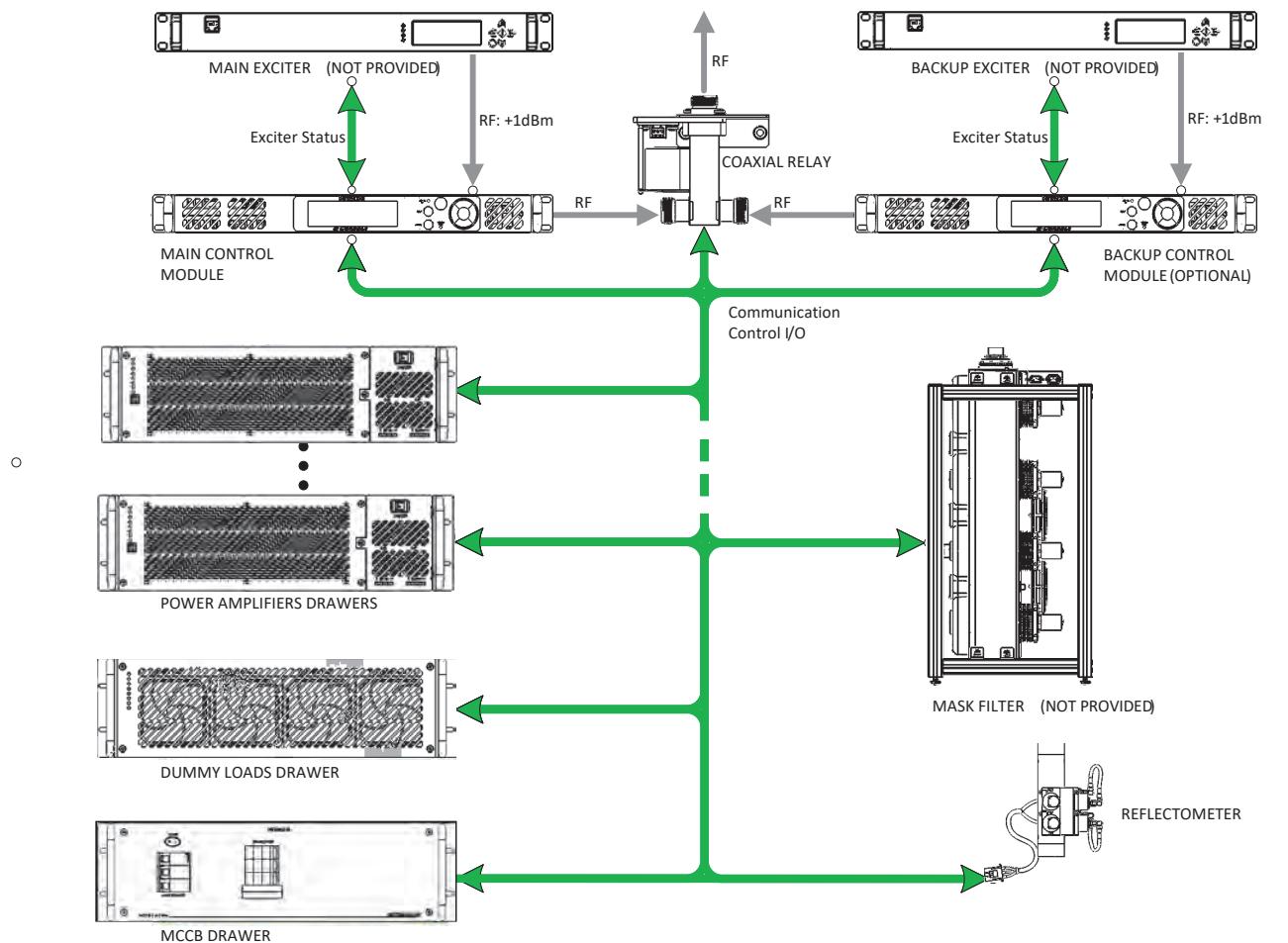


The CM9001 transmitter controller is paired with the TV exciter. For transmitter systems configured optionally with dual drive, the transmitter is equipped with two / redundant controllers, one for each exciter eliminating single point failures for even higher system reliability.

##### 4.1.1. RF Input


The CM9001 Control Module redistributes the RF signal received from the exciter by controlling its level of distribution to the Power Amplifiers Drawers as a function of the transmitter's rated nominal power. For this the CM9001 is set at the factory to receive an RF signal level of **0dBm with minimum / maximum tolerances of -1dBm / + 1dBm**.

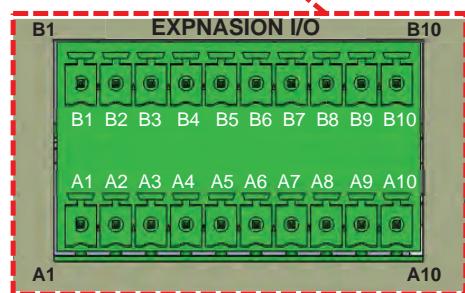


#### 4.1.2. Interfaces

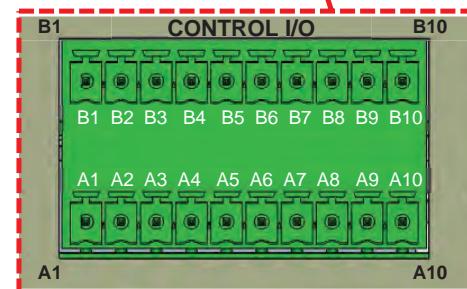



| #  | Description       | Function                                                                                                               |
|----|-------------------|------------------------------------------------------------------------------------------------------------------------|
| 01 | Air entrance      | Air inlet for cooling                                                                                                  |
| 02 | LCD Display       | Navigation display                                                                                                     |
| E  | Leds Power On     | Signals power on equipment                                                                                             |
| 04 | Up key (▲)        | Display navigation keyboard                                                                                            |
| 05 | Down key (▼)      |                                                                                                                        |
| 06 | Left key (◀)      |                                                                                                                        |
| 07 | Right key (▶)     |                                                                                                                        |
| 08 | Enter/OK key (OK) |                                                                                                                        |
| 09 | Esc Key (Esc)     | On: Indicates the presence of an Alarm. (Alarm in progress)<br>Pressing shows the list of active alarms on the display |
| C  | 10 FAULT          | On: Indicates that an alarm has occurred<br>Pressing the display shows the alarm log list                              |
|    | 11 PAST ALARM     |                                                                                                                        |



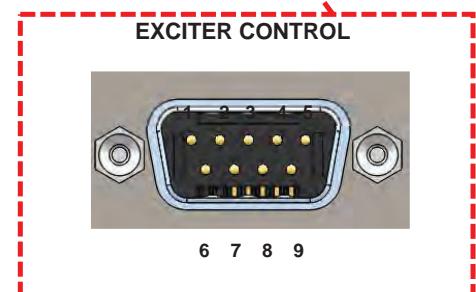

| #  | Description     | Type                  | Function                                                     |
|----|-----------------|-----------------------|--------------------------------------------------------------|
| 01 | GND             | GND Screw             | Chassis GND connector                                        |
| 02 | ON/OFF          | ON / OFF switch       | ON/OFF equipment                                             |
| 03 | AC LINE INPUT   | Power Jack AC IEC     | AC power input                                               |
| 04 | EXPANSION I/O   | 10 pin terminal block | Expansion to Input / output management and control connector |
| 05 | MANAGEMENT      | RJ45                  | Interface WEB access                                         |
| 06 | EXCITER CONTROL | DB9 male              | Exciter monitoring and control interface.                    |
| 07 | TERMINAL        | USB 2.0 Type B Jack   | Access to devices Measurements.                              |
| 08 | CONTROL I/O     | 10 pin terminal block | Input / output management and control connector              |
| 09 | FAN             | 2 pin terminal block  | Fan 24VDC power connector                                    |
| 10 | COOLER (FAN)    | --                    | 40x40 DC fan AFB0424SHB                                      |
| 11 | RF IN           | SMA-Female / 50Ω      | UHF TV Digital signal input 0 dBm (±1 dB)                    |
| 12 | RF SAMPLE       | SMA-Female / 50Ω      | UHF TV Digital signal output sample -31 dB                   |
| 13 | RF OUT          | SMA-Female / 50Ω      | UHF TV Digital signal output -20 dBm to +23 dBm              |

#### 4.1.3. Communication




EXPANSION I/O - 10 pin terminal block

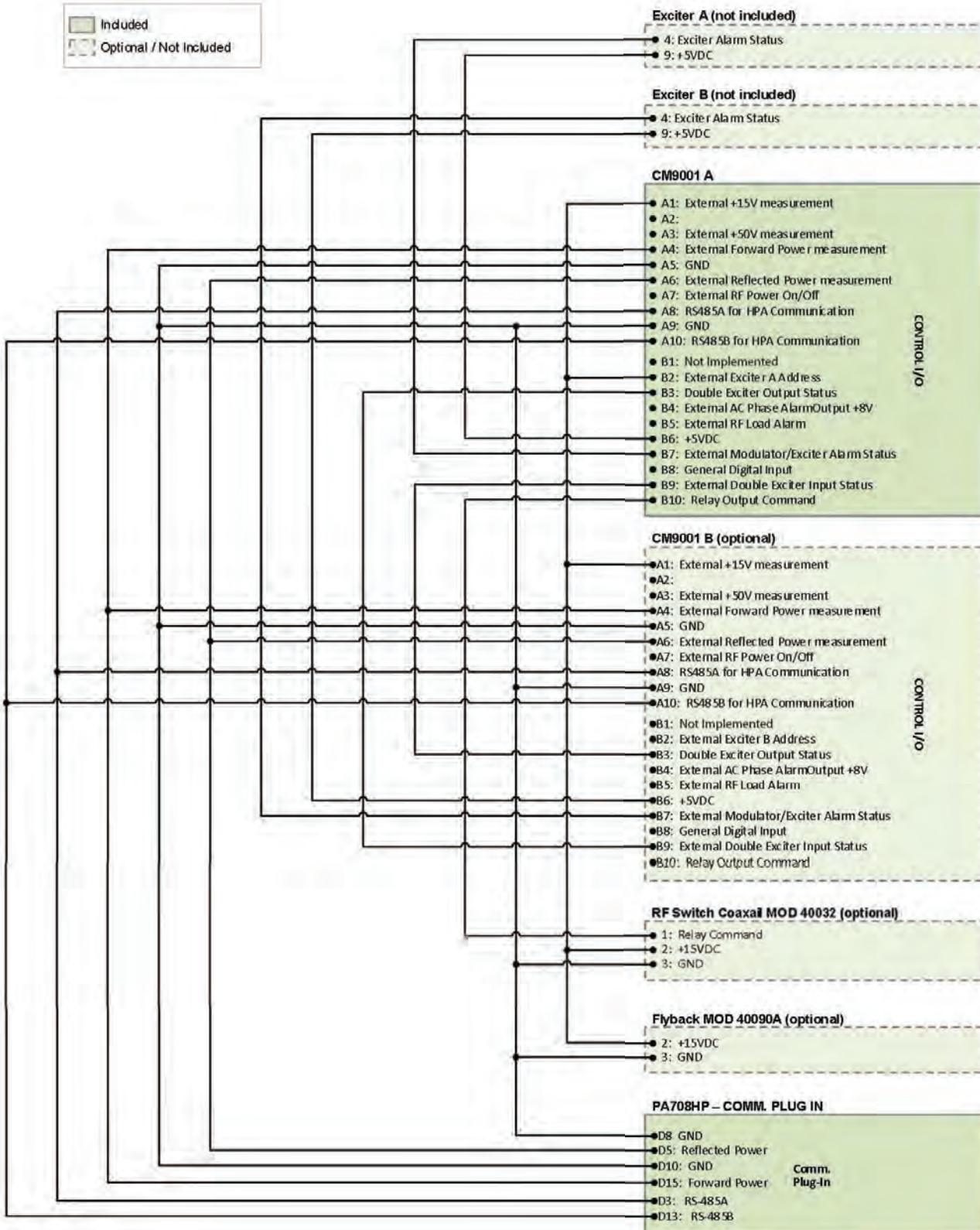
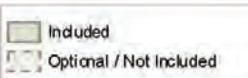
|     |                                  |
|-----|----------------------------------|
| A1  | +5VCC                            |
| A2  | GND                              |
| A3  | Analog general purpose Output 0  |
| A4  | Analog general purpose Output 1  |
| A5  | Analog general purpose input 0   |
| A6  | Analog general purpose input 1   |
| A7  | Digital general purpose input 0  |
| A8  | Digital general purpose input 1  |
| A9  | Digital general purpose input 2  |
| A10 | Digital general purpose input 3  |
| B1  | Relay 0 NO                       |
| B2  | Relay 0 COM                      |
| B3  | Relay 0 NC                       |
| B4  | Relay 1 NO                       |
| B5  | Relay 1 COM                      |
| B6  | Relay 1 NC                       |
| B7  | Digital general purpose output 0 |
| B8  | Digital general purpose output 1 |
| B9  | Digital general purpose output 2 |
| B10 | Digital general purpose output 3 |

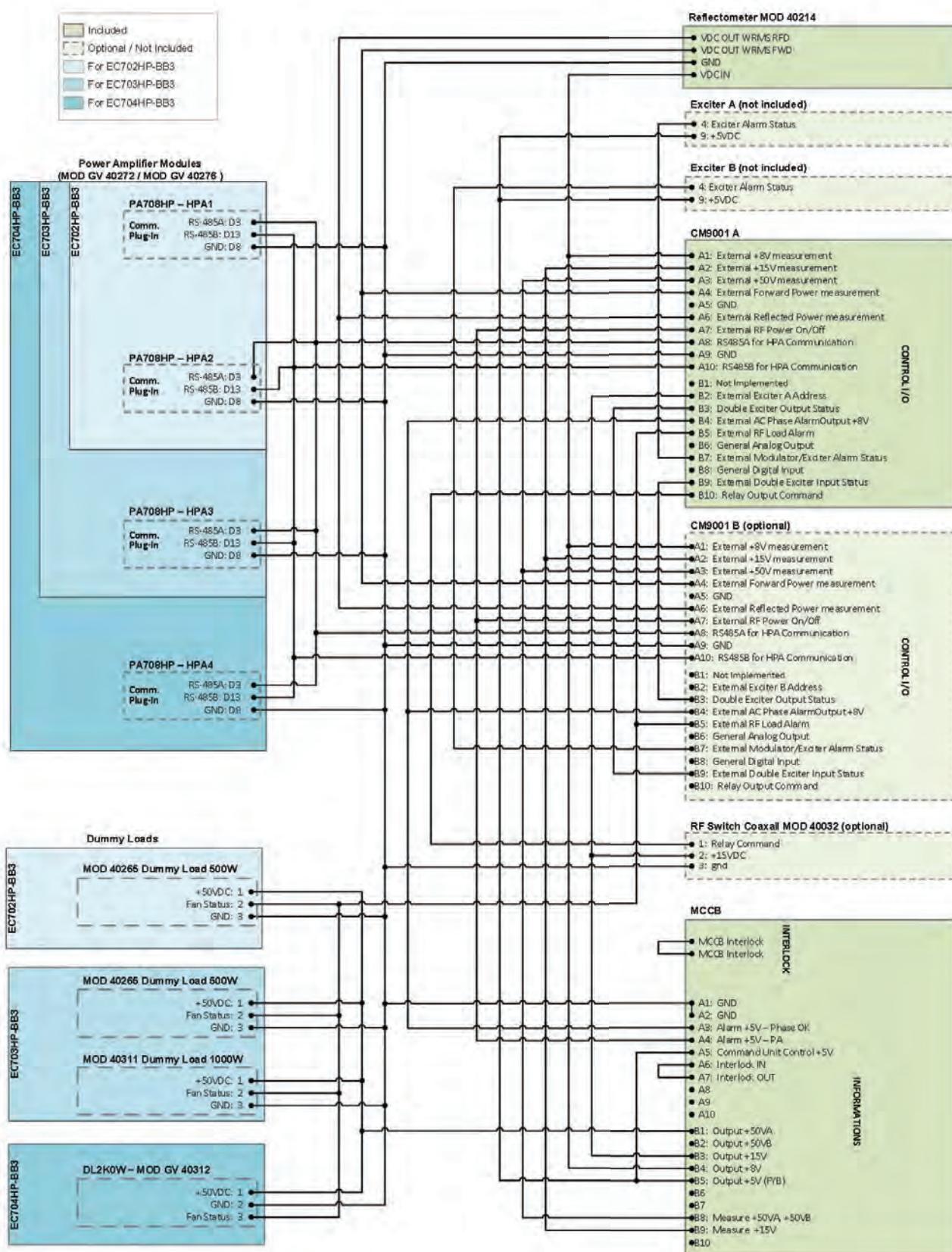


 Expansion I/O connector  
Rear Panel

| CONTROL I/O - 10 pin terminal block |                                                                                                 |
|-------------------------------------|-------------------------------------------------------------------------------------------------|
| A1                                  | External +15VDC measurement @EC701HP-BB3<br>External +8VDC measurement @EC702 / 703 / 704HP-BB3 |
| A2                                  | Not used for EC701HP-BB3<br>External +15VDC measurement @EC702 / 703 / 704HP-BB3                |
| A3                                  | External +50VDC measurement                                                                     |
| A4                                  | External measurement of Forward Power                                                           |
| A5                                  | GND                                                                                             |
| A6                                  | External measurement of Reflected Power                                                         |
| A7                                  | External RF Power On/Off                                                                        |
| A8                                  | RS485A for HPA Communication                                                                    |
| A9                                  | GND                                                                                             |
| A10                                 | RS485B for HPA Communication                                                                    |
| B1                                  | Not Implemented                                                                                 |
| B2                                  | External Address of Exciter A                                                                   |
| B3                                  | Double Exciter Output Status                                                                    |
| B4                                  | External AC Phase Alarm                                                                         |
| B5                                  | External RF Load Alarm                                                                          |
| B6                                  | Not used for EC702 / 703 / 704HP-BB3<br>+5VDC @EC701HP-BB3                                      |
| B7                                  | External Modulator/Exciter Alarm Status                                                         |
| B8                                  | General Digital Input                                                                           |
| B9                                  | External Double Exciter Input Status                                                            |
| B10                                 | Relay Output Command                                                                            |





Control I/O connector  
Rear panel

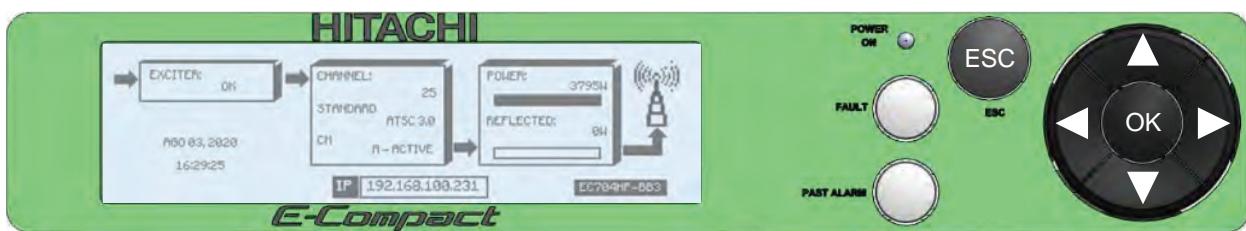

| EXCITER CONTROL – DB9 male |                                        |
|----------------------------|----------------------------------------|
| 1                          | N/A                                    |
| 2                          | RS232 line data input from the Exciter |
| 3                          | RS232 line data output to the Exciter  |
| 4                          | N/A                                    |
| 6                          | N/A                                    |
| 5                          | GND                                    |
| 7                          | N/A                                    |
| 8                          | N/A                                    |
| 9                          | N/A                                    |



DB9 male connector  
Rear panel

## CM9001 Communication Schematic for EC701HP-BB3





**CM9001 Communication Schematic for EC702HP-BB3, EC703HP-BB3 and EC704HP-BB3**


### 3.1.5. Display interface

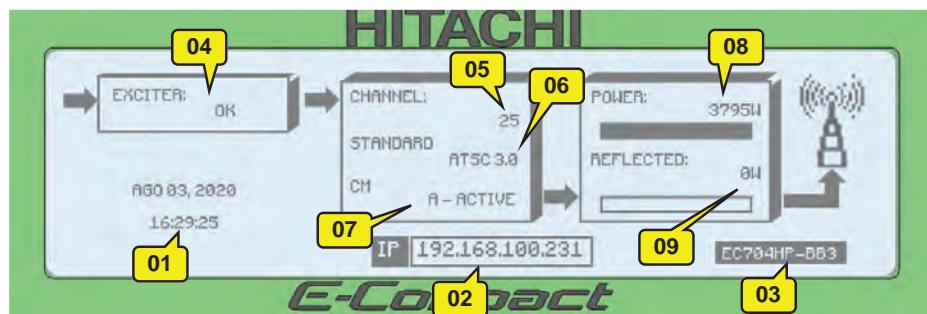
The Control Module CM9001 has a system of configuration, measurements, alarms, and remote management (TELESUPERVISION), that controls all of the transmitter modules.

The transmitter configuration can be done either by the front panel of the transmitter or the web interface using a browser of your choice or SNMP.

This section will show you how to navigate, operate, and configure certain device functions using the Keyboard and Display Interface. These interfaces allow interaction between system control and the user.



The Interface is composed of a Graphic LCD Display, two alarm management keys: "Fault" AND "Past Alarm", two indication LED's ("Power "On" and "Stream Loss"), and six Navigation keys.


This set allows equipment operation. Through the display it is possible to visualize and change all of the parameters of the equipment.

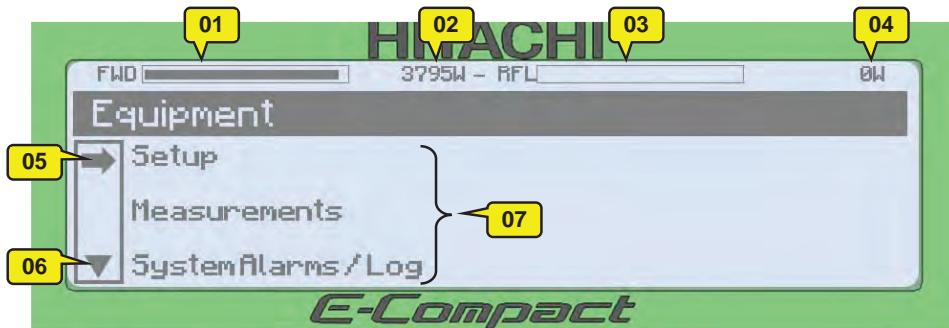
The navigation consists of positioning the functions in the display according to the **►▲▼◀** where the "OK" key triggers the "Menu" or the "Function" selected and the "ESC" key either aborts the changes made or returns to the next ascending level of the Menu

When holding the "ESC" key for 3 seconds the equipment standby screen is accessed.

When holding the "ESC" key for more than 10 seconds the front panel is reset without affecting the operation of the transmitter.

Standby screen:




| #  | DESCRIPTION                                                |
|----|------------------------------------------------------------|
| 01 | Current date and time                                      |
| 02 | CM9001 IP address for Remote Access (interface WEB)        |
| 03 | Equipment model controlled by CM9001                       |
| 04 | Exciter status (OK / Fail)                                 |
| 05 | Operation channel                                          |
| 06 | Operation digital TV system (ATSC 1.0 / ATSC 3.0)          |
|    | Status CM9001:                                             |
| 07 | Single Drive: ----                                         |
|    | Dual Drive: (A-active / B-Standby), (A-standby / B-active) |
| 08 | Forward power after filter value (Watts)                   |
| 09 | Reflected power value (Watts)                              |

Warning screen:



| #  | DESCRIPTION                                                                                                                                                                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01 | Some Functions / Menus for security will ask for your confirmation for access. Use the <b>&lt;&gt;</b> keys to toggle between "yes" or "no" and the "OK" key to select the option. |

Access to menus:



| #  | DESCRIPTION                                   |
|----|-----------------------------------------------|
| 01 | FWD after filter power graph bar              |
| 02 | FWD after filter power value                  |
| 03 | Reflected power graph bar                     |
| 04 | Reflected power value                         |
| 05 | Menu accessed                                 |
| 06 | Indicates that there are Submenus / Functions |
| 07 | Submenu list / Functions list                 |



| #  | DESCRIPTION                                                                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 08 | Indicates the Submenu to be accessed<br>Or<br>Functions to access or that are changing in value                                                                        |
| 09 | Select "on" / "off" with the "▶" and "◀" keys.                                                                                                                         |
| 10 | When the function is accessed, to change the value, increase the value with the "▶" key or decrease the value with the "◀" key.                                        |
| 11 | *                                                                                                                                                                      |
| 12 | "Indicates that the Function has been changed and not registered (Not active). When you press the "OK" key, the "*" will disappear and the new record will take effect |
| 12 | Function Value Information                                                                                                                                             |

### 3.1.6. Equipment feature

#### Remote access via Ethernet:

This equipment has a Web Page server accessed through the "MANAGEMENT" port located on the rear panel. All the functionalities of the keyboard and display interface are accessed through a graphical and interactive WEB page.

#### Power Change:

It is possible to change the transmitter's power via front panel's keyboard and web interface.

#### Measurements:

Measures Power Amplifiers parameters such as output power, power supplies, drain currents, and power Amplifier Temperature.

#### Alarm management and protection system:

The E-Compact Line has an automatic protection system of high reliability that has fast response to any failures. The protection method consists of avoiding going off-air, which means reducing transmission power to guarantee equipment's integrity, reducing the transmission power to guarantee the integrity of the equipment.



The reflectometer is a protective device for the equipment. It is not recommended that it be used as a measuring instrument for the radiating system, for this purpose a wattmeter or other dedicated instrument is more appropriate.

**RF Power Protection:**

The reflectometer has accuracy above 10% of the reflected power to react to the equipment reaching or exceeding 20%. Therefore, accuracy in measures of reflected below 10% relative to direct power are not guaranteed.

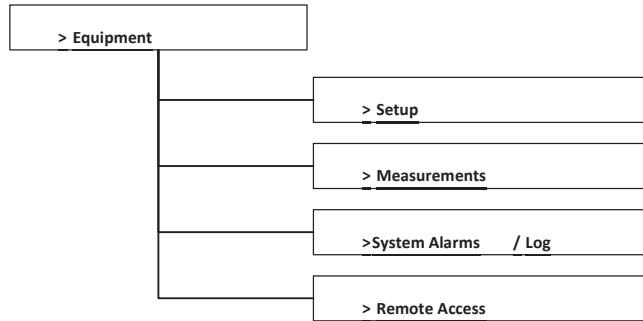
**Protection against power grid variations (Surge):**

Each part of the equipment has its independent power supply and all feature the same protection characteristics.

Surge protection in the grid is carried out by inserting the varistors between the phases and between the phase and the ground, thereby absorbing the mains voltage peaks and not allowing them to damage the source.

**3.1.7. ALARMS - Front Panel Signaling and Shortcut Keys****FAULT:**

When a fault occurs, the equipment will automatically take protection actions (Turn off or Reduce Power) and trigger the visual alarm on the front panel ("FAULT" key lit in red). When pressing the FAULT key, the list of alarms currently occurring will appear on the display.


**PAST ALARM:**

When there has been a fault and it is not necessarily occurring, the "PAST ALARM" button will be lit in yellow. When you press it, it will show the list of alarms that occurred.

The details of each alarm and where to view it in the display menu: "> Equipment > Alarms".

### 3.1.8. System Operation (Display interface)

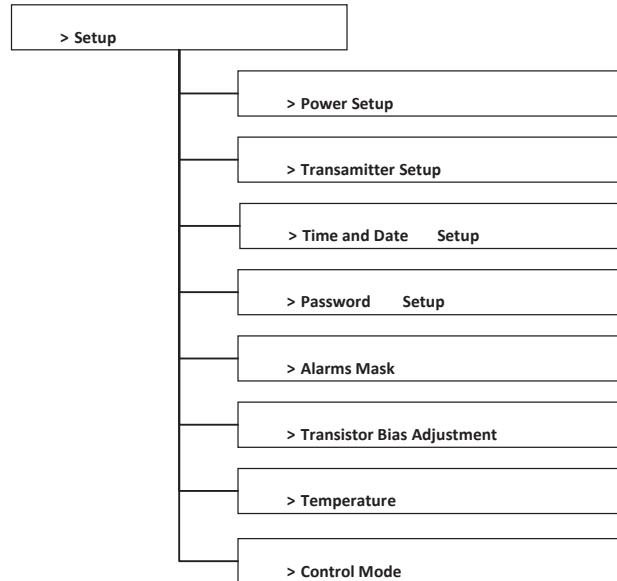
The "Setup" menu allows you to access and change the functions of the equipment's parameter settings:



> **Equipment > Setup:** Access to configure equipment parameters

> **Equipment > Measurements:** Access to consult measurements of the equipment

> **Equipment > System Alarms/Log:** Access to query alerts and history of Alarms


> **Equipment > Remote Access:** Access to configure the equipment to operate on ethernet network

#### Main Menu > Setup

The "SETUP" menu allows to access and change equipment's parameter settings.



**The transmitter is delivered to the customer configured with the parameters that were provided in the purchase act, therefore, it is not necessary to change the settings of equipment.**



**> Main Menu > Setup > Power:**

Control the Equipment Power:



| MENU                   | PARAMETER        | DESCRIPTION                                                                                                                                         |
|------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| > RF Mute              | on / off         | Mute RF power (on)<br>Enable RF power (off)                                                                                                         |
| > Program Output Power | Power (W)        | Changes the output power of the Equipment. The maximum power changed in this parameter is defined in: Equipment>Setup>Transmitter>Operational Power |
| > Output Power         | Power Status (W) | Demonstrates the direct output power of the equipment                                                                                               |

**> Main Menu > Setup > Transmitter Setup:**

Changes Transmitter Parameters, such as turning the ALC ON or OFF, output power mute or not, and program the operating power:



| MENU            | PARAMETER | DESCRIPTION                                             |
|-----------------|-----------|---------------------------------------------------------|
| > Level Control | on / off  | Enable (on) / Disable (off) the Automatic level control |

**> Main Menu > Setup > Time and Date Setup:**

Sets the real time clock (RTC) internal of the equipment:



| MENU                | PARAMETER    | DESCRIPTION              |
|---------------------|--------------|--------------------------|
| > Time (HH:MM:SS)   | (HH:MM:SS)   | Changes the current time |
| > Date (yyyy/MM/dd) | (yyyy/MM/dd) | Changes the current date |

**> Main Menu > Setup > Password Setup:**

Set a 5-digit numeric password to access the setup menu by front panel.



| MENU              | PARAMETER | DESCRIPTION                              |
|-------------------|-----------|------------------------------------------|
| > Password        | XXXXX     | Stores the numeric value of the password |
| > Password ON/OFF | On / off  | Enable or Disable the access password    |

**> Main Menu > Setup > Alarms Mask:**

Configures the alarm mask to show which alarm should be displayed when its related failure occurs.



| MENU              | PARAMETER | DESCRIPTION                             |
|-------------------|-----------|-----------------------------------------|
| > Reflected Power | Watts     | Set the reflected power alarm threshold |

**> Main Menu > Setup > Transistor Bias Adjustment:**

Setting a transistors DC operating voltage or current conditions to the correct level so that any RF input signal can be amplified correctly by the transistor.



| MENU                     | PARAMETER   | DESCRIPTION                                                     |
|--------------------------|-------------|-----------------------------------------------------------------|
| > LDMOS Drain Voltage    | Voltage (V) | LDMOS Drain Voltage - The values are pre-set at the factory.    |
| > Carrier Amp. Current   | Current (A) | Carrier Amp. Current - The values are pre-set at the factory.   |
| > Peak Amp. Gate Voltage | Voltage (V) | Peak Amp. Gate Voltage - The values are pre-set at the factory. |
| > Status HPA1            | Ok          | Power Amplifier 1 Status                                        |
| > Status HPA2            | Fail        | Power Amplifier 2 Status                                        |
| > Status HPA3            | ----        | Power Amplifier 3 Status                                        |
| > Status HPA4            | (absense)   | Power Amplifier 4 Status                                        |

The amount of HPA in the menu depends on the transmitter model configured:

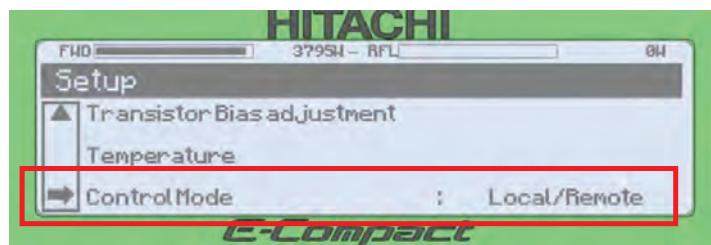
EC701HHP-BB3: 01 HPA

EC702HHP-BB3: 02 HPA

EC703HHP-BB3: 03 HPA

EC704HHP-BB3: 04 HPA

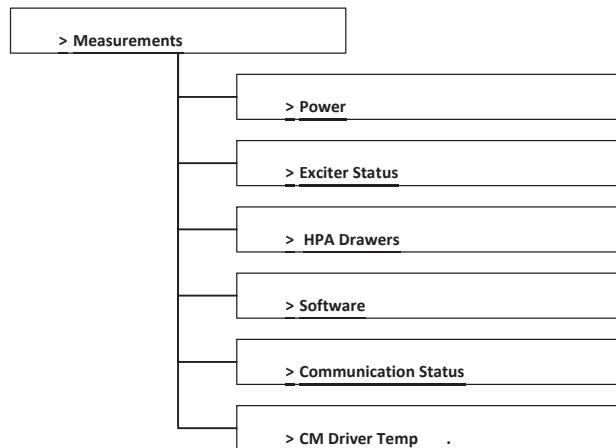
**> Main Menu > Setup > Temperature:**


Allows to set the operating temperature of the Powers Amplifiers.



| MENU                     | PARAMETER             | DESCRIPTION                                            |
|--------------------------|-----------------------|--------------------------------------------------------|
| > PA Temperature Control | 40.0 to 60.0 °C       | Set the operating temperature of the Powers Amplifiers |
| > Unit Temp              | Celsius<br>Fanrenheit | Set the temperature unit.                              |

**> Main Menu > Setup > Control Mode:**


Set CM9001 operation ("local" or "local / remote"):



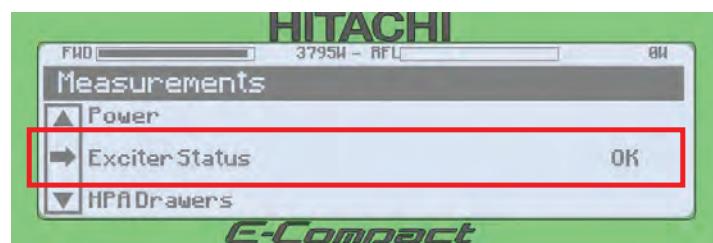
To change the settings (setup) via the WEB interface, the CM9001 must be configured in "Local / Remote"

## Main Menu > Measurements

The “Measurements” menu allows access to read the equipment's operating parameters (read only).

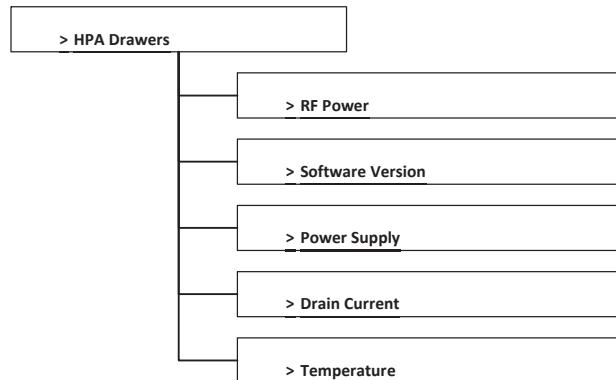


### > Main Menu > Measurements > Power:

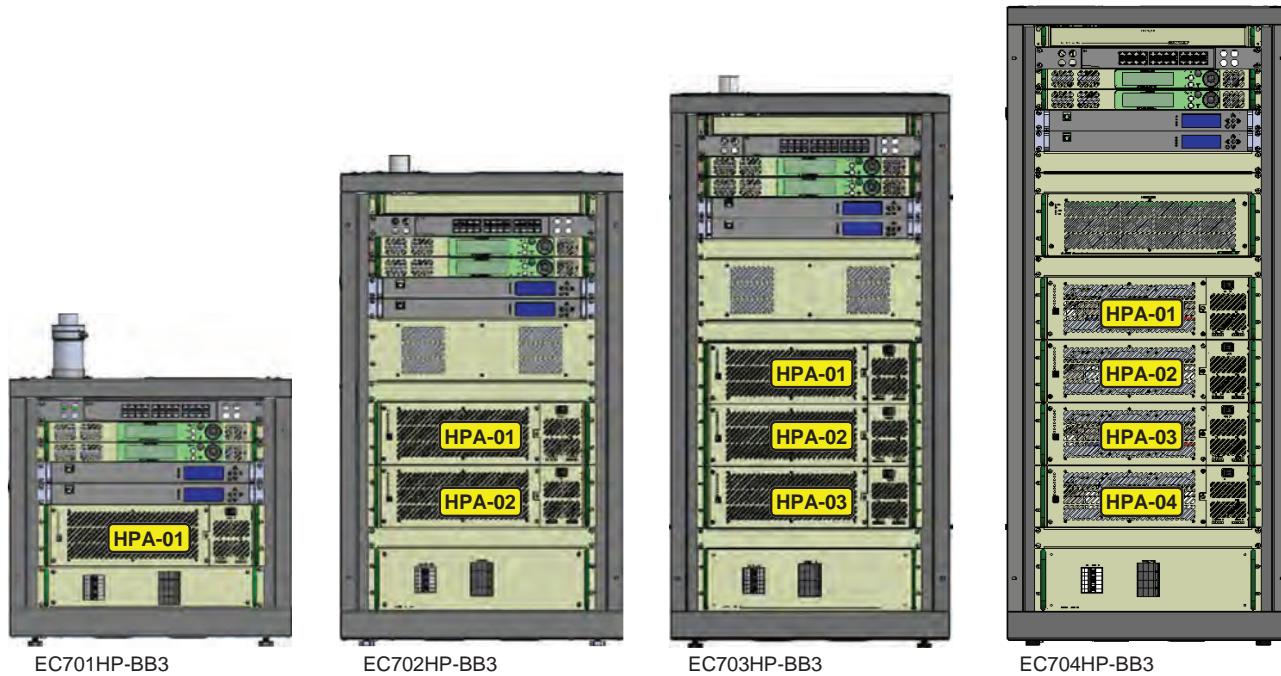

Reading of the equipment's power parameters, such as forward power and reflected power, among others:

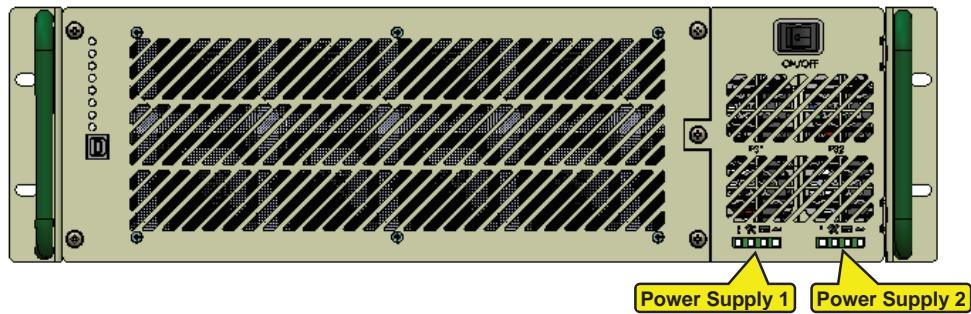


| MENU                    | PARAMETER   | DESCRIPTION                                                              |
|-------------------------|-------------|--------------------------------------------------------------------------|
| > Program Power         | Power (W)   | Programmed operating power on the equipment                              |
| > Output Power          | Power (W)   | Transmitter forward output power                                         |
| > Reflected             | Power (W)   | Transmitter reflected output power                                       |
| > ALC Reference Voltage | Voltage (V) | Voltage that controls the VGA (Variable Gain Amplifier) and output power |

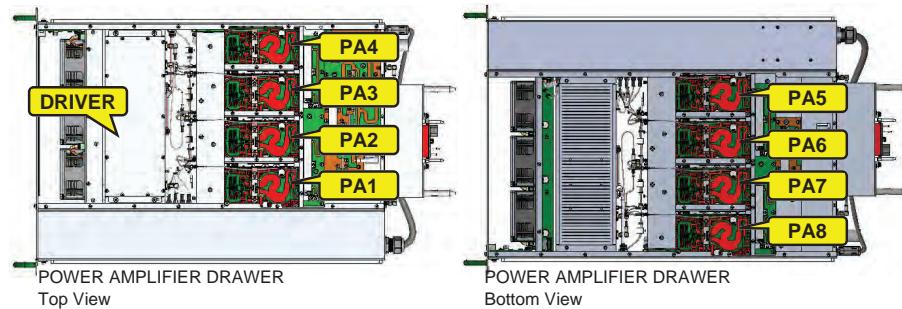

### > Main Menu > Measurements > Exciter Status:

Shows the Exciter status: (Ok / Fail)





**> Main Menu > Measurements > HPA Drawers:**

View the main status of all Power Amplifiers Drawers:




Identifying HPA Drawers, Power Supplies na Power Amplifiers (PA) in the menu:





PA IDENTIFICATIONS


**> Main Menu > Measurements > HPA Drawers > RF Power:**

View the main status of all Power Amplifiers Drawers:



| MENU              | PARAMETER   | DESCRIPTION                           |
|-------------------|-------------|---------------------------------------|
| > Forward Power   | Power (W)   | HPA forward output power.             |
| > Reflected Power | Power (W)   | HPA reflected output power.           |
| > Driver RF In    | Power (dBm) | RF signal input power of HPA Driver.  |
| > Driver RF OUT   | Power (dBm) | RF signal output power of HPA Driver. |

**> Main Menu > Measurements > HPA Drawers > Software Version:**

Shows all HPA Drawer software versions:



| MENU               | PARAMETER | DESCRIPTION   |
|--------------------|-----------|---------------|
| > Software Version | ---       | PAM40000v0.00 |
| > PA1 Software     | ---       | PAM30000v0.00 |
| > PA2 Software     | ---       | PAM30000v0.00 |
| > PA3 Software     | ---       | PAM30000v0.00 |
| > PA4 Software     | ---       | PAM30000v0.00 |
| > PA5 Software     | ---       | PAM30000v0.00 |
| > PA6 Software     | ---       | PAM30000v0.00 |
| > PA7 Software     | ---       | PAM30000v0.00 |

**> Main Menu > Measurements > HPA Drawers > Power Supply:**

Shows all HPA Drawer Power Supplies status:



| MENU                  | PARAMETER   | DESCRIPTION                 |
|-----------------------|-------------|-----------------------------|
| > Power Supply 1      | Voltage (V) | Power supply voltage 1      |
| > Power Supply 2      | Voltage (V) | Power supply voltage 2      |
| > Driver Power Supply | Voltage (V) | Power supply voltage Driver |

**> Main Menu > Measurements > HPA Drawers > Drain Current:**

Shows all HPA Drawer drain Current:



| MENU             | PARAMETER   | DESCRIPTION   |
|------------------|-------------|---------------|
| > PA1 Current    | Current (A) | Drain current |
| > PA2 Current    | Current (A) |               |
| > PA3 Current    | Current (A) |               |
| > PA4 Current    | Current (A) |               |
| > PA5 Current    | Current (A) |               |
| > PA6 Current    | Current (A) |               |
| > PA7 Current    | Current (A) |               |
| > PA8 Current    | Current (A) |               |
| > Driver Current | Current (A) |               |

> Main Menu > Measurements > HPA Drawers > Temperature:

Shows all HPA Drawer temperature:



| MENU                 | PARAMETER | DESCRIPTION                          |
|----------------------|-----------|--------------------------------------|
| > Temperature Air In | °C / F°   | Ambient inlet air temperature at HPA |
| > PA1 Temperature    | °C / F°   | PAs temperature                      |
| > PA2 Temperature    | °C / F°   |                                      |
| > PA3 Temperature    | °C / F°   |                                      |
| > PA4 Temperature    | °C / F°   |                                      |
| > PA5 Temperature    | °C / F°   |                                      |
| > PA6 Temperature    | °C / F°   |                                      |
| > PA7 Temperature    | °C / F°   |                                      |
| > PA8 Temperature    | °C / F°   |                                      |
| > Driver Temperature | °C / F°   | Driver temperature                   |
| > PSU1 Temperature   | °C / F°   | Power Supplies temperature           |
| > PSU2 Temperature   | °C / F°   |                                      |

> Main Menu > Measurements > Software:

Shows the Control Module software version:



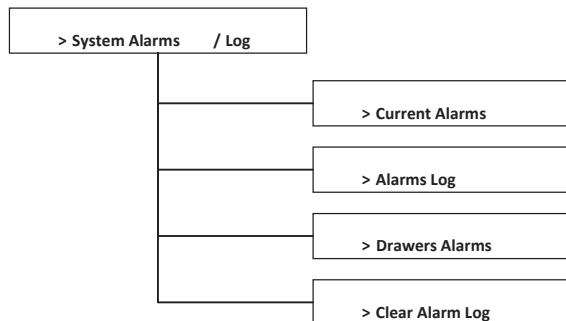
| MENU               | PARAMETER | DESCRIPTION              |
|--------------------|-----------|--------------------------|
| > Software Control | ---       | Software Control version |
| > Software DIGI    | ---       | Software DIGI version    |

> Main Menu > Measurements > Communication Status:

Shows the HPA communication status (ok / fail):



| MENU                 | PARAMETER | DESCRIPTION                                 |
|----------------------|-----------|---------------------------------------------|
| > Communication HPA1 |           |                                             |
| > Communication HPA2 |           |                                             |
| > Communication HPA3 |           |                                             |
| > Communication HPA4 | Ok / Fail | Status of each HPA present in the equipment |


### > Main Menu > Measurements > CM Driver Temp.:

Shows the temperature of Control module internal driver:



### Main Menu > System Alarms / Log

This menu gives access to information on alarms that are occurring or that have occurred in the past, providing a guide for necessary preventive or corrective maintenance.



**Current Alarms:** Shows the list of alarms currently occurring

**Alarms Log:** It shows a detailed list with all alarms, with their respective start/end date and time

**Drawers Alarms:** It shows all alarms active or occurred in the HPAs (Current Alarms / Past Alarms)

**Clear Alarm Log:** Reset alarm log list

**> Main Menu > System Alarms/Log > Current Alarms:**

Shows the list of alarms currently occurring. This function can also be accessed through the “FAULT” key, located on the front panel:



See in the next section for the alarms list and their respective meanings.

In the absence of alarms, the display will show the following message:


**> Main Menu > System Alarms/Log > Alarms/Log:**

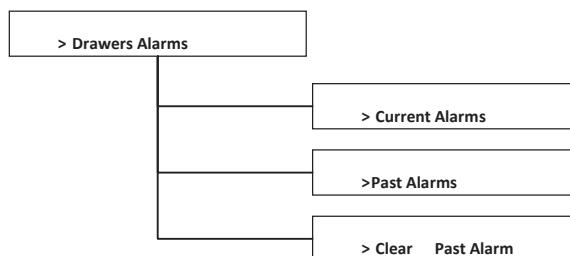
Shows the Log alarms list. This function can also be accessed through the “PAST ALARM” key, located on the front panel:



The Log Menu has the following structure:



| REF | DESC.                                                       |
|-----|-------------------------------------------------------------|
| 01  | Amount of existing Logs                                     |
| 02  | Log number pointed in order of occurrence                   |
| 03  | ! - Indicates that the log refers to the start of the alarm |
| 04  | # - Indicates that the log refers to the end of the alarm   |
| 05  | Indicates that the date that alarm was occurred             |
| 06  | Indicates that the time that alarm was occurred             |
| 07  | Alarm name recorded in the Log                              |


See the next section for the alarms list and their respective meanings.

In the absence of alarms, the display will show the following message:

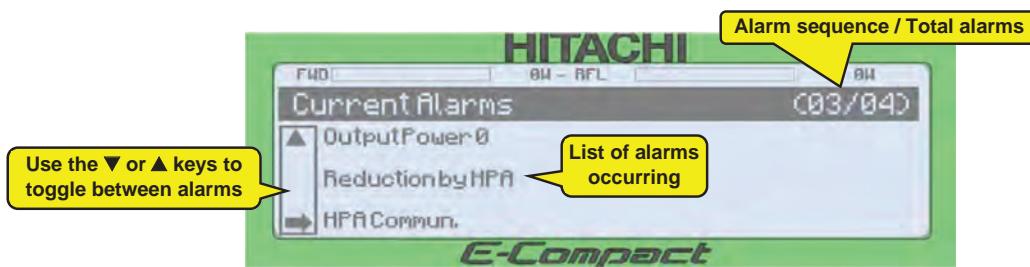


#### > Main Menu > System Alarms/Log > Drawers Alarms:

Shows the list of alarms currently occurring. This function can also be accessed through the “FAULT” key, located on the front panel:



**Current Alarms:** Shows the list of drawer alarms currently occurring


**Alarms Log:** Shows a detailed list with all drawers alarms, with their respective start/end date and time

**Clear Alarm Log:** Resets drawer alarm log list

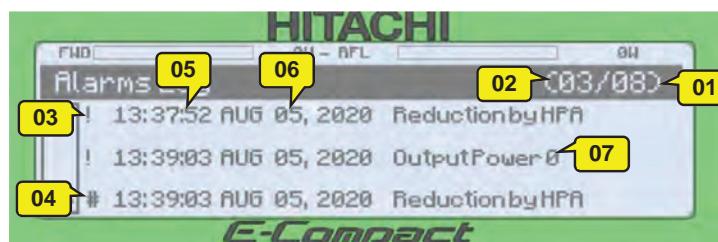


**> Main Menu > System Alarms/Log > Drawers Alarms > Current Alarms:**

Shows the list of drawer alarms currently occurring.



See the next section for the alarms list and their respective meanings.


In the absence of alarms, the display will show the following message:

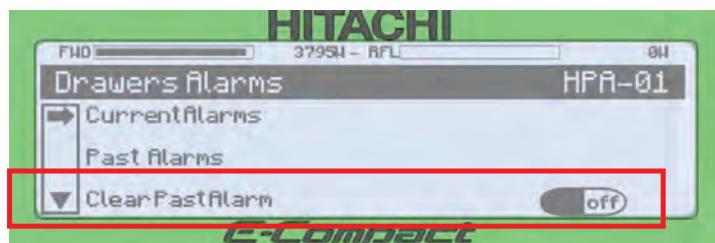


**> Main Menu > System Alarms/Log > Drawers Alarms > Past Alarms:**

Shows the Log alarms list.

The Log Menu has the following structure:




| REF | DESC.                                                       |
|-----|-------------------------------------------------------------|
| 01  | Amount of existing Logs                                     |
| 02  | Log number pointed in order of occurrence                   |
| 03  | ! - Indicates that the log refers to the start of the alarm |
| 04  | # - Indicates that the log refers to the end of the alarm   |
| 05  | Indicates that the date that alarm was occurred             |
| 06  | Indicates that the time that alarm was occurred             |
| 07  | Alarm name recorded in the Log                              |

See the section for the alarms list and their respective meanings.

In the absence of alarms, the display will show the following message:



> **Main Menu > System Alarms/Log > Drawers Alarms > Clear Past Alarm:**  
Resets the drawer alarm list.



Select "On" to reset the Past Alarms list.

## Power Amplifiers Drawers (HPA) Alarms List

| DRAWER ALARM                        | ALARM DESCRIPTION                                                                     | THRESHOLD        | SYSTEM ACTION |
|-------------------------------------|---------------------------------------------------------------------------------------|------------------|---------------|
| PA High Current                     | Indicated PA Current is greater than threshold                                        | 10 A             | Notification  |
| PA Critical High Current            | Indicated PA Current is greater than threshold                                        | 11 A             | Shutdown      |
| PA Unbalanced Current               | Indicated PA Current is higher or lower than the others                               | 2.5 A            | Notification  |
| PA Low Current                      | Indicated PA Current is lower than threshold                                          | 0.2 A            | Shutdown      |
| PA High Temperature                 | Indicated PA Temperature is greater than threshold                                    | 80 °C (176 °F)   | Notification  |
| PA Critical High Temp               | Indicated PA Temperature is greater than threshold                                    | 85 °C (185 °F)   | Shutdown      |
| PA Failure                          | VGS (Voltage Gate Source) of the indicated PA is less than 2/3 of the programmed VGS. | 2/3              | Shutdown      |
| PSU High AC Voltage                 | PSU AC Voltage is greater than threshold                                              | 265 VAC          | Notification  |
| PSU Critical High AC Line Voltage   | PSU AC Voltage is greater than threshold                                              | 270 VAC          | Shutdown      |
| PSU Low AC Voltage                  | PSU AC Voltage is lower than threshold                                                | 175 VAC          | Notification  |
| PSU Critical Low AC Voltage         | PSU AC Voltage is lower than threshold                                                | 165 VAC          | Shutdown      |
| PSU High Current                    | PSU Current is greater than threshold                                                 | 37 A             | Notification  |
| PSU Critical PSU High Current       | PSU Current is greater than threshold                                                 | 39 A             | Shutdown      |
| PSU High Temperature                | PSU temperature is greater than Threshold                                             | 75 °C (167 °F)   | Notification  |
| PSU Critical High Temperature       | PSU temperature is greater than threshold                                             | 80 °C (176 °F)   | Shutdown      |
| PSU High Voltage                    | PSU voltage exceeds 3v of programmed PSU voltage                                      | 3 V              | Shutdown      |
| PSU Low Voltage                     | PSU voltage is lower than 3v of programmed PSU voltage                                | 3 V              | Shutdown      |
| Driver High Current                 | Driver Current is greater than threshold                                              | 4.5 A            | Notification  |
| Driver Critical High Current        | Driver Current is greater than threshold                                              | 4.9 A            | Shutdown      |
| Driver Low Current                  | Driver Current is lower than threshold.                                               | 0.4 A            | Notification  |
| Pre-Driver High Current             | Pre-Driver Current is greater than threshold                                          | 0.35 A           | Notification  |
| Pre-Driver Low Current              | Pre-Driver Current is lower than threshold                                            | 0.1 A            | Notification  |
| Driver High Voltage                 | Driver Voltage is greater than threshold                                              | 53 V             | Notification  |
| Driver Low Voltage                  | Driver voltage is lower than 5v of programmed PSU voltage                             | 5 V              | Notification  |
| Driver Low Gain                     | Driver Gain is lower than threshold                                                   | 30 dB            | Notification  |
| Driver Low RF Input Level           | Driver RF Input is lower than threshold                                               | -8 dBm           | Notification  |
| Driver High RF Input Level          | Driver RF Input is greater than threshold                                             | +12 dBm          | Notification  |
| Driver High RF Output Power         | Driver RF Output Power is greater than threshold                                      | +48 dBm          | Notification  |
| Driver High Temperature             | Driver Temperature is greater than threshold                                          | 75 °C (167 °F)   | Notification  |
| Critical High Forward Power         | HPA Forward Power is greater than threshold                                           | 1600 W           | Shutdown      |
| Critical High Reflected Power       | HPA Reflected Power is greater than threshold                                         | 184 W            | Shutdown      |
| PA Low Gain                         | HPA Gain is lower than threshold                                                      | 49 dB            | Notification  |
| High Input Air Temperature          | Ambient air temperature used in the reflow of the equipment is greater than threshold | 35 °C (95 °F).   | Notification  |
| Critical High Input Air Temperature | Ambient air temperature used in the reflow of the equipment is greater than threshold | 48 °C (118,4 °F) | Shutdown      |
| Fan warning                         | Fan rotation reaches ±1000RPM in relation to software programmed value                | 1000 RPM         | Notification  |
| Fan Failure                         | Fan rotation reaches ±2000RPM in relation to software programmed value                | 2000 RPM         | Notification  |

## &gt; Main Menu &gt; System Alarms/Log &gt; Clear Alarm Log:

Reset the main alarm list.



Select "On" to reset the Alarms Log list.

**Control Module Main Alarm List**

| MAIN ALARM                              | ALARM DESCRIPTION                                                                      |
|-----------------------------------------|----------------------------------------------------------------------------------------|
| 8V Equipment Fail                       | Control Module cannot read 8V from equipment                                           |
| Load Fan Fail                           | Control Module cannot read status from Load Fan                                        |
| High Temperature Load                   | High temperature detected on Load                                                      |
| AC Fail                                 | Control Module cannot detect AC mains from equipment                                   |
| High Power Amplifier Communication      | Control Module cannot communicate with Power Amplifiers                                |
| High Power Amplifier Active Alarm       | Current alarm on one or more Power Amplifiers                                          |
| Exciter Fail                            | Control Module cannot communicate with Exciter                                         |
| Other Controle Module Fail              | Control Module cannot communicate with its redundant unit                              |
| Power Amplifier OFF                     | Control Module cannot get Power Amplifier status                                       |
| ALC Max                                 | Automatic Level Control set to maximum and not able to drive the output power required |
| uC Communication Fail                   | Web Server cannot communicate with microcontroller                                     |
| Too Few Drawers                         | Minimum amount of drawers required not activated                                       |
| Interlock Failure                       | Interlock protection disabled                                                          |
| RF Mute                                 | RF Output muted by itself or by an external command                                    |
| Over Power                              | Output Power exceeded allowed limit                                                    |
| Reflected Power                         | Reflected Power exceeded the minimum allowed                                           |
| Output Power Zero                       | Output power not detected by Directional Coupler                                       |
| Reduction Power By Reflected            | Power reduced to comply with reflected power limit                                     |
| Reduction Power By High Power Amplifier | Power reduced to comply with maximum power provided by each power amplifier            |
| 50V Equipment Fail                      | Control Module cannot read 50V from equipment                                          |
| 15V Equipment Fail                      | Control Module cannot read 15V from equipment                                          |

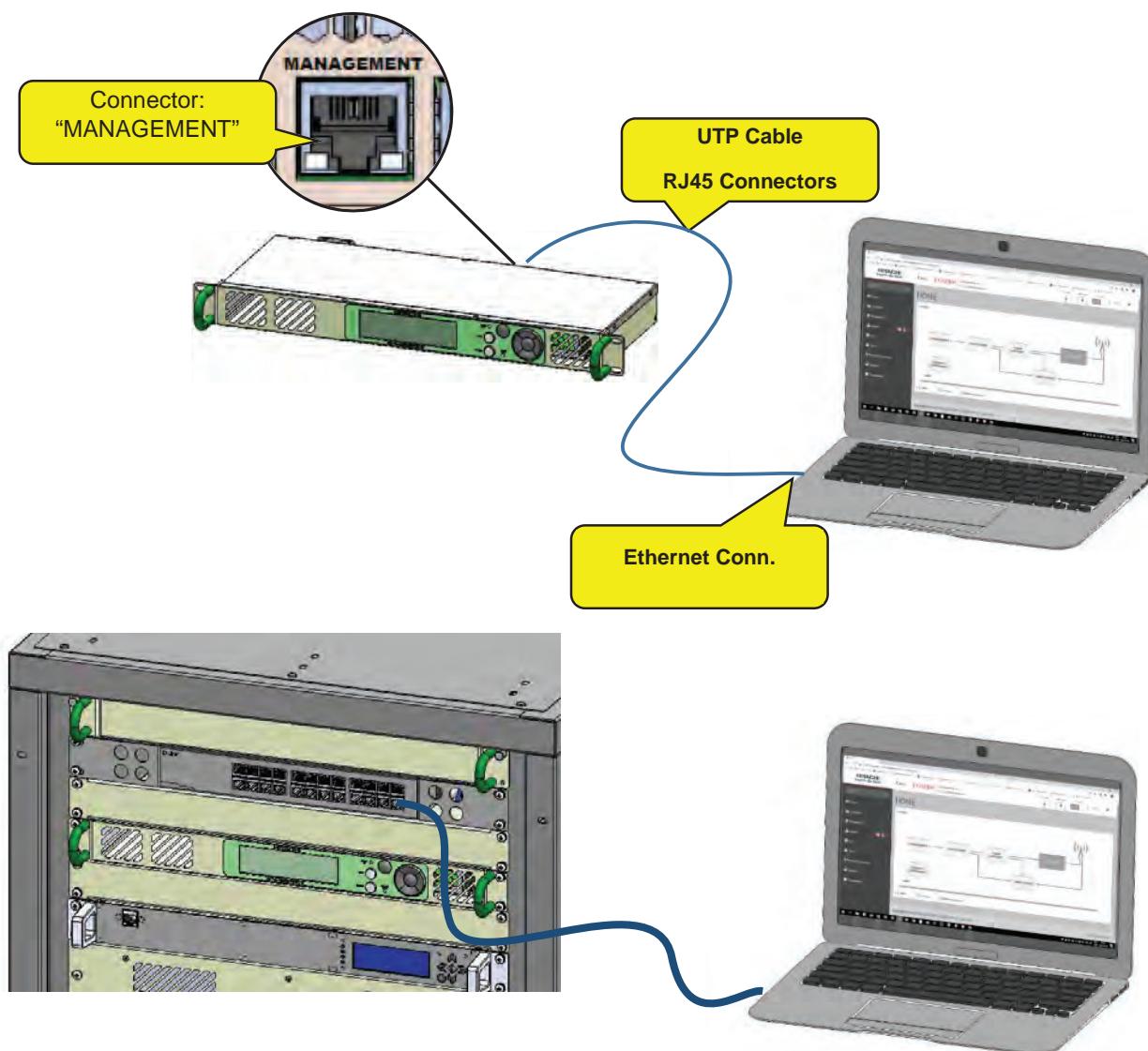
## Main Menu > Remote Access

In this menu, the Ethernet network parameters are configured to have remote access via a network connection.

All equipment parameters such as transmit power, source measurements, alarm checks, and all possible functional selections can be accessed remotely by a PC Browser or any Smartphone Browser by connecting to the embedded WEB page server inside of the equipment.



| MENU              | PARAMETER       | DESCRIPTION                                     |
|-------------------|-----------------|-------------------------------------------------|
| > IP Address      | 000.000.000.000 | IP address of Ethernet Control Port v4 (32-bit) |
| > Subnetwork Mask | 000.000.000.000 | Ethernet Control Port Sub Network Mask          |
| > Gateway         | 000.000.000.000 | Ethernet Control Port Default Gateway           |


### 3.1.9. WEB Interface – Remote Access

#### Introduction

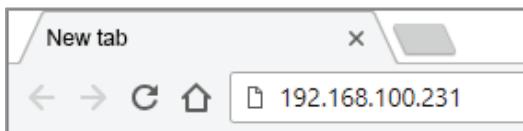
The entire device management and configuration system can be remotely accessed via a browser on any personal computer, tablet, or smartphone.

The device embeds an internet server with a dedicated page that allows you to navigate its parameters in an easy way, with access to its statuses and also makes it possible to change its settings in a more friendly graphical environment. This interface enables remote interaction between the user and the transmitter.

To access the interface it is necessary that the transmitter is connected to a local network through a cable (CAT5 UTP, with RJ45 connectors conforming to EIA / TIA-568-B standard).





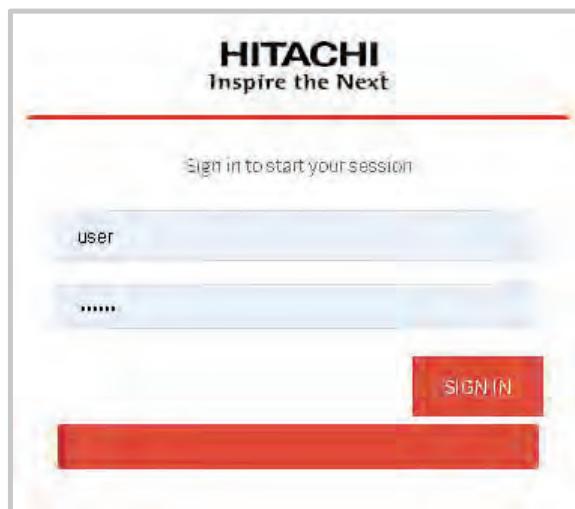

**For ethernet connections, use only static IP settings.**



**For navigation, you must use a recent internet browser, updated in its latest version. To control the device through the web interface, we recommend Chrome, Firefox Mozilla and Opera browsers.**

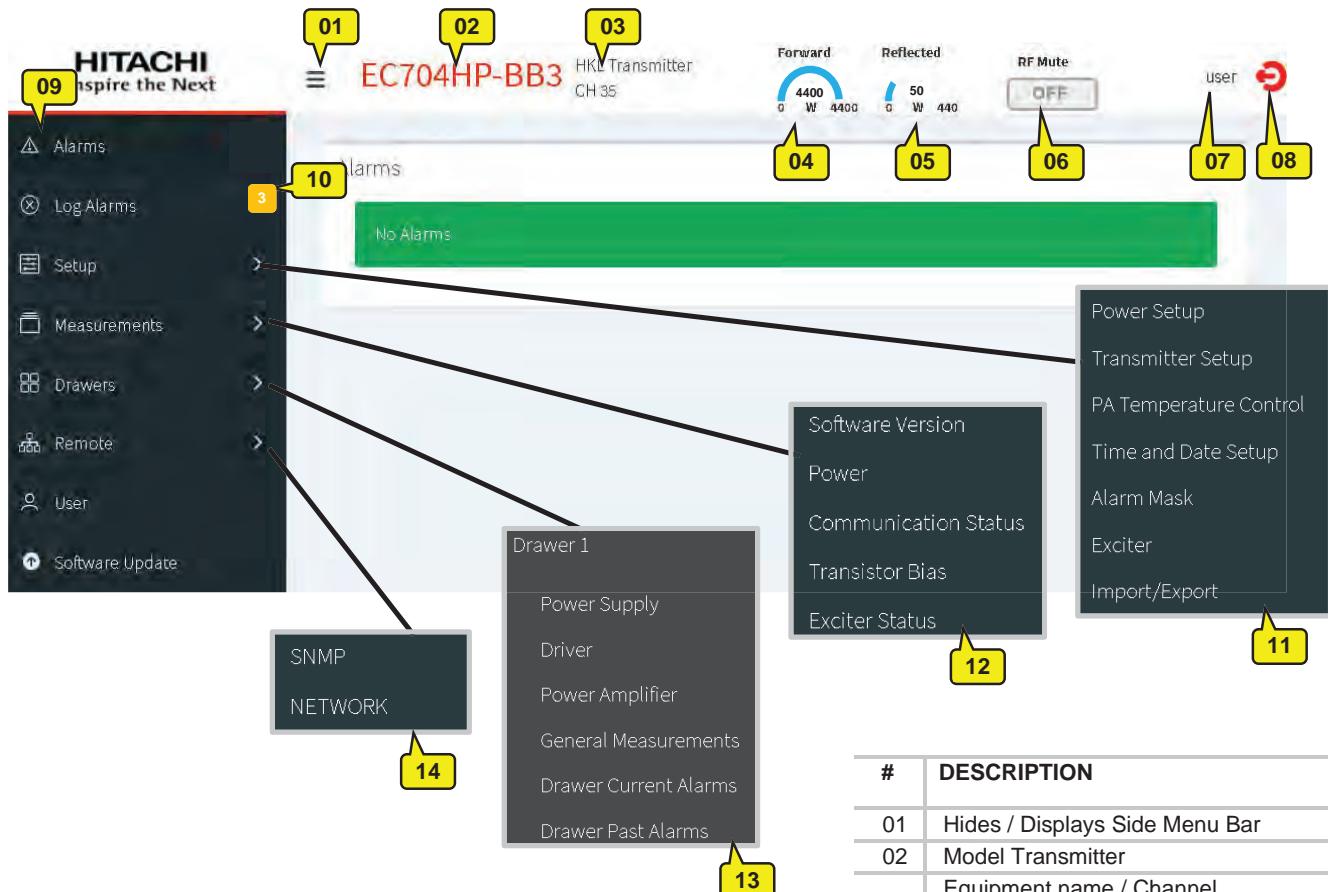
The equipment can be connected directly to a computer, switcher or router through the MANAGEMENT port located on its rear panel. The equipment's IP address is fixed and is configured by accessing the keyboard-display interface in the menu >Equipment > Remote Access > Management.

Once the configuration is set, open a browser and enter the IP address:




This IP address is a simple example.  
View the settings on the device before  
accessing the Web Interface.

When initially logging in, use the factory password:


Login: **user**

Password: **linear**



**For security reasons, we recommend that once the first login is made, change the factory password to a personal password.**

## Homepage features



| #  | DESCRIPTION                                                    |
|----|----------------------------------------------------------------|
| 01 | Hides / Displays Side Menu Bar                                 |
| 02 | Model Transmitter                                              |
| 03 | Equipment name / Channel transmission                          |
| 04 | Forward Power - Direct Power Monitor in real time              |
| 05 | Reflected Power - Reflected Power Monitor in real time         |
| 06 | On / Off Power                                                 |
| 07 | Section user                                                   |
| 08 | Exits the WEB Interface                                        |
| 09 | Vertical Bar Menu                                              |
| 10 | RED: Qty of Current Alarms present. ORANGE: Qty of past alarms |
| 11 | Setup Sub-Men                                                  |
| 12 | Measurements Sub-Menu                                          |
| 13 | Drawers Sub-Menu                                               |
| 14 | Remote Sub-Menu                                                |



When changing any setting, it will only take effect when you click the "SAVE" button in the upper left corner of the screen.

SAVE

## Alarms

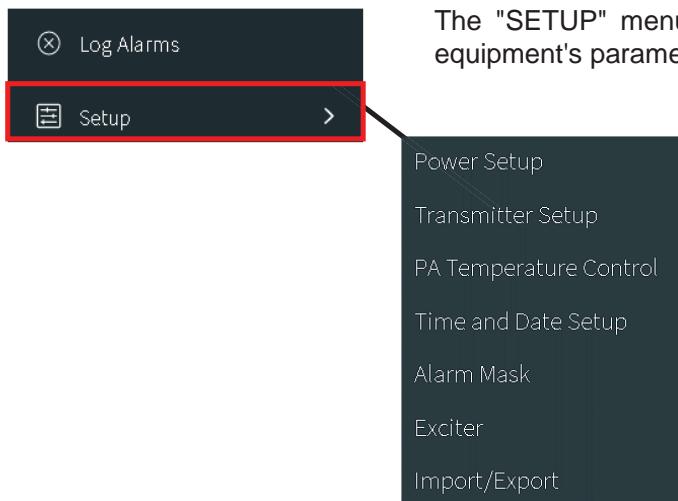


Shows the list of alarms currently occurring. In the event of alarms, the number of active alarms (Current Alarms) will appear in the sidebar in red.

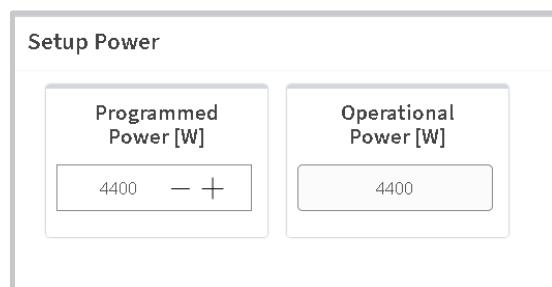
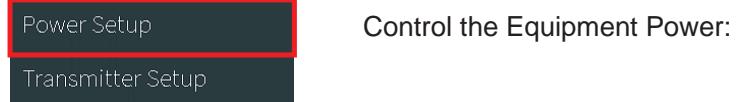
| TYPE           | DESCRIPTION                             | HELP                                              |
|----------------|-----------------------------------------|---------------------------------------------------|
| Current Alarms | Output Power Zero                       | Output power not detected by Directional Coupler! |
| Current Alarms | Reduction Power By High Power Amplifier | ?                                                 |
| Current Alarms | High Power Amplifier Communication      | ?                                                 |
| Current Alarms | Exciter Fail                            | ?                                                 |

## Log Alarms




Shows the list of alarms currently occurring. In the event of alarms, the number of active alarms (Current Alarms) will appear in the sidebar in red.

| 01-TYPE        | 02-DESCRIPTION                          | 03-DATETIME      | HELP |
|----------------|-----------------------------------------|------------------|------|
| Current Alarms |                                         | 2020/08/05 16:18 | ?    |
| Past Alarms    |                                         | 2020/08/05 16:18 | ?    |
| Current Alarms |                                         | 2020/08/05 15:21 | ?    |
| Past Alarms    |                                         | 2020/08/05 15:21 | ?    |
| Past Alarms    | Reduction Power By High Power Amplifier | 2020/08/05 13:37 | ?    |
| Past Alarms    | High Power Amplifier Communication      | 2020/08/05 13:37 | ?    |
| Past Alarms    | Output Power Zero                       | 2020/08/05 13:37 | ?    |
| Past Alarms    | Exciter Fail                            | 2020/08/05 13:37 | ?    |

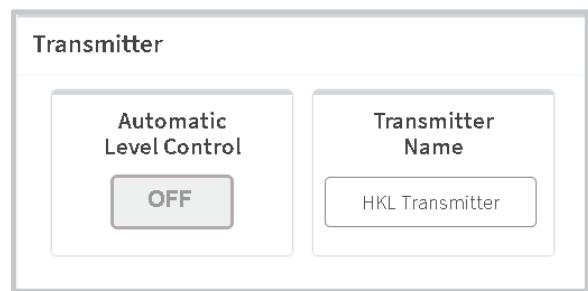


Navigation: < 1 > 07

| #  | DESCRIPTION                                                                                                    |
|----|----------------------------------------------------------------------------------------------------------------|
| 01 | Type alarm (Current / Past alarm)                                                                              |
| 02 | Alarm Description.                                                                                             |
| 03 | Date / time alarm.                                                                                             |
| 04 | Clear the entire list. Upon confirming this action, it will no longer be possible to recover the deleted list. |
| 05 | Download the alarm list to the file named "LogAlarms.csv" in the "Download" folder on your computer.           |
| 06 | Alarm help                                                                                                     |
| 07 | Indication of the current page and command to switch between the previous or subsequent pages.                 |

## Setup



## Power Setup

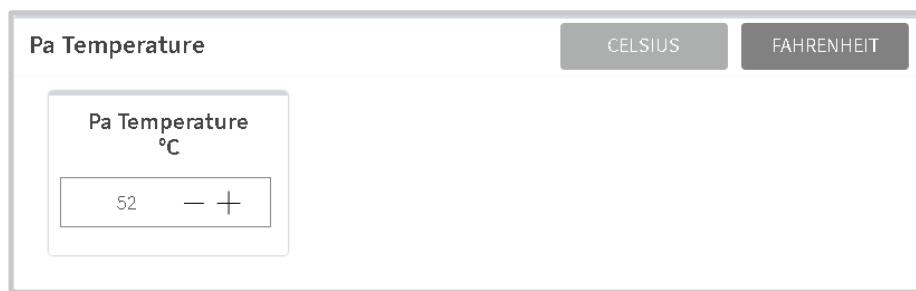



## Transmitter Setup

Power Setup

Transmitter Setup

Changes Transmitter Parameters, such as turning the ALC ON or OFF and setting the transmitter name.




## PA Temperature Control

Transmitter Setup

PA Temperature Control

Allows to set the operating temperature of the powers amplifiers and set the temperature unit (°C / °F).



## Time and Date Setup

PA Temperature Control

Time and Date Setup

Sets the real time clock (RTC) internal of the equipment:

### Time And Date

#### Date

05/08/20: 

#### Time

17:11:31 

## Alarm Mask

Time and Date Setup

Alarm Mask

Set the reflected power alarm threshold.

Alarm Mask

Reflected Power [W]

110

## Exciter

Alarm Mask

Exciter

Opens the external exciter control and management web. Enter the external exciter IP address and press connect.

External Exciter

CONNECT

IP Address

0.0.0.0

## Import/Export

Exciter

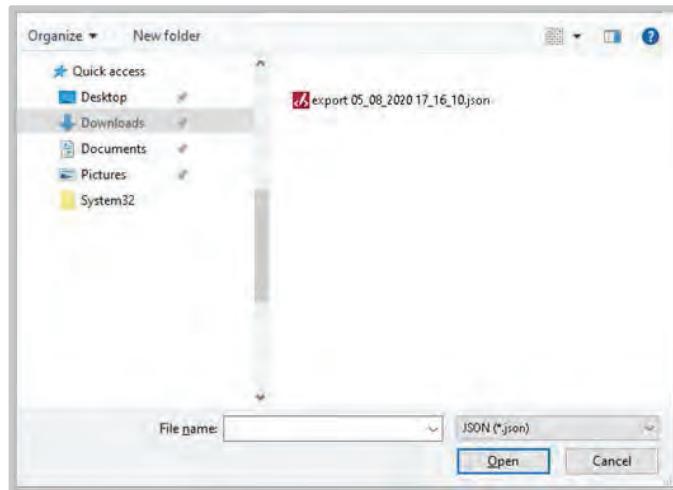
Import/Export

Import / Export Control Module settings.

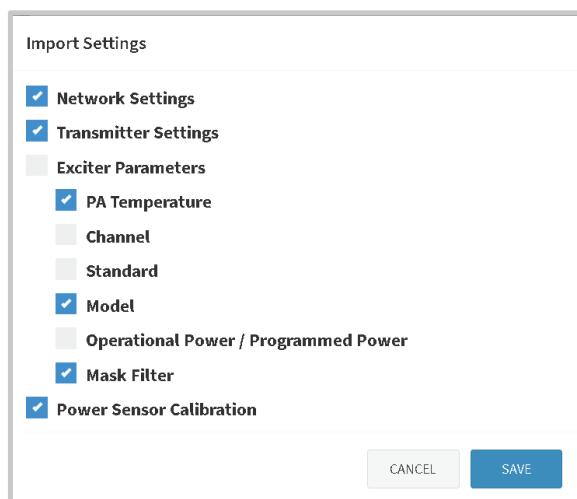
Import/Export

Settings Export

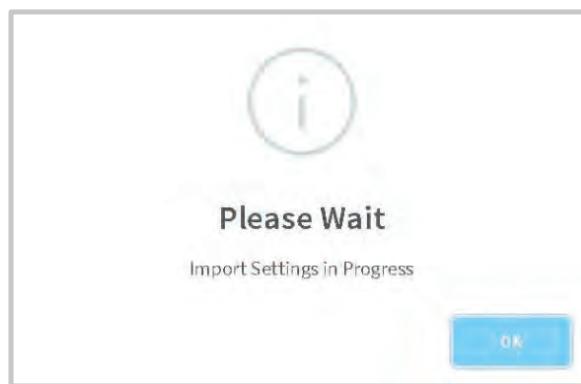
Download


Settings Import

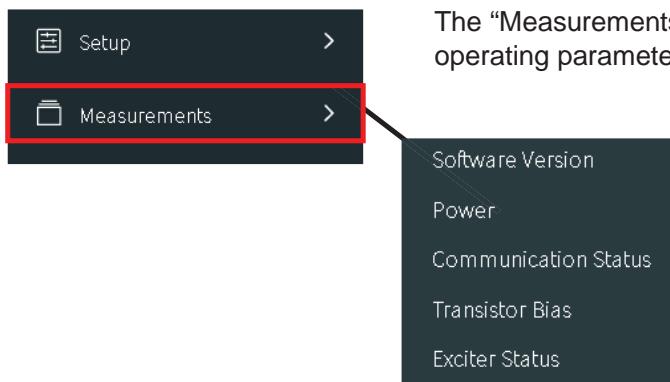
Upload


Press "Download" to save the file "export\_xx\_xx\_xx\_xx\_xx\_xx.json" in the PC downloads folder.

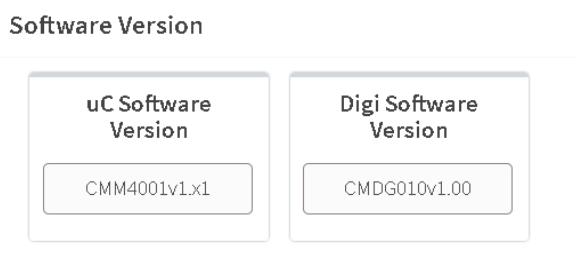
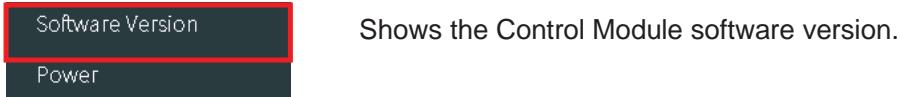
### Upload file settings:


- Press “Upload”
- Select the .json file:

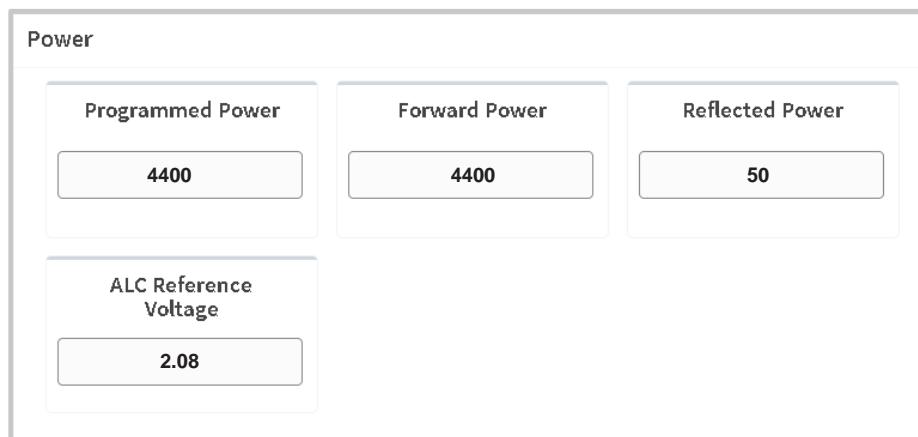
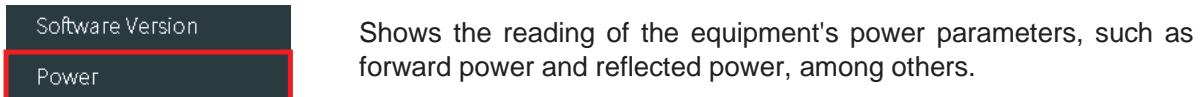



- Select the features to import and press save:





- Press “OK” when the process is done.





## Measurements



### Software Version



### Power



## Communication Status

Power

Communication Status

Shows the HPA communication status.



## Transistor Bias

Communication Status

Transistor Bias

Shows the transistor DC's operating voltage or current conditions so that any RF input signal can be amplified correctly by the transistor.

### Transistor Bias

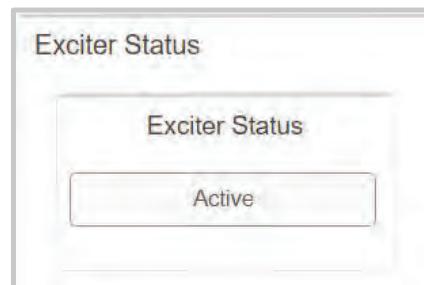
LDMOS Drain Voltage [V]

50.00

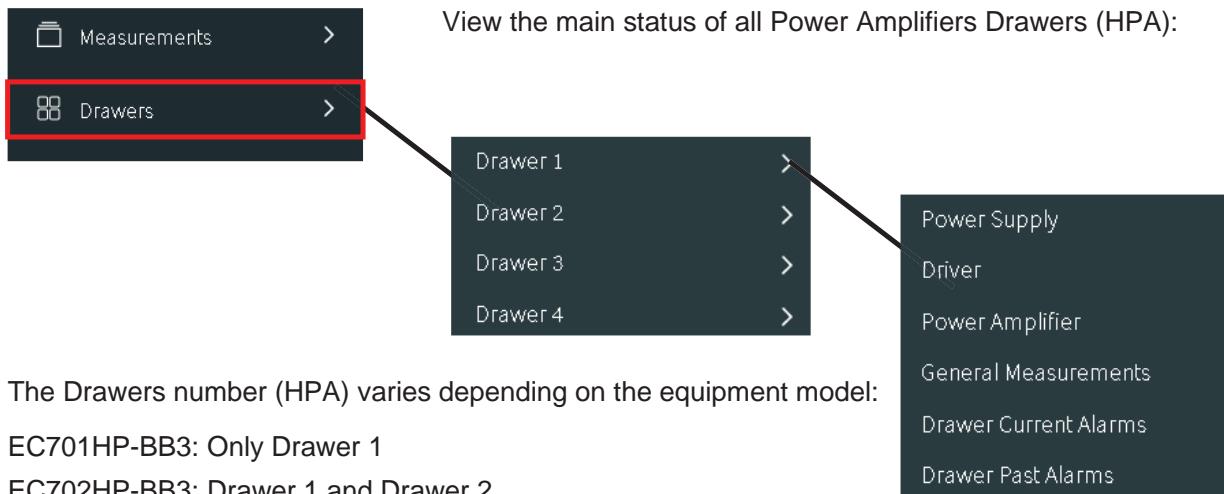
Carrier Amp. Current [A]

0.70

Peak Amp. Gate Voltage [V]


0.60

## Exciter Status


Transistor Bias

Exciter Status

Shows the Exciter's communication status.



## Drawers



EC701HP-BB3: Only Drawer 1

EC702HP-BB3: Drawer 1 and Drawer 2

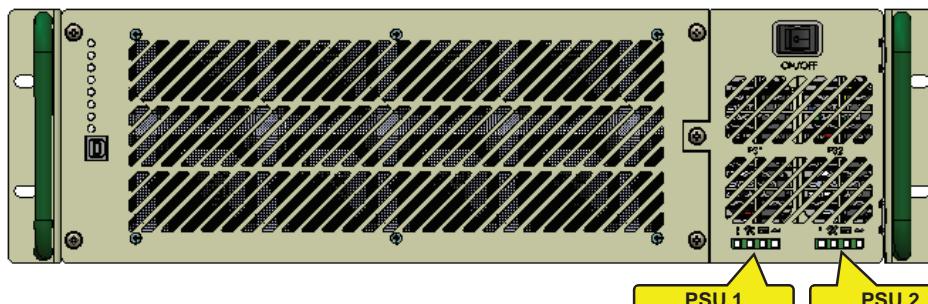
EC703HP-BB3: Drawer 1 to Drawer 3

EC704HP-BB3: Drawer 1 to Drawer 4

Through the submenu access the individual status of each Drawer (HPA).

Drawer Identification:




Individual status of each Drawer (HPA):

### Power Supply

Power Supply

Shows the HPA Power Supplies status.

Driver



#### Drawer 1 Power Supply Measurements

PSU 1 Input Voltage [VAC]

221.00

PSU 1 Output Voltage [V]

50.00

PSU 1 Temperature [°F]

111.56

PSU 1 Output Current [A]

13.12

PSU 1 Software Version

PAM30002v1.03

PSU 2 Input Voltage [VAC]

218.50

PSU 2 Output Voltage [V]

50.00

PSU 2 Temperature [°F]

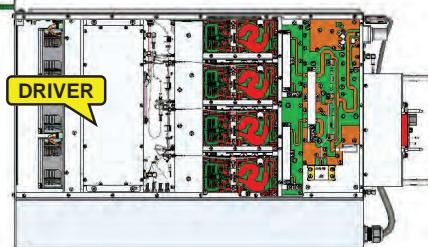
110.3

PSU 2 Output Current [A]

13.25

PSU 2 Software Version

PAM30002v1.03


### Driver

Power Supply

Shows the HPA Driver status.

Driver

#### DRIVER IDENTIFICATION



#### Drawer 1 Driver Measurements

Input Voltage [V]

49.50

Pre Driver Current [A]

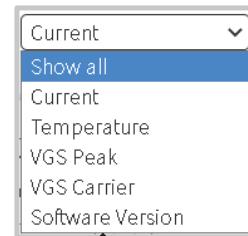
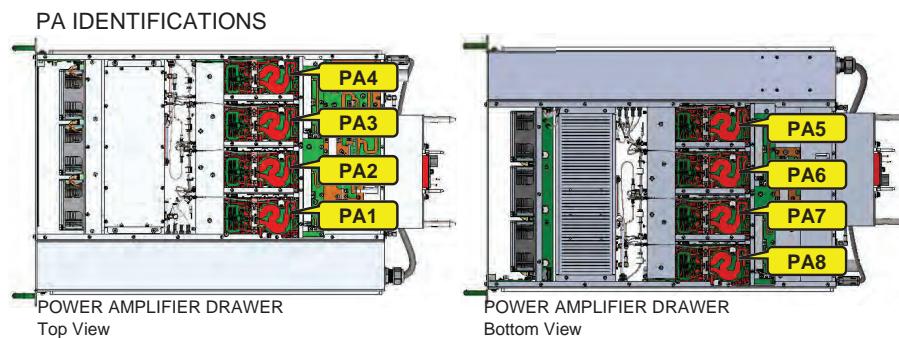
0.21

Temperature [°F]

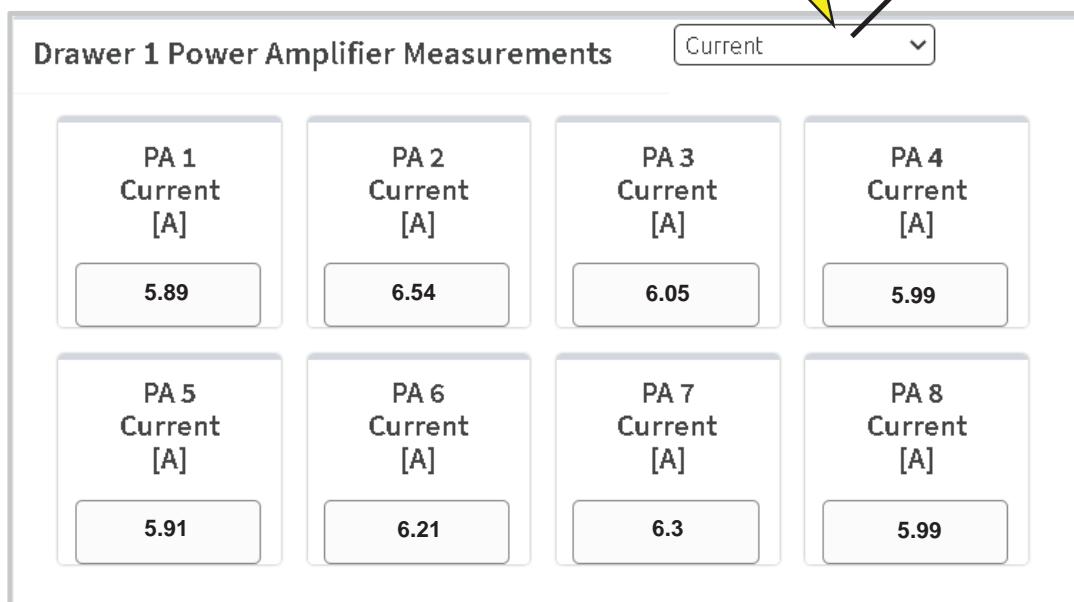
119

Driver Current [A]

2.35



Software Version

PAM30002v1.03


## Power Amplifier



Shows the HPA Power Amplifier's status.



Current:



**Temperature:**

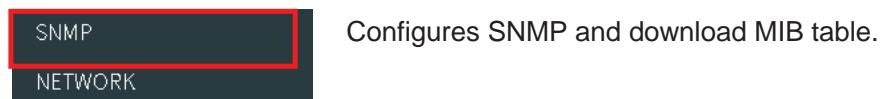
| Drawer 1 Power Amplifier Measurements |                             |                             |                             | Temperature |
|---------------------------------------|-----------------------------|-----------------------------|-----------------------------|-------------|
| PA 1<br>Temperature<br>[°C]           | PA 2<br>Temperature<br>[°C] | PA 3<br>Temperature<br>[°C] | PA 4<br>Temperature<br>[°C] |             |
| 48.90                                 | 48.81                       | 51.90                       | 50.72                       |             |
| PA 5<br>Temperature<br>[°C]           | PA 6<br>Temperature<br>[°C] | PA 7<br>Temperature<br>[°C] | PA 8<br>Temperature<br>[°C] |             |
| 48.77                                 | 50.19                       | 48.71                       | 50.13                       |             |

**VGS Peak:**

| Drawer 1 Power Amplifier Measurements |                      |                      |                      | VGS Peak |
|---------------------------------------|----------------------|----------------------|----------------------|----------|
| PA 1 VGS<br>Peak [V]                  | PA 2 VGS<br>Peak [V] | PA 3 VGS<br>Peak [V] | PA 4 VGS<br>Peak [V] |          |
| 0.33                                  | 0.33                 | 0.33                 | 0.33                 |          |
| PA 5 VGS<br>Peak [V]                  | PA 6 VGS<br>Peak [V] | PA 7 VGS<br>Peak [V] | PA 8 VGS<br>Peak [V] |          |
| 0.33                                  | 0.33                 | 0.33                 | 0.33                 |          |

**VGS Carrier:**

| Drawer 1 Power Amplifier Measurements |                      |                      |                      | VGS Carrier |
|---------------------------------------|----------------------|----------------------|----------------------|-------------|
| PA 1 VGS Carrier [V]                  | PA 2 VGS Carrier [V] | PA 3 VGS Carrier [V] | PA 4 VGS Carrier [V] |             |
| 1.75                                  | 1.70                 | 1.71                 | 1.78                 |             |
| PA 5 VGS Carrier [V]                  | PA 6 VGS Carrier [V] | PA 7 VGS Carrier [V] | PA 8 VGS Carrier [V] |             |
| 1.69                                  | 1.67                 | 1.73                 | 1.75                 |             |


**Software Version:**

| Drawer 1 Power Amplifier Measurements |                       |                       |                       | Software Version |
|---------------------------------------|-----------------------|-----------------------|-----------------------|------------------|
| PA 1 Software Version                 | PA 2 Software Version | PA 3 Software Version | PA 4 Software Version |                  |
| PAM30002v0                            | PAM30002v0            | PAM30002v0            | PAM30002v0            |                  |
| PA 5 Software Version                 | PA 6 Software Version | PA 7 Software Version | PA 8 Software Version |                  |
| PAM30002v0                            | PAM30002v0            | PAM30002v0            | PAM30002v0            |                  |

## Remote

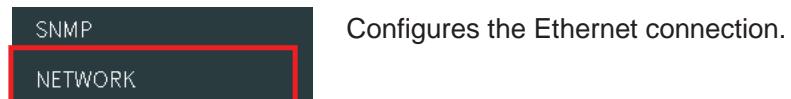


## SNMP



SNMP

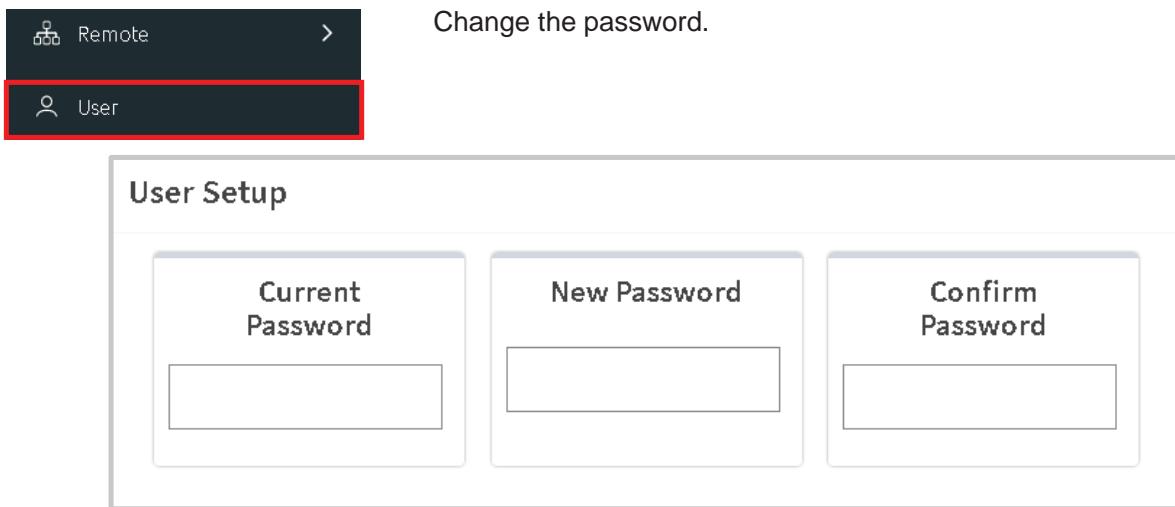
SAVE


|                               |                                    |                     |
|-------------------------------|------------------------------------|---------------------|
| Read Only Community<br>public | Read-Write Community<br>private    | SNMP Version<br>v2c |
| Download MIB<br>Download      | Trap Destination<br>192.168.100.80 | Enable Traps<br>OFF |

SNMP STATUS

Download the MIB table (file CMLinearMIB.zip) in PC download folder.

SNMP Traps config


## NETWORK



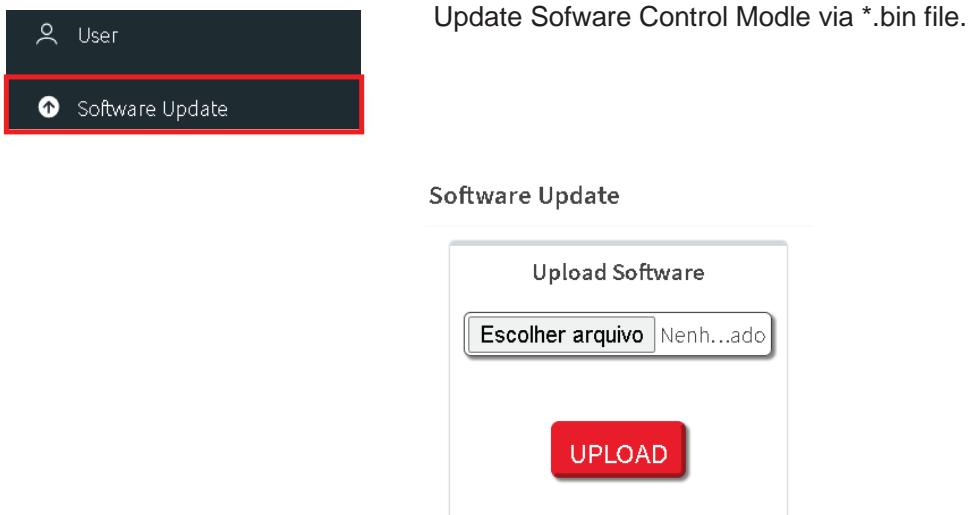
Network

|                              |                          |                          |
|------------------------------|--------------------------|--------------------------|
| IP Address<br>192.168.100.18 | Netmask<br>255.255.255.0 | Gateway<br>192.168.100.1 |
|------------------------------|--------------------------|--------------------------|

## User



Change the password.


User Setup

Current Password

New Password

Confirm Password

## Software Update



Update Software Control Module via \*.bin file.

User

Software Update

Software Update

Upload Software

Escolher arquivo Nenh...ado

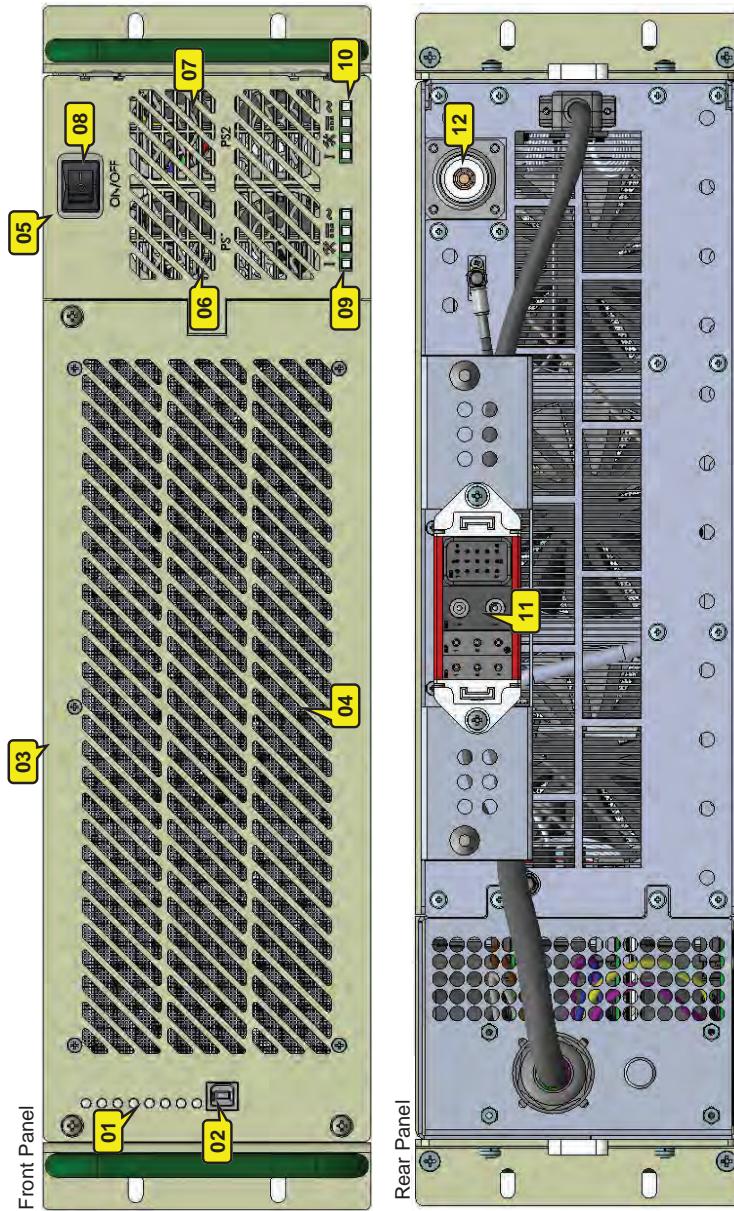
UPLOAD

### 3.2. PA708HP - Power Amplifier Module (MOD GV 40272 / MOD GV 40276 )



This is an air-cooled UHF power amplifier drawer composed of an RF block with eight (8) power transistors that utilize Doherty's high efficiency technology. Each Drawer can provide up to 1100 Watts RMS (ATSC 1.0) or up to 930 Watts RMS (ATSC 3.0) with efficiency between 34% and 41%, depending on the operating channel.

The Power Drawers are mounted in the rack by a quick release system that allows them to be connected to the Racks without the need to plug cables or connectors into the rear.


Main features:

- ⇒ High efficiency
- ⇒ Power Supply redundancy - 2 Power Supplies
- ⇒ Doherty Configuration
- ⇒ Standing fans accessible from the front panel
- ⇒ Removable power supply at the front panel of the drawer
- ⇒ 3U Power Drawer for 19" rack
- ⇒ Broadband power amplifiers
- ⇒ Power transistors LDMOS Ampleon BLF-888E
- ⇒ Automatic control of the quiescent currents of the power transistors depending on the temperature
- ⇒ Automatic fan speed control according to power transistor's temperature
- ⇒ Protection against VSWR and Overdrive
- ⇒ Power Factor Corrector (PFC) at power supply (PFC)
- ⇒ Protection against over current in the power supply
- ⇒ Settings and measures via terminal
- ⇒ Automatic restart after alarm event
- ⇒ Matched sample of the output signal
- ⇒ Integrated MOD bus Control



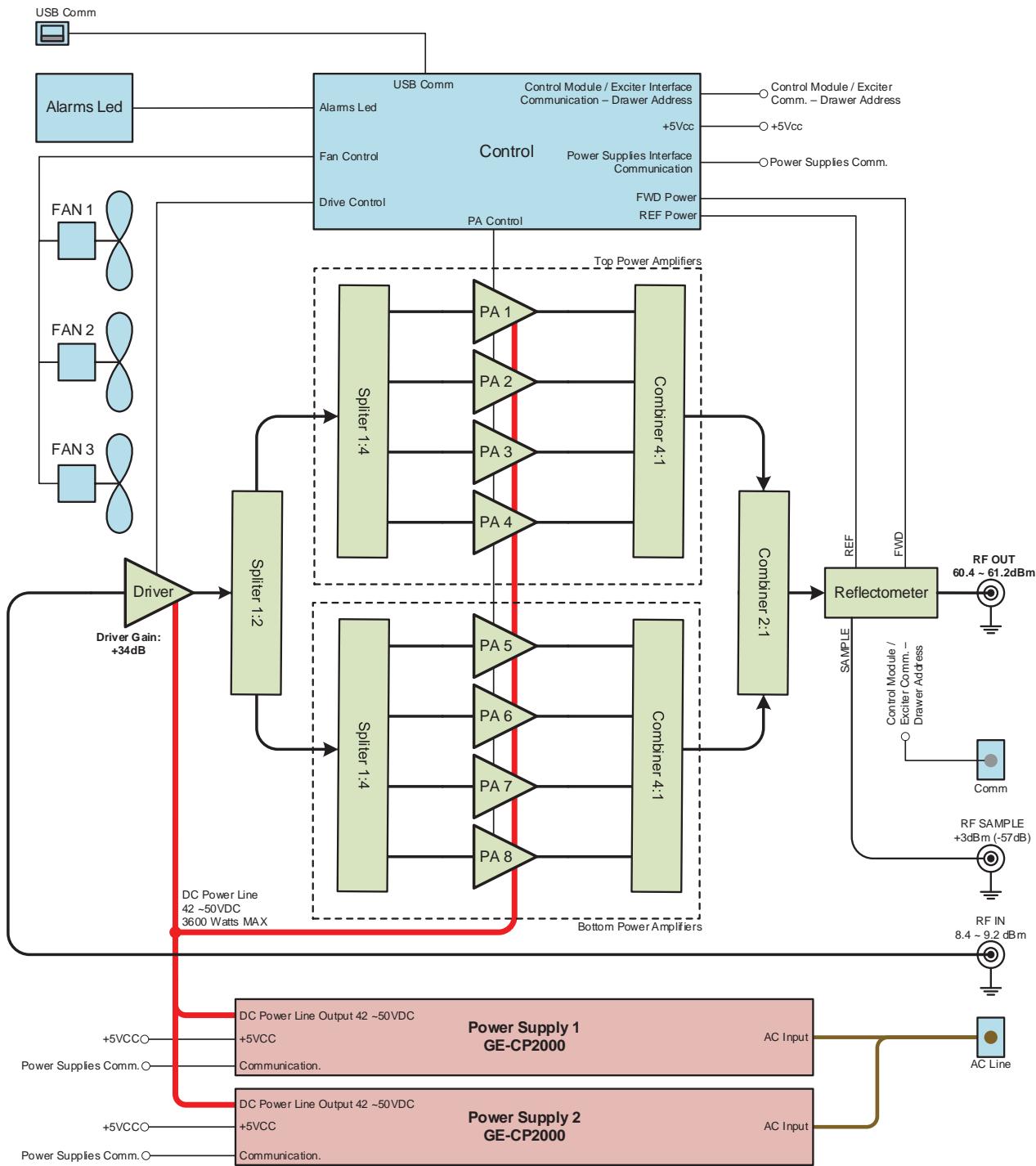
**Never unplug any Power Amplifier Drawer while the Transmitter is on due to the risk of damaging the equipment.**

### 3.2.1. Interfaces



|    |                                                                         |
|----|-------------------------------------------------------------------------|
| 01 | Signaling LED's                                                         |
| 02 | USB Interface                                                           |
| 03 | Removable front panel                                                   |
| 04 | Fan Air Filter                                                          |
| 05 | Removable Power Supplies front panel                                    |
| 06 | Power Source 1 (PS1)                                                    |
| 07 | Power Source 2 (PS2)                                                    |
| 08 | On/Off PA708HP                                                          |
| 09 | LED status PS1                                                          |
| 10 | LED status PS2                                                          |
| 11 | A/C Power, RF Input and Communication<br>Plug-In (quick release system) |
| 12 | RF Out Plug-In (quick release system)                                   |

3.2.2. *Specifications*


| 7       | Characteristic          | Specification                                                                                                    |
|---------|-------------------------|------------------------------------------------------------------------------------------------------------------|
| Input   | Frequency Range         | 470 to 608MHz (CH14 to 36) @ <b>MOD GV 40272</b><br>608 to 701MHz (CH37 to 51) @ <b>MOD GV 40276</b>             |
|         | Level                   | +8.4dBm ( $\pm 0.2$ dB) for 1100Wrms Output (ATSC 3.0)<br>+9.2dBm ( $\pm 0.2$ dB) for 1300Wrms Output (ATSC 1.0) |
|         | Connector / Impedance   | SMA female / 50 Ohms                                                                                             |
|         | Return Loss             | -20dB typical (-18dB Max)                                                                                        |
| Output  | Frequency Range         | 470 to 608MHz (CH14 to 36) @ <b>MOD GV 40272</b><br>608 to 701MHz (CH37 to 51) @ <b>MOD GV 40276</b>             |
|         | Output Power            | 1100Wrms (ATSC 3.0)<br>1300Wrms (ATSC 1.0)                                                                       |
|         | Connector / Impedance   | 7/8 Fast Socket / 50 Ohms                                                                                        |
|         | Return Loss             | -20dB typical (-18dB Max) - measured with the drawer off                                                         |
|         | Harmonics / Spurious    | -25dBc                                                                                                           |
| General | Average MER             | Better than 36dB: Pout=1300W @ ATSC 1.0<br>Better than 33dB: Pout = 1100Wrms @ ATSC 3.0                          |
|         | Communication Interface | USB / RS-485                                                                                                     |
|         | AC Mains                | 180Vac to 250Vac / 43 to 63Hz                                                                                    |
|         | Power Factor            | > 0.92                                                                                                           |
|         | Gain                    | 52dB ( $\pm 0.2$ dB)                                                                                             |
|         | Average Efficiency      | 40% typical @ ATSC 1.0<br>40% typical @ ATSC 3.0                                                                 |

### **3.2.3. Power Amplifier Drawer Functional Description**

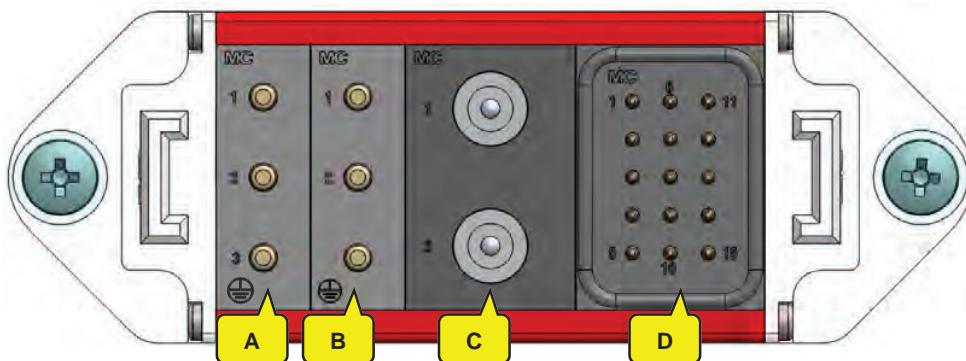
## MOD GV 40272: 470 to 608 MHz (ch14 to ch36)

## MOD GV 40276: 608 to 701 MHz (ch37 to ch51)

**GAIN: +52 dB**



The Power Amplifier Drawer MOD GV 40272/40276 uses eight RF amplifier pallets operating in parallel. The chassis is configured with four pallets per side (top & bottom). Each pallet incorporates the Ampleon BLF-888E Broadband Doherty LDMOS device. Doherty amplifiers significantly improve efficiency by passing the signal peaks in the class C device while using the class AB device to handle average power.


The 888E device internally has two parallel transistors in a Doherty configuration; one half of the device is operating in class AB and the other in class C. Furthermore, the 888E device is designed to be an asymmetric Doherty amplifier, with higher peak power capability on the Class C for better linear performance and higher peak power capability.

Amplifier pallets are housed in a 3RU rack mounted chassis. The chassis is self-contained and includes RF pallets, removable AC to 50VDC power supply, control and monitoring logic, low level RF splitting, high level RF combiner, as well as the cooling fans. The pallets are mounted to oversized extruded aluminum heat sinks for cool operation in the harshest conditions.

The Power Amplifier Drawer is controlled by the CM9001 Control Module. The CM8001 monitors, manages and controls all the drawer parameters via the RS485 interface called MODBUS.

Each final power amplifier module has protection systems for high temperature and over-current. The final power amplifier assembly has a protection system for excessive VSWR conditions. The amplifier chassis provides at a glance front panel indicators. LED's to indicate the status of the PS voltage and current, pallets, temperature status, as well as a general amp status indicator. All of the amplifier status information is collected via an amplifier interface board. The interface board provides its status back to the transmitter controller for system level control and monitoring.

### 3.2.4. A/C Power, RF Input and Communication Plug-In

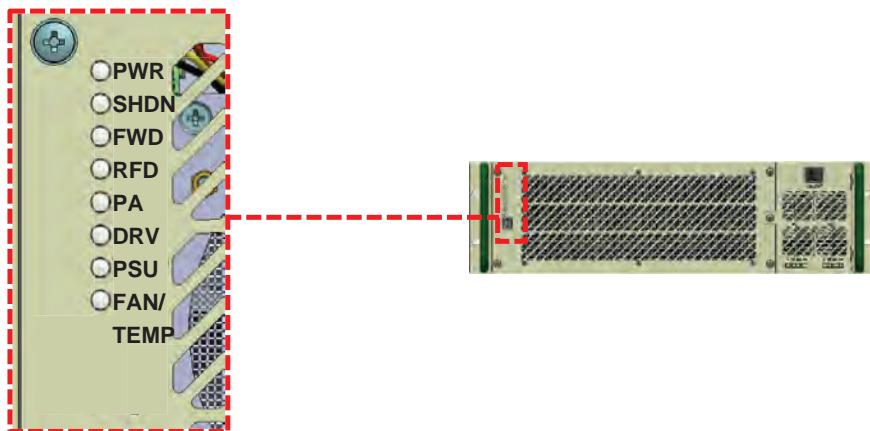


|    |                        |
|----|------------------------|
| A1 | AC POWER PHASE 1 – PS1 |
| A2 | AC POWER PHASE 2 – PS2 |
| A3 | GND                    |
| B1 | AC POWER PHASE 2 – PS2 |
| B2 | AC POWER PHASE 2 – PS1 |
| B3 | GND                    |
| C1 | RF INPUT               |
| C2 | RF SAMPLE              |

|     |                                   |
|-----|-----------------------------------|
| D1  | Pinout Configuration – Address A2 |
| D2  | Pinout Configuration – Address A3 |
| D3  | RS485A                            |
| D4  | N/A                               |
| D5  | Reflected Power                   |
| D6  | Pinout Configuration – Address A1 |
| D7  | GND                               |
| D8  | GND                               |
| D9  | N/A                               |
| D10 | GND                               |
| D11 | Pinout Configuration – Address A0 |
| D12 | N/A                               |
| D13 | RS485B                            |
| D14 | N/A                               |
| D15 | Forward Power                     |

### 3.2.5. Power Amplifier Drawer Address Configuration - MODBUS

Each drawer position has an address. The address is assigned to the drawer when it is attached to a certain position in the rack. The assignment of this address occurs on pins D1, D2, D6, and D11 of the Plug-In connector. The addressing of the positions of the drawers follows the table below:

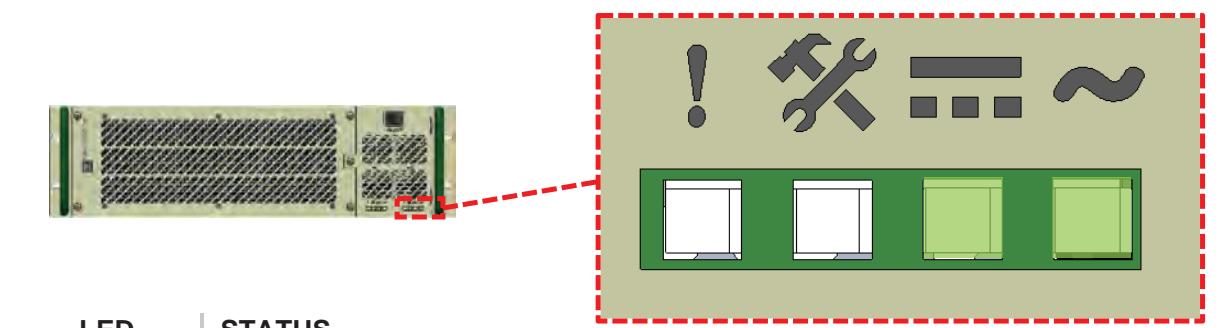

| Equipment   | Drawer Position | Decimal MODBUS Address | Binary Pinout Configuration |    |    |    |
|-------------|-----------------|------------------------|-----------------------------|----|----|----|
|             |                 |                        | A3                          | A2 | A1 | A0 |
| EC701HP-BB3 | 1               | 003                    | 1                           | 0  | 0  | 0  |
| EC702HP-BB3 | 1               | 003                    | 1                           | 0  | 0  | 0  |
|             | 2               | 004                    | 1                           | 0  | 0  | 1  |
| EC703HP-BB3 | 1               | 003                    | 1                           | 0  | 0  | 0  |
|             | 2               | 004                    | 1                           | 0  | 0  | 1  |
|             | 3               | 005                    | 1                           | 0  | 1  | 0  |
| EC704HP-BB3 | 1               | 003                    | 1                           | 0  | 0  | 0  |
|             | 2               | 004                    | 1                           | 0  | 0  | 1  |
|             | 3               | 005                    | 1                           | 0  | 1  | 0  |
|             | 4               | 006                    | 1                           | 0  | 1  | 1  |

Binary Pinout Configuration: 0 (0Vcc); 1 (3.3Vcc)

### 3.2.6. Power Amplifier Signaling LED's

Each Power Amplifier Drawer Features an LED bank that indicates its operation according to the colors as shown below:

|                                       |        |                                                           |
|---------------------------------------|--------|-----------------------------------------------------------|
| <span style="color: green;">●</span>  | Green  | Normal operation                                          |
| <span style="color: orange;">●</span> | Orange | Orange light indicates that a failure has <u>occurred</u> |
| <span style="color: red;">●</span>    | Red    | Flashing Red light indicates an <u>ongoing</u> failure    |

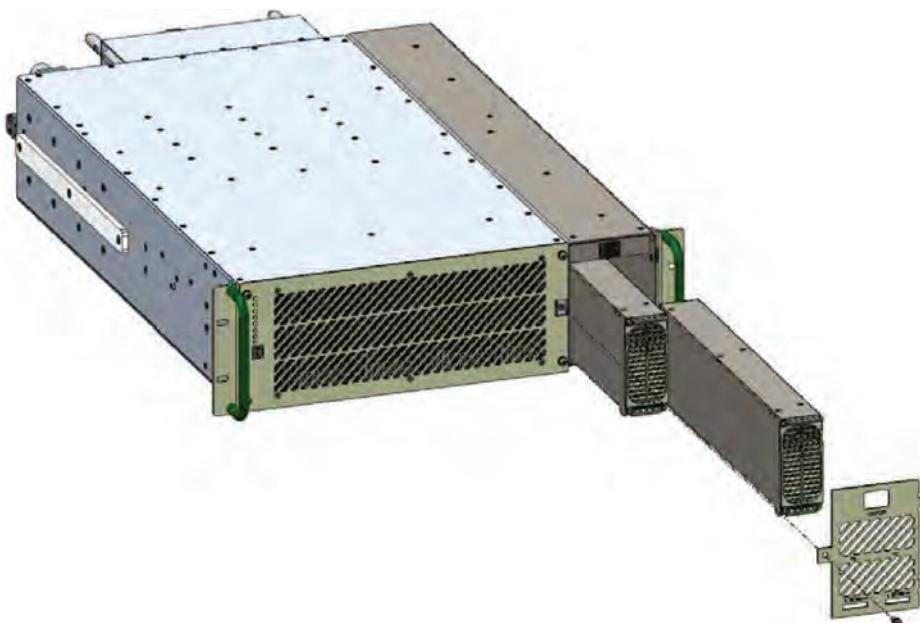



| LED      | ALARM                                                                                                                                                                                                                                                     |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PWR      | N/A - This LED lights only GREEN indicating that is POWERED ON                                                                                                                                                                                            |
| SHDN     | Power Supply Shutdown                                                                                                                                                                                                                                     |
| FWD      | Over Forward Power (Overdrive)                                                                                                                                                                                                                            |
| RFD      | Reflected Power                                                                                                                                                                                                                                           |
| PA       | PA Failure, High Current on PA, Low Current on PA, Current UNBAL on PA, Low Gain on PA, High Temperature on PA, Communication Failure on PA                                                                                                               |
| DRV      | High Current on Driver, Low Current on Driver, Low Current on Pre Driver, High Current on Pre Driver, Low Gain on Driver, High Temperature on Driver, Low Voltage on Driver, Communication Failure on Driver, High Input Signal, High Driver Output Level |
| PSU      | Low AC Line Voltage, High AC Line Voltage, Low PSU Voltage, High PSU Voltage, High PSU Current, High PFC Temperature, High DC/DC Temperature, PSU Communication Failure                                                                                   |
| FAN/TEMP | When detected slow speed of rotation or complete failure in any of the fans. High temperature input air of the power drawer (greater than 35°C).                                                                                                          |

Alarm details are displayed by accessing the keyboard-display interface of the Control Module CM9001 in the menus:

> Main Menu > System Alarms/Log > Drawers Alarms

### 3.2.7. Power Supplies Signaling LED's




| LED | STATUS                                             |
|-----|----------------------------------------------------|
| !   | ON: Fault<br>BLINKING: Not Communicating           |
| 🔧   | ON: Over-temperature warning<br>BLINKING: Overload |
| --- | ON: Output OK<br>BLINKING: Service                 |
| ~   | ON: Input OK<br>BLINKING: Input out of limits      |

### 3.2.8. CP2000 - 2000 Watts Powers Supplies

#### Use GE model CP2000AC54TEZ, 2000W AC-DC Power Supply

The Power Amplifiers Drawers use two 2000 Watts plug-in power supplies. Each one converts 180-240VAC single-phase line voltage to 40-50VDC and features a quick-connect system that allows the unit to be easily removed through the front of the power amplifier chassis.



Never unplug any Power Supplies while the transmitter is on as this can result in equipment damage.

In the EC701HP-BB3, EC702HP-BB3 and EC703HP-BB3, which uses one, two and three Power Amplifiers, if one PS is removed the output power of the PA is reduced to 40% of the nominal power of the PA. From the EC704HP-BB3 up to EC712HP-BB3, which uses four or more amplifier, if one PS is removed the PA is shut off and the transmitter output power results follows the equations below.

### **3.2.9. Power Supply Redundancy Operation / Power Reduction**

See below the description of the power supply redundancy operation of the transmitters EC701HP-BB3 to the EC712HP-BB3:

#### **EC701HP-BB3**

The EC701HP-BB3 is composed by one Power Amplifier with the combination of eight pallets with the Doherty technology.

Only in this model there is the possibility to operate with one of the two power supplies and with one or more RF transistors damaged.

The Output power reduction by PSU fail follows the table below:

| Output Power reduction by PSU fail |      |              |
|------------------------------------|------|--------------|
| PS1                                | PS2  | Output Power |
| OK                                 | OK   | 100%         |
| FAIL                               | OK   | 40%          |
| OK                                 | FAIL | 40%          |

The Output Power Reduction by RF transistor fail follows the equation below:

$$P_{out} = \left( \frac{T_{ok}}{T_{total}} \right)^2 * P_n * k$$

Where:

Pout = Output Power Results

Tok = Number of transistors working properly

Tt = Total number of transistors = 8

Pn = Nominal Output Power after the filter.

k = Reduction factor by dummy loads = 0.75

## EC702HP-BB3

The Output Power Reduction by PSU fail follows the equation below:

$$P_{out} = \left( \frac{N1 + N2 * 0.73}{N} \right)^2 * Pn * k * y$$

Where:

Pout = Output Power Results

N1 = Number of Power Amplifiers working properly

N2 = Number of Power Amplifiers with one PSU failed

N = Total Number of Power Amplifiers = 2

Pn = Nominal Output Power after the filter

k = Reduction factor by dummy loads = 0.75

y = Reduction factor by PSU = 0.713

Obs: The output of the Power Amplifier is reduced to 40% in the case of one PSU fail

## EC703HP-BB3

The Output Power Reduction by PSU fail follows the equation below:

$$P_{out} = \left( \frac{N1 + N2 * 0.73}{N} \right)^2 * Pn * k * y$$

Where:

Pout = Output Power Results

N1 = Number of Power Amplifiers working properly

N2 = Number of Power Amplifiers with one PSU failed

N = Total Number of Power Amplifiers = 3

Pn = Nominal Output Power after the filter

k = Reduction factor by dummy loads = 0.75

y = Reduction factor by PSU = 0.645

Obs: The output of the Power Amplifier is reduced to 40% in the case of one PSU fail

## EC704HP-BB3 to EC712HP-BB3

The Output Power Reduction by PSU fail follows the equation below:

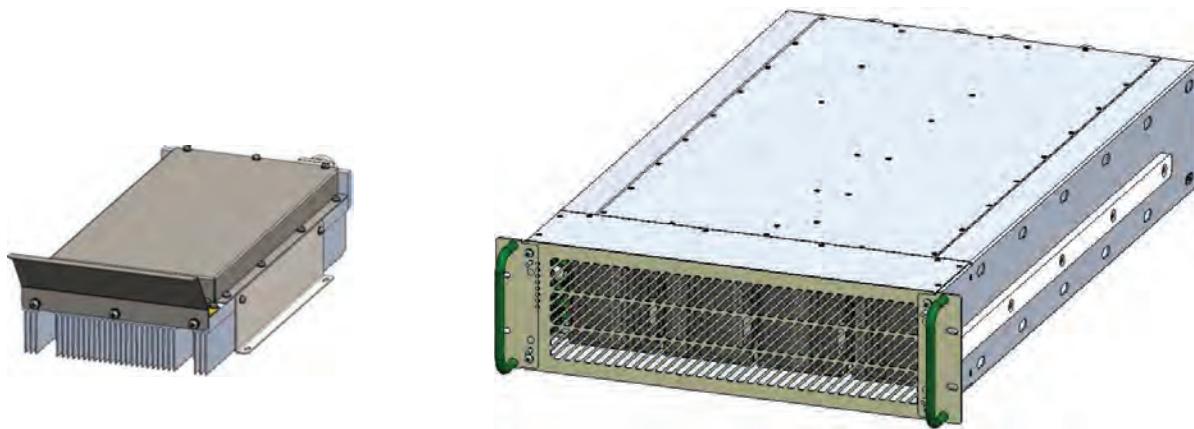
$$P_{out} = \left( \frac{N1}{N} \right)^2 * Pn * k$$

Where:

Pout = Output Power Results

N1 = Number of Power Amplifiers working properly

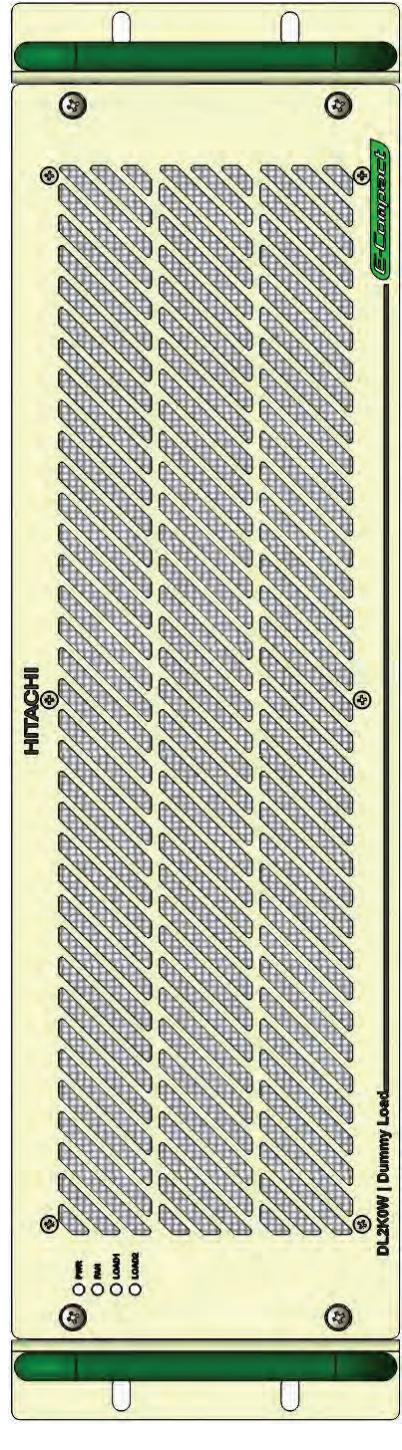
N = Total Number of Power Amplifiers (4 to 12 depending on the model)


Pn = Nominal Output Power after the filter

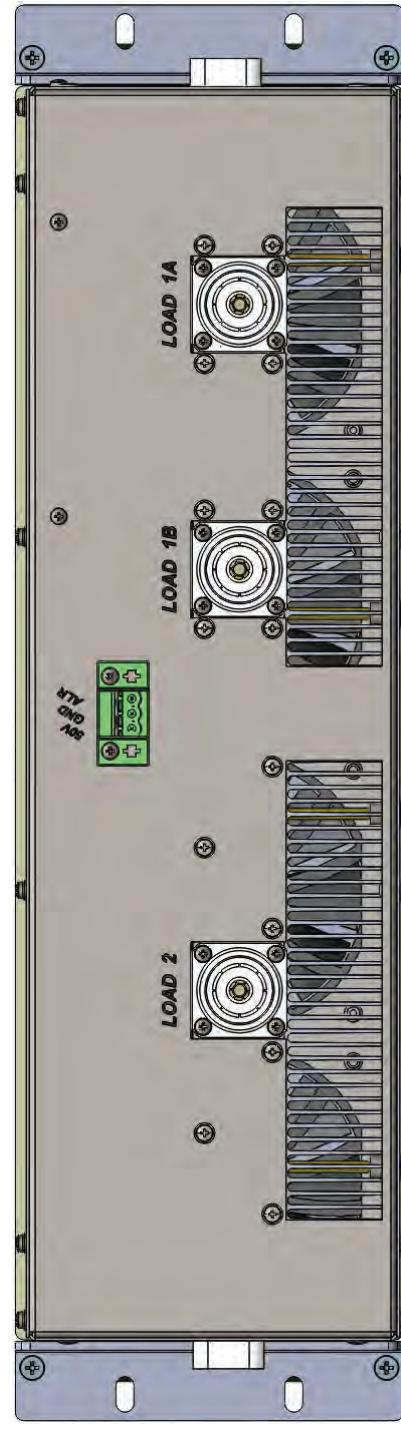
k = Reduction factor by dummy loads = 0.75

Obs1: The Power Amplifier switch off in the case of one PSU fail

Obs2: The Power Amplifier in the models EC704HP-BB3 to EC712HP-BB3 switch off in the case of one or more transistors fail


### 3.3. Dummy Loads Module




It is a drawer that absorbs the imbalances that occur in the power combiner. The model of the drawer varies according to the quantity of loads defined by the equipment model:

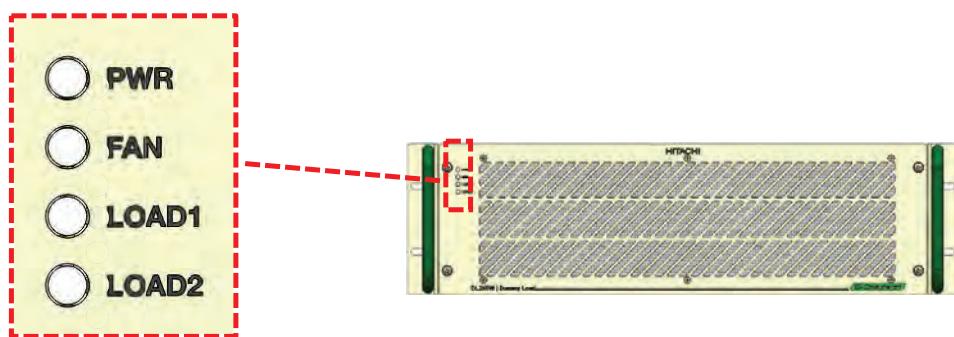
| Dummy Load Module       | Rear View                                                                            | Loads Qty | Equipment   |
|-------------------------|--------------------------------------------------------------------------------------|-----------|-------------|
| N/A                     | N/A                                                                                  | 0         | EC701HP-BB3 |
| MOD 40295<br>500 Watts  |   | 1         | EC702HP-BB3 |
| MOD 40295<br>500 Watts  |  | 2         | EC703HP-BB3 |
| MOD 40311<br>1000 Watts |  | 3         | EC704HP-BB3 |
| MOD GV 40312<br>DL2K0W  |                                                                                      |           |             |

### 3.3.1. DL2K0W - Interfaces



Front Panel

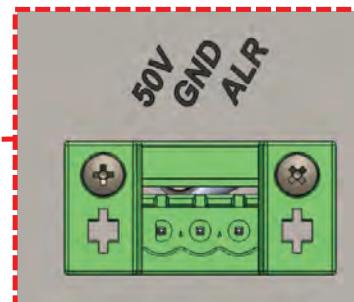
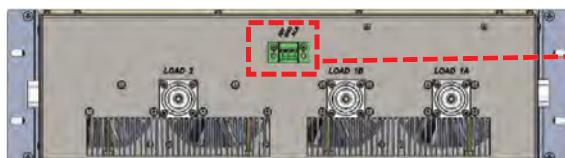



Rear Panel

| DL2K0W (MOD 40027) |          |           |                      |            |
|--------------------|----------|-----------|----------------------|------------|
| LOAD               | CONN.    | LOAD SIDE | IMPEDANCE 470-608MHz | POWER      |
| LOAD 1A            | DIN 7/6" | TOP       | 50Ω                  | 500 Watts  |
| LOAD 1B            | DIN 7/6" | TOP       | 50Ω                  | 500 Watts  |
| LOAD 2             | DIN 7/6" | TOP       | 50Ω                  | 1000 Watts |

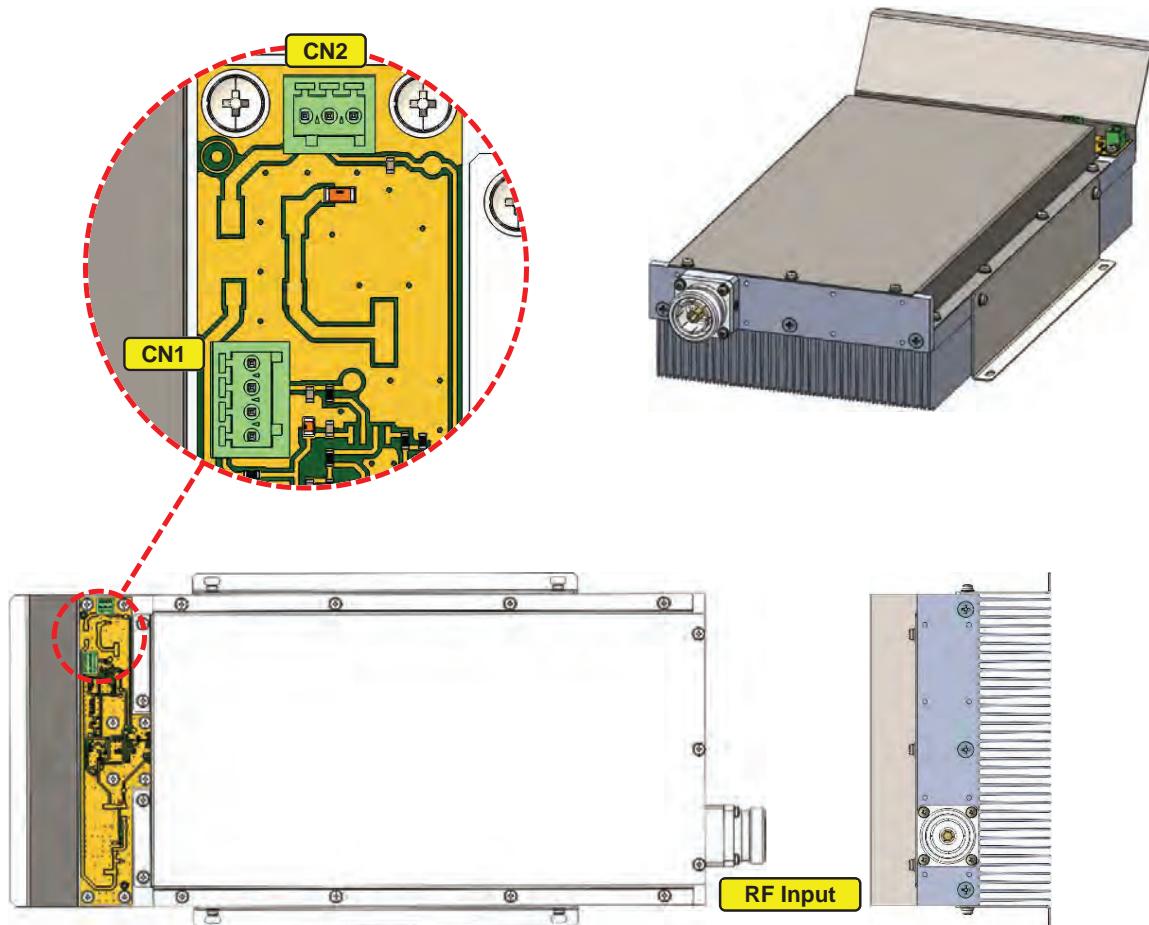
### 3.3.2. DL2K0W - Signaling LED's

Each Power Amplifier Drawer has a bank of LED's that indicates the situation of its operation according to the color of its illumination:



|                                       |        |                                                               |
|---------------------------------------|--------|---------------------------------------------------------------|
| <span style="color: green;">●</span>  | Green  | Normal operation                                              |
| <span style="color: orange;">●</span> | Orange | There is power on the rejection loads (temperature is rising) |
| <span style="color: red;">●</span>    | Red    | A failure is <u>occurring</u>                                 |

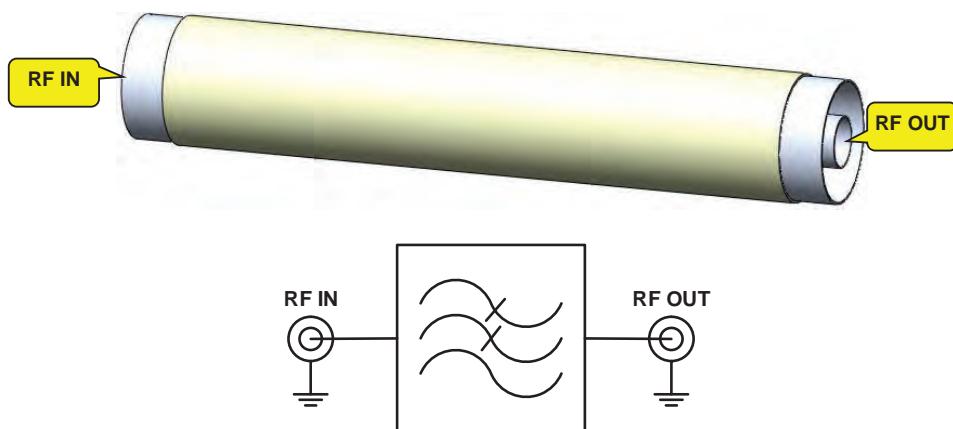


| LED    | COLOR                                        | ALARM                                                          |
|--------|----------------------------------------------|----------------------------------------------------------------|
| PWR    | <span style="color: green;">●</span> Green   | N/A - This LED lights only GREEN indicating that is POWERED ON |
| ALR    | <span style="color: red;">●</span> Red       | Fan failure or high temperature loads                          |
| LOAD_* | <span style="color: orange;">●</span> Orange | Temperature rise due to RF                                     |
|        | <span style="color: red;">●</span> Red       | High temperature on Load                                       |


\*Load Number - amount of loads depends on the equipment model

### 3.3.3. DL2K0W - Rear Connection



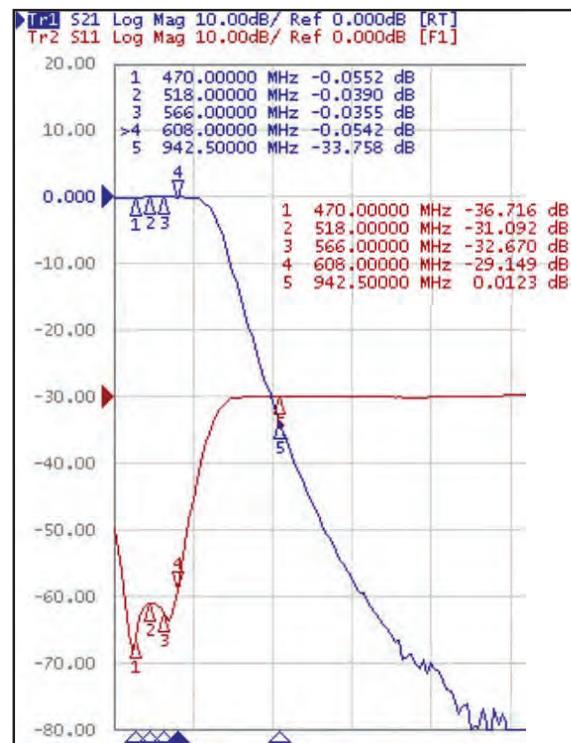

| PIN | DESC                    |
|-----|-------------------------|
| 50V | 50Vdc Input – From MCCB |
| GND | GND                     |
| ALR | Alarm Signaling         |

### 3.3.4. MOD 40295 / MOD 40311 - Interfaces

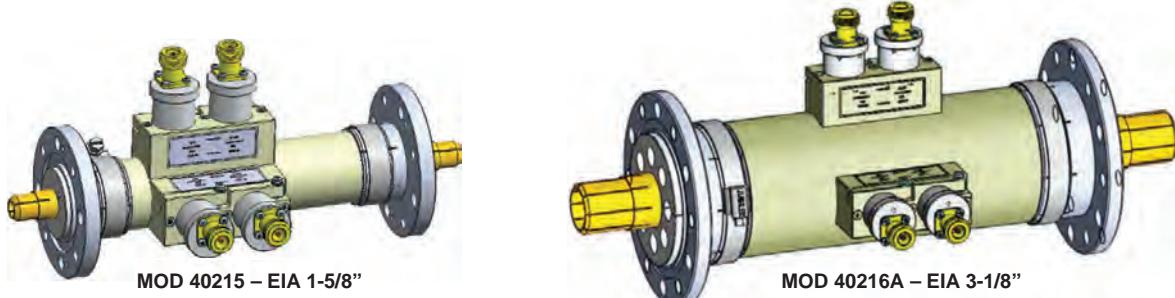


| CONNECTOR             | PIN | DESC                                        |
|-----------------------|-----|---------------------------------------------|
| CN1<br>(Fan conn.)    | 1   | GND                                         |
|                       | 2   | FAN ROTATION                                |
|                       | 3   | FAN PWM                                     |
|                       | 4   | +50 VDC                                     |
| CN2<br>(Module Power) | 1   | +50 VDC                                     |
|                       | 2   | ALARM_FAN/TEMP                              |
|                       | 3   | GND                                         |
| RF Input<br>50Ω       | --- | MAX 500W @ MOD 40295<br>MAX 1kW @ MOD 40295 |

### 3.4. EIA Low Pass Filter




The Low Pass Filter is installed between the Power Amplifier Drawer RF Output and the Mask Filter, attenuating unwanted harmonic products so that they do not return as reflected wave to the PA.

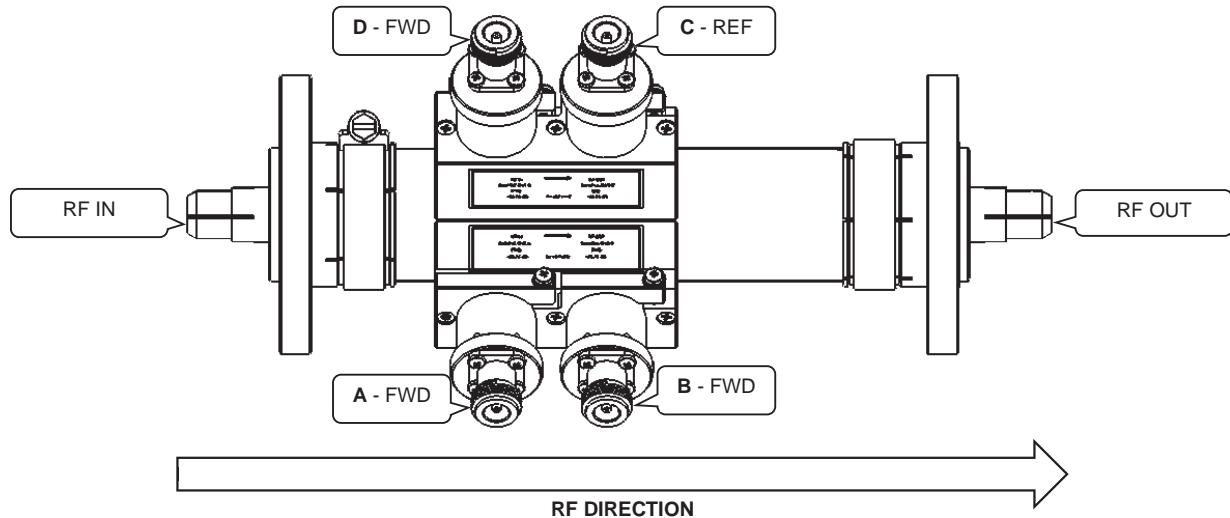

| Low Pass Filter | EIA      | Equipment   |
|-----------------|----------|-------------|
| MOD 40243       | 1 – 5/8" | EC701HP-BB3 |
| MOD 40243       | 1 – 5/8" | EC702HP-BB3 |
| MOD 40055       | 1 – 5/8" | EC703HP-BB3 |

#### 3.4.1. Features

| Low Pass Filter Model       | MOD 40243                          | MOD 40055         |
|-----------------------------|------------------------------------|-------------------|
| Use to                      | EC701HP-BB3<br>EC702HP-BB3         | EC703HP-BB3       |
| Operation Frequency         | 470 to 608MHz - CH14 to CH36       |                   |
| Connector / Impedance       | 1-5/8" EIA / 50 Ω                  | 3-1/8" EIA / 50 Ω |
| Max Power                   | 3300 Watts                         | 5500 Watt         |
| Return Loss                 | -26dB (min)<br>-30dB (typical)     |                   |
| Insertion Loss              | -0.06dB (max)<br>-0.05dB (typical) |                   |
| Second Harmonic Attenuation | Better than -30dB                  |                   |



### 3.5. EIA RF Output Line with Sample Probe

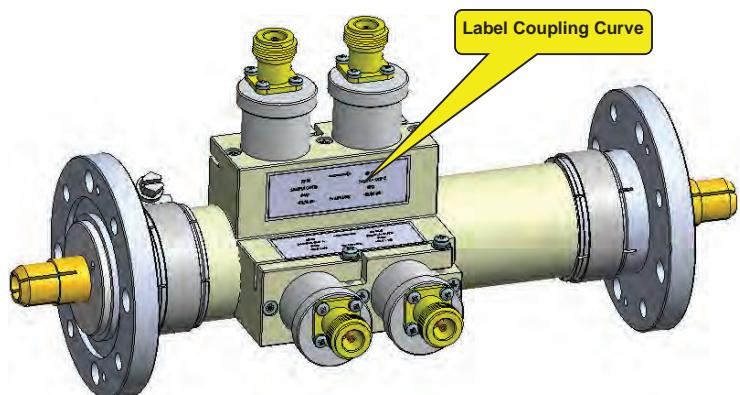



The EIA RF Output Line with Sample Probe is a passive coaxial RF sample installed in the Mask Filter RF output and has four independent RF outputs samples.

It has two signal samples for use in the non-linear adjustment, a sample for the reflected power monitoring and a direct power monitoring sample.

| RF Output Line with Sample Probe | EIA      | Equipment          |
|----------------------------------|----------|--------------------|
| MOD 40215                        | 1 - 5/8" | EC701HP-BB3 @ ATSC |
|                                  |          | EC702HP-BB3 @ ATSC |
|                                  |          | EC703HP-BB3 @ ATSC |
|                                  |          | EC704HP-BB3 @ ATSC |

#### 3.5.1. Features




| MODEL                                  | MOD 40215                                                                                    | MOD 40216A                                                                                   |
|----------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| <b>Operation Frequency</b>             | 470 to 608MHz CH14 to CH36                                                                   | 470 to 608MHz CH14 to CH36                                                                   |
| <b>Max Power</b>                       | 5500 Watts                                                                                   | 14000 Watts                                                                                  |
| <b>Insertion Loss (RF IN – RF OUT)</b> | -0.13dB (MAX); -0.10dB (MIN)                                                                 | -0.13dB (MAX); -0.10dB (MIN)                                                                 |
| <b>RF OUT</b>                          | Connection: 1-5/8" EIA Flange<br>Return Loss: -36dB (TYPICAL); -31dB (MIN)<br>Impedance: 50Ω | Connection: 3-1/8" EIA Flange<br>Return Loss: -36dB (TYPICAL); -31dB (MIN)<br>Impedance: 50Ω |
| <b>RF IN</b>                           | Connection: 1-5/8" EIA Flange<br>Return Loss: -36dB (TYPICAL); -31dB (MIN)<br>Impedance: 50Ω | Connection: 3-1/8" EIA Flange<br>Return Loss: -36dB (TYPICAL); -31dB (MIN)<br>Impedance: 50Ω |

## MOD 40215 / MOD 40216A - GENERAL FEATURES

|                                                             |                                                                                                                                       |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| <b>A – FWD Sample</b>                                       | Use for Non-Linear Correction<br>Forward Power Sample<br>Connection: N<br>Coupling: -52dB (MAX); -61dB (MIN)<br>Impedance: 50Ω        |
| <b>B – FWD Sample</b>                                       | To monitor Reflected Power Output.<br>Reflected Power Sample<br>Connection: N<br>Coupling: -52dB (MAX); -61dB (MIN)<br>Impedance: 50Ω |
| <b>C – REF Sample</b>                                       | To monitor Forward Power Output.<br>Forward Power Sample<br>Connection: N<br>Coupling: -52dB (MAX); -61dB (MIN)<br>Impedance: 50Ω     |
| <b>D – FWD Sample</b>                                       | To monitor Forward Power Output.<br>Forward Power Sample<br>Connection: N<br>Coupling: -52dB (MAX); -61dB (MIN)<br>Impedance: 50Ω     |
| <b>Samples Return Loss</b>                                  | -28dB (TYPICAL); -27dB (MIN)                                                                                                          |
| <b>Insulation between RF OUT And FWD Samples A, B and D</b> | -30dB (TYPICAL); -27dB (MIN)                                                                                                          |
| <b>Insulation between RF IN And REF Sample C</b>            | -30dB (TYPICAL); -27dB (MIN)                                                                                                          |

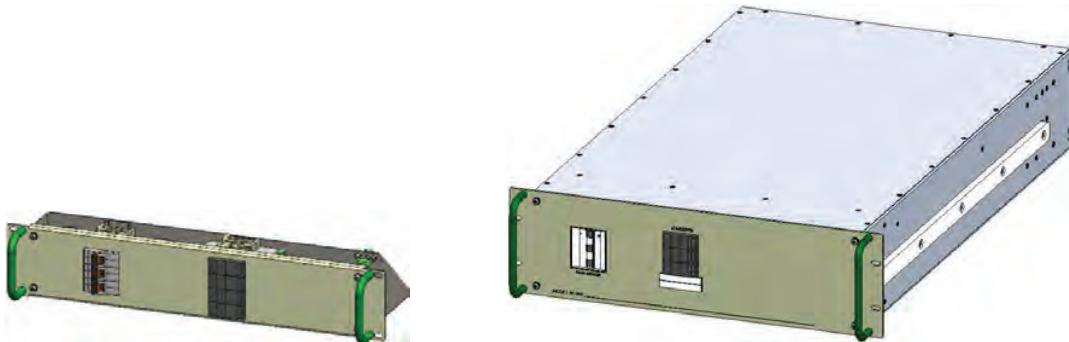
Check on the Sample output connectors labels the coupling curve for the corresponding frequency of the equipment.



### 3.6. Mask Filter

We recommend using Com-Tech RF Mask Filters:

Recommended bandpass filter for ATSC 1.0

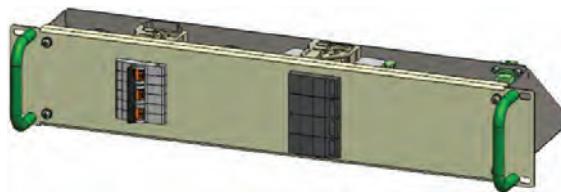

| Transmitter | Number of Poles | Model    | Brand    | Note                    |
|-------------|-----------------|----------|----------|-------------------------|
| EC701HP-BB3 | 6               | TF6D120C | COM-TECH | With Heat Sink          |
| EC702HP-BB3 | 6               | TF6D170C | COM-TECH | Default                 |
| EC703HP-BB3 | 6               | TF6D170C | COM-TECH | With Forced Air Cooling |
| EC704HP-BB3 | 6               | TF6D220C | COM-TECH | With Heat Sink          |

Recommended bandpass filter for ATSC 3.0

| Transmitter | Number of Poles | Model    | Brand    | Note           |
|-------------|-----------------|----------|----------|----------------|
| EC701HP-BB3 | 6               | TF6D120C | COM-TECH | Default        |
| EC702HP-BB3 | 6               | TF6D170C | COM-TECH | Default        |
| EC703HP-BB3 | 6               | TF6D170C | COM-TECH | With Heat Sink |
| EC704HP-BB3 | 6               | TF6D220C | COM-TECH | With Heat Sink |

| Transmitter | Number of Poles | Model    | Brand    | Note           |
|-------------|-----------------|----------|----------|----------------|
| EC701HP-BB3 | 8               | TF8D120C | COM-TECH | Default        |
| EC702HP-BB3 | 8               | TF8D170C | COM-TECH | Default        |
| EC703HP-BB3 | 8               | TF8D170C | COM-TECH | With Heat Sink |
| EC704HP-BB3 | 8               | TF8D220C | COM-TECH | With Heat Sink |

### 3.7. MCCB (Molded Case Circuit Breaker)



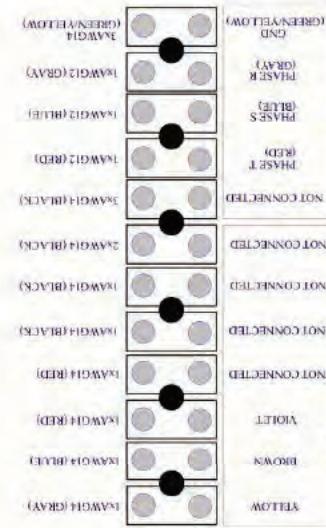
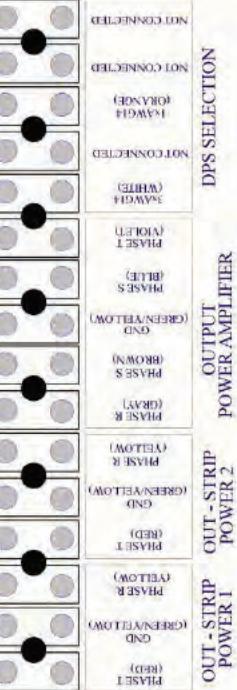
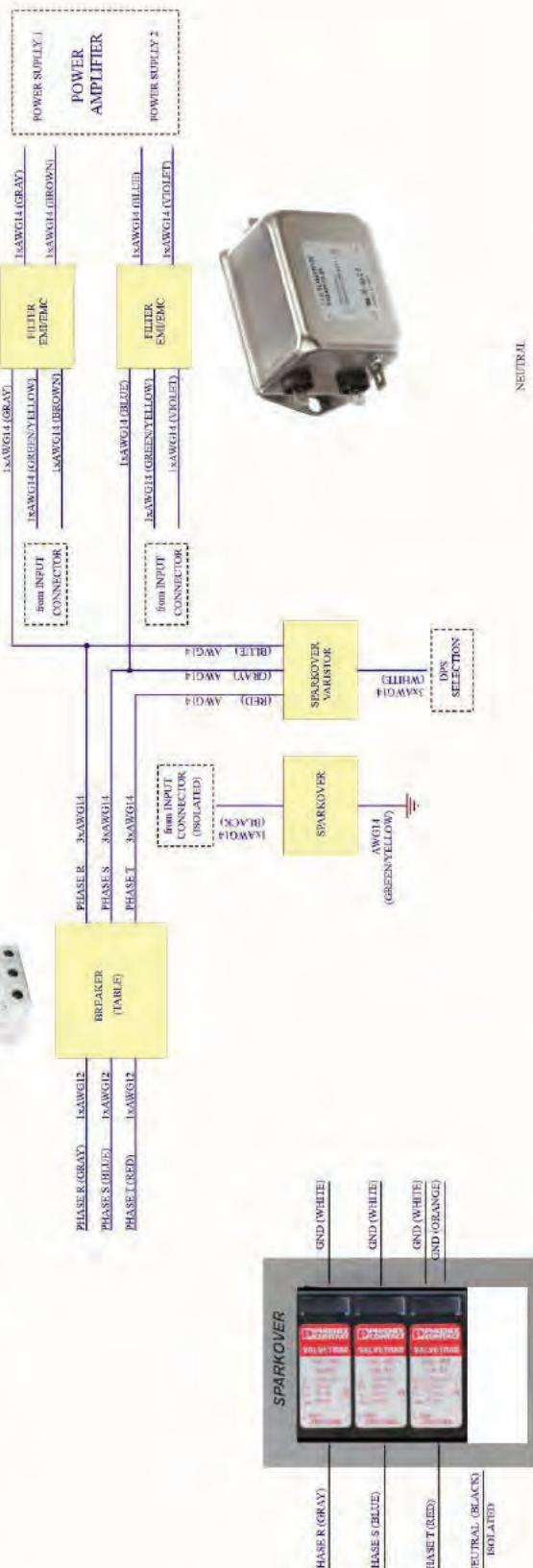

The MCCB (Molded Case Circuit Breaker) Drawer is responsible for the AC Power distribution and Equipment AC Power protection. Provides information to the Control Module regarding power supply conditions and protects the transmitter from power line problems.

MCCB has different power capacities according to the respective transmitter models:

| Equipment   | MCCB Model   | Capacity |
|-------------|--------------|----------|
| EC701HP-BB3 | MOD 40307    | 4.0kW    |
| EC702HP-BB3 | MOD GV 40256 | 8.0kW    |
| EC703HP-BB3 | MOD GV 40257 | 11.0kW   |
| EC704HP-BB3 | MOD GV 40258 | 18.0kW   |

#### 3.7.1. 4.0kW MCCB (MOD 40307)






Characteristics:

- For EC701HP-BB3 (AC 4.0kW)
- Surge Protection Device (SPD)
- Circuit Breaker
- Overvoltage Protection (>300VAC)
- EMC / EMI filter



THREE-PHASE 220VAC  
3 PHASE (127VAC) + GND

| MOD MACH 4U0707 |                      |
|-----------------|----------------------|
| VOLTAGE         | BREAKER              |
| M240            | 2SA (2CD23401R0254)  |
| B220            | 2SA (2CD23401R0254)  |
| T220            | 2SA (2CD23401R0254)  |
| T380            | 16A (2CD233001R0164) |



|                                                      |                |           |          |
|------------------------------------------------------|----------------|-----------|----------|
| HITACHI KOKUSAI LINEAR EQUIPAMENTOS ELETRÔNICOS S.A. |                |           |          |
| Title: EKP EC-701H1P-BH13                            |                |           |          |
| Size:                                                | Number:        | Revision: | CIP      |
| A3                                                   | MCCC-40307     |           | .....    |
| Date:                                                | 25/07/2020     | Drawn By: | LEONARDO |
| Approved By:                                         | Márcio Antônio | Sheet     | 2 of 7   |